
Methodologies, tools and languages for building
ontologies. Where is their meeting point?

Oscar Corcho 1, Mariano Fern�aandez-L�oopez 2, Asunci�oon G�oomez-P�eerez *

Facultad de Inform�aatica, Universidad Polit�eecnica de Madrid, Campus de Montegancedo s/n, Boadilla del Monte,
Madrid 28660, Spain

Received 28 November 2001; received in revised form 21 August 2002; accepted 30 October 2002

Abstract

In this paper we review and compare the main methodologies, tools and languages for building on-

tologies that have been reported in the literature, as well as the main relationships among them. Ontology

technology is nowadays mature enough: many methodologies, tools and languages are already available.

The future work in this field should be driven towards the creation of a common integrated workbench for

ontology developers to facilitate ontology development, exchange, evaluation, evolution and management,
to provide methodological support for these tasks, and translations to and from different ontology lan-

guages. This workbench should not be created from scratch, but instead integrating the technology com-

ponents that are currently available.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ontology; Ontology methodology; Ontology language; Ontology tool

1. Introduction

In the last decade, the word ‘‘ontology’’ has become a fashionable word inside the Knowledge
Engineering Community. We have seen many definitions about what an ontology is and we have
also seen how such definitions have changed and evolved over the time.

*Corresponding author. Tel.: +34-913367439; fax: +34-913524819.

E-mail addresses: ocorcho@fi.upm.es (O. Corcho), mfernandez@fi.upm.es (M. Fern�aandez-L�oopez), asun@fi.upm.es
(A. G�oomez-P�eerez).
1 Tel.: +34-913366604.
2 Tel.: +34-913366605.

0169-023X/03/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0169-023X(02)00195-7

Data & Knowledge Engineering 46 (2003) 41–64

www.elsevier.com/locate/datak

mail to: ocorcho@fi.upm.es

When a new ontology is going to be built, several basic questions arise related to the meth-
odologies, tools and languages to be used in its development process:

• Which methods and methodologies can I use for building ontologies, either from scratch, or
reusing other ontologies already available on ontology servers? Which activities are performed
when building ontologies with a methodology? Does any methodology support building ontol-
ogies cooperatively? Which is the life-cycle of an ontology that is developed with a specific
methodology?

• Which tool(s) give/s support to the ontology development process? How are the ontologies
stored (in databases or files)? Does the tool have an inference engine? Do tools have translators
for different ontology languages or formats?What is the quality of the translations? How can ap-
plications interoperate with ontology servers and/or use the ontologies that we have developed?

• Which language(s) should I use to implement my ontology? What expressiveness has an ontol-
ogy language? What are the inference mechanisms attached to an ontology language? Does any
ontology development tool support the language? Is the language chosen appropriate for ex-
changing information between different applications? Does the language ease the integration
of the ontology in an application? Is the language compatible with other languages used to rep-
resent knowledge and information on the Web? Does my application require having imple-
mented the ontology in different languages? Does my application require integrating existing
ontologies that were already implemented in different languages? Are there translators that
transform the ontology implemented in a source language in a target language? and finally,
how do such translators minimize the loss of knowledge in the translation process?

Along this paper, we will present the main characteristics of methodologies, tools and lan-
guages, which can help practitioners and researchers in this field to obtain answers to the previous
questions. That is, we will provide guidelines that help selecting the most appropriate method-
ologies, tools and languages for building an ontology in a specific domain. First, we will briefly
comment on some definitions of the term ontology.

2. What is an ontology?

The word ontology was taken from Philosophy, where it means a systematic explanation of
being. In the last decade, the word ontology became a relevant word for the Knowledge Engi-
neering community. We have read many definitions about what an ontology is and have also
observed how such definitions have changed and evolved over the time. In this section, we will
review these definitions and explain the relationships between them.
One of the first definitions was given by Neches and colleagues [57], who defined an ontology as

follows: ‘‘an ontology defines the basic terms and relations comprising the vocabulary of a topic
area as well as the rules for combining terms and relations to define extensions to the vocabulary’’.
This descriptive definition tells what to do in order to build an ontology, and gives us some vague
guidelines: the definition identifies basic terms and relations between terms, identifies rules to
combine terms, and provides the definitions of such terms and relations. Note that, according to
Neches� definition, an ontology includes not only the terms that are explicitly defined in it, but also

42 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

the knowledge that can be inferred from it. A few years later, Gruber [31] defined an ontology as
‘‘an explicit specification of a conceptualization’’. This definition became the most quoted in
literature and by the ontology community. Based on Gruber�s definition, many definitions of what
an ontology is were proposed. Borst [6] modified slightly Gruber�s definition: ‘‘Ontologies are
defined as a formal specification of a shared conceptualization’’. Gruber�s and Borst�s definitions
have been merged and explained by Studer and colleagues [64] as follows: ‘‘Conceptualization
refers to an abstract model of some phenomenon in the world by having identified the relevant
concepts of that phenomenon. Explicit means that the type of concepts used, and the constraints
on their use are explicitly defined. Formal refers to the fact that the ontology should be machine-
readable. Shared reflects the notion that an ontology captures consensual knowledge, that is, it is
not private of some individual, but accepted by a group’’. In 1995, Guarino and colleagues [34]
collected and analyzed seven definitions of ontologies and provided their corresponding syntactic
and semantic interpretations. In that paper, the authors proposed to consider an ontology as ‘‘a
logical theory which gives an explicit, partial account of a conceptualization’’, where conceptu-
alization is basically an idea of the world that a person or a group of people can have. Although
on the surface the notion of conceptualization is quite similar to Studer and colleagues� [64]
notion, we can say that Guarino and colleagues [34] went a step forward because they established
how to build the ontology by making a logical theory. Hence, strictly speaking, this definition
would be only applicable to ontologies developed in logic.
There also exists another group of definitions based on the process followed to build the on-

tology. These definitions also include some highlights about the relationship between ontologies
and knowledge bases. For example, the definition given by Bernaras and colleagues [4] in the
framework of the KACTUS project [61]: ‘‘it [an ontology] provides the means for describing
explicitly the conceptualization behind the knowledge represented in a knowledge base’’. Note
that this definition proposes �extracting� the ontology from a knowledge base (KB), which reflects
the approach the authors use to build ontologies. In this approach, the ontology is built, following
a bottom-up strategy, on the basis of an application KB, by means of an abstraction process. As
more applications are built, the ontology becomes more general, and, therefore, moves further
away from what would be a KB.
Another strategy for building ontologies would be to reuse large ontologies like SENSUS [66]

(with more than 70,000 concepts) to build domain specific ontologies and KBs: ‘‘an ontology is a
hierarchically structured set of terms for describing a domain that can be used as a skeletal
foundation for a knowledge base’’. According to this definition, the same ontology can be used for
building several KBs, which would share the same skeleton. Extensions of the skeleton should be
possible at the low level by adding domain-specific subconcepts, or at the high level by adding
intermediate or upper level concepts that cover new areas. If systems are built with the same
ontology, they share a common underlying structure, therefore, merging and sharing their KBs
and inference mechanisms will become easier.
Sometimes, the notion of ontology is diluted, in the sense that taxonomies are considered full

ontologies [64]. For instance, UNSPSC 3, e-cl@ss 4, and RosettaNet 5, which are standards on the

3 http://www.unspsc.org/.
4 http://www.eclass.org/.
5 http://www.rosettanet.org/.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 43

http://www.unspsc.org/
http://www.eclass.org/
http://www.rosettanet.org/

e-commerce domain, and the Yahoo! Directory, which is a taxonomy for searching the web, are
also considered ontologies [51] because they provide a consensual conceptualization of a given
domain. The ontology community distinguishes ontologies that are mainly taxonomies from
ontologies that model the domain in a deeper way and provide more restrictions on domain se-
mantics. The community calls them lightweight and heavyweight ontologies respectively. On the
one hand, lightweight ontologies include concepts, concept taxonomies, relationships between
concepts and properties that describe concepts. On the other hand, heavyweight ontologies add
axioms and constraints to lightweight ontologies.
Since ontologies are widely used for different purposes (natural language processing, knowledge

management, e-commerce, intelligent integration information, the semantic web, etc.) in different
communities (i.e., knowledge engineering, databases and software engineering), Uschold and
Jasper [69] provided a new definition of the word ontology to popularize it in other disciplines.
Note that the database community, as well as the object-oriented community, also builds domain
models using concepts, relations, properties, etc., but most of the times both communities impose
less semantic constraints than those imposed in heavyweight ontologies. Uschold and Jasper
defined an ontology as follows: ‘‘An ontology may take a variety of forms, but it will necessarily
include a vocabulary of terms and some specification of their meaning. This includes definitions
and an indication of how concepts are inter-related which collectively impose a structure on the
domain and constrain the possible interpretations of terms.’’
In this section we have collected the most relevant definitions, although there are other defi-

nitions of the word ‘‘ontology’’ in literature. However, we can say that there is consensus among
the ontology community and so there is not confusion about its usage. Different definitions
provide different and complementary points of view of the same reality. Some authors provide
definitions that are independent of the processes followed to build the ontology and also inde-
pendent of its use in applications, while other definitions are influenced by the ontology devel-
opment process. As a main conclusion to this section, we can say that ontologies aim to capture
consensual knowledge in a generic and formal way, and that they may be reused and shared across
applications (software) and by groups of people. Ontologies are usually built cooperatively by a
group of people in different locations.

3. Methods and methodologies for building ontologies

Basically, a series of approaches have been reported for developing ontologies. In 1990, Lenat
and Guha published the general steps [52] and some interesting points about the Cyc develop-
ment. Some years later, in 1995, on the basis of the experience gathered in developing the En-
terprise Ontology [70] and the TOVE (TOronto Virtual Enterprise) project ontology [33] (both in
the domain of enterprise modelling), the first guidelines were proposed and later refined in [67,68].
At the 12th European Conference for Artificial Intelligence (ECAI�96), Bernaras et al. [4] pre-
sented a method used to build an ontology in the domain of electrical networks as part of the
Esprit KACTUS [61] project. The methodology METHONTOLOGY [28] appeared at the same
time and was extended in later papers [20,22,26]. In 1997, a new method was proposed for
building ontologies based on the SENSUS ontology [66]. Some years later, the On-To-Knowledge
methodology appeared as a result of the project with the same name [62]. However, all these

44 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

methods and methodologies do not consider collaborative and distributed construction of on-
tologies. The only method that includes a proposal for collaborative construction is CO4 [17].
This method includes a protocol for agreeing new pieces of knowledge with the rest of the
knowledge architecture, which has been previously agreed. A comparative and detailed study of
these methods and methodologies can be found at [21].
All the previous methods and methodologies were proposed for building ontologies. However,

many other methods and methodologies have been proposed for other tasks, such as ontology
reengineering [29], ontology learning [2,45], ontology evaluation [25,27,35,36,41,42], ontology
evolution [47,48,58,63], ontology merging [59], etc. In this paper, we will only focus on meth-
odologies for building ontologies.
The method used to build the Cyc KB [52] consists of three phases. The first phase consists of

the manual codification of articles and pieces of knowledge, in which common sense knowledge
that is implicit in different sources is extracted by hand. The second and third phases consist of
acquiring new common sense knowledge using natural language or machine learning tools. The
difference between them is that in the second phase this common sense knowledge acquisition is
aided by tools, but mainly performed by humans, while in the third phase the acquisition is mainly
performed by tools.
The Uschold and King’s method [70] proposes four activities: (1) to identify the purpose of the

ontology, (2) to build it, (3) to evaluate it, and (4) to document it. During the building activity, the
authors propose capturing knowledge, coding it and integrating other ontologies inside the current
one. The authors also propose three strategies for identifying the main concepts in the ontology: a
top-down approach, in which the most abstract concepts are identified first, and then, specialized
intomore specific concepts; a bottom-up approach, inwhich themost specific concepts are identified
first and then generalized intomore abstract concepts; and amiddle-out approach, inwhich themost
important concepts are identified first and then generalized and specialized into other concepts.
Gr€uuninger and Fox [33] propose a methodology that is inspired on the development of

knowledge-based systems using first order logic. They propose first to identify intuitively the main
scenarios (possible applications in which the ontology will be used). Then, a set of natural lan-
guage questions, called competency questions, are used to determine the scope of the ontology.
These questions and their answers are used both to extract the main concepts and their properties,
relations and axioms on the ontology. Such ontology components are formally expressed in first-
order logic. Therefore, this is a very formal method that takes advantage of the robustness of
classic logic. It can be used as a guide to transform informal scenarios in computable models.
In the method proposed at the KACTUS project [4] the ontology is built on the basis of an

application KB, by means of a process of abstraction (that is, following a bottom-up strategy).
The more applications are built, the more general the ontology becomes; hence, the further the
ontology moves away from a KB. In other words, they propose to start building a KB for a
specific application. Later, when a new KB in a similar domain is needed, they propose to gen-
eralize the first KB into an ontology and adapt it for both applications. Applying this method
recursively, the ontology would represent the consensual knowledge needed in all the applications.
The method based on Sensus [66] is a top-down approach for deriving domain specific ontologies

from huge ontologies. The authors propose to identify a set of ‘‘seed’’ terms that are relevant to a
particular domain. These terms are linked manually to a broad-coverage ontology (in this case, the
Sensus ontology, which contains more than 70,000 concepts). Then, all the concepts in the path

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 45

from the seed terms to the root of SENSUS are included. If a term that could be relevant in the
domain has not yet appeared, it is manually added, and the previous step is performed again, until
no term is missing. Finally, for those nodes that have a large number of paths through them, the
entire subtree under the node is added, based on the idea that if many of the nodes in a subtree have
been found to be relevant, then, the other nodes in the subtree are likely to be relevant as well.
Consequently, this approach promotes sharability of knowledge, since the same base ontology is
used to develop ontologies in particular domains.
METHONTOLOGY [20] is a methodology, created in the Artificial Intelligence Lab from the

Technical University of Madrid (UPM), for building ontologies either from scratch, reusing other
ontologies as they are, or by a process of reengineering them. The METHONTOLOGY frame-
work enables the construction of ontologies at the knowledge level. It includes: the identifica-
tion of the ontology development process, a life cycle based on evolving prototypes (shown in
Fig. 1), and particular techniques to carry out each activity. The ontology development pro-
cess identifies which tasks should be performed when building ontologies (scheduling, control,
quality assurance, specification, knowledge acquisition, conceptualization, integration, formal-
ization, implementation, evaluation, maintenance, documentation and configuration manage-
ment). The life cycle identifies the stages through which the ontology passes during its lifetime,
as well as the interdependencies with the life cycle of other ontologies [19]. Finally, the meth-
odology specifies the techniques used in each activity, the products that each activity outputs and
how they have to be evaluated. The main phase in the ontology development process using the
METHONTOLOGY approach is the conceptualization phase. Tools such as WebODE [1,12] and
ODE [5] provide support to METHONTOLOGY. However, other tools can be also used to
develop ontologies following this methodology.
The On-To-Knowledge methodology [62] includes the identification of goals that should be

achieved by knowledge management tools and is based on an analysis of usage scenarios. The
steps proposed by the methodology are: kick-off, where ontology requirements are captured and

Fig. 1. Ontology life-cycle in METHONTOLOGY.

46 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

specified, competency questions are identified, potentially reusable ontologies are studied and a
first draft version of the ontology is built; refinement, where a mature and application-oriented
ontology is produced; evaluation, where the requirements and competency questions are checked,
and the ontology is tested in the application environment; and ontology maintenance.
Finally, CO4 [17] is a protocol to reach consensus between several KBs, which are organized in

a tree. The leaves are called user KBs, and the intermediate nodes, group KBs. The user KBs do
not need have consensual knowledge. In each intermediate node, there is knowledge consensuated
among all its children and siblings. Knowledge consensus is achieved by the exchange of messages
between users.

In this section, we have presented several methodologies and methods for building ontologies,
each one following different approaches. For instance, if we compare the KACTUS and the
Sensus methods, in the first one the ontology is built by means of an abstraction process from an
initial knowledge base, while in the second one the ontology skeleton is automatically generated
from a huge ontology. The other methods and methodologies can be used for building ontologies
either from scratch or reusing other ontologies.
These approaches can be also compared taking into account the degree of dependency of the

developed ontology and its final application. In this sense, we can conclude that: (a) the method
used at the KACTUS project and the On-To-Knowledge methodology are application dependent,
since the ontology is built on the basis of a given application; (b) the Gr€uuninger and Fox meth-
odology and the method based on Sensus are semi application-dependent; and (c) the Cyc and the
Uschold and King methods, and the methodology METHONTOLOGY are application-inde-
pendent, since the ontology development process is totally independent of the uses of the ontology.
According to the previous analysis and the work reported at [21], we can conclude that:

(a) None of the approaches presented is fully mature if we compare them with software engineer-
ing and knowledge engineering methodologies. As summarized in Table 1, many key activities
are not proposed by most of them. The most mature approach is METHONTOLOGY, which
has been recommended by FIPA for the ontology construction task.

(b) Current proposals are not unified: each group applies its own approach. Consequently, great
effort is required for creating a consensuated methodology for ontology construction. Collab-
oration between different groups to unify their approaches seems the most reasonable way to
achieve it.

Table 1 summarizes which activities are proposed in each of the approaches that have been
presented, hence answering to several questions presented in the Section 1 (specifically, the first,
third and fourth questions).

4. Ontology development tools

In the last years, the number of environments and tools for building ontologies has grown
exponentially. These tools are aimed at providing support for the ontology development process
and for the subsequent ontology usage. In this section, the most relevant ones are presented.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 47

Table 1

A comparison of methodologies for building ontologies

Feature Cyc Usdhold

and King

Gr€uuninger
and Fox

KACTUS METH-

ONTOL-

OGY

SENSUS On-To-

Knowl-

edge

Project manage-

ment processes

Project initiation Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Proposed

Project monitoring and control Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Proposed Not pro-

posed

Proposed

Ontology quality management Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Proposed

Ontology devel-

opment-ori-

ented processes

Pre-develop-

ment processes

Concept explora-

tion

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Proposed

System allocation Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Development

processes

Requirements Not pro-

posed

Proposed Proposed Proposed Described

in detail

Proposed Proposed

Design Not pro-

posed

Not pro-

posed

Described Described Described

in detail

Not pro-

posed

Proposed

Implementation Proposed Proposed Described Proposed Described

in detail

Described Proposed

Post-develop-

ment processes

Installation Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Operation Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Support Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Maintenance Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Proposed Not pro-

posed

Proposed

Retirement Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Integral

processes

Knowledge acquisition Proposed Proposed Proposed Not pro-

posed

Described

in detail

Not pro-

posed

Proposed

Verification and

validation

Not pro-

posed

Proposed Proposed Not pro-

posed

Described

in detail

Not pro-

posed

Proposed

Ontology configuration

management

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Described

in detail

Not pro-

posed

Proposed

Documentation Proposed Proposed Proposed Not pro-

posed

Described

in detail

Not pro-

posed

Proposed

Training Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

Not pro-

posed

4
8

O
.
C
o
rch
o
et
a
l.
/
D
a
ta
&
K
n
o
w
led
g
e
E
n
g
in
eerin

g
4
6
(
2
0
0
3
)
4
1
–
6
4

TheOntolingua Server [18] was the first ontology tool created. It was developed in theKnowledge
Systems Laboratory (KSL) at Stanford University. The Ontolingua Server appeared at the be-
ginning of the 1990s, and was built to ease the development of Ontolingua ontologies with a form-
based web application. Initially, the main module inside the Ontolingua Server was the ontology
editor, then other modules were included in the environment, such as aWebster, an equation solver,
an OKBC (Open Knowledge Based Connectivity) server, Chimaera (an ontology merging tool)
[55], etc. The ontology editor also provides translators to languages, such as Loom, Prolog,
CORBA�s IDL, CLIPS, etc. Remote editors can browse and edit ontologies, and remote or local
applications can access any of the ontologies in the ontology library with the OKBC protocol [10].
At the same time, Ontosaurus [66] was developed by the Information Sciences Institute (ISI) at

the University of South California. OntoSaurus consists of two modules: an ontology server,
which uses Loom as its knowledge representation system, and a web browser for Loom ontolo-
gies. Translators from Loom to Ontolingua, KIF, KRSS and C++ are available. OntoSaurus
ontologies can be also accessed with the OKBC protocol.
In 1997, the Knowledge Media Institute (KMI) at the Open University developed Tadzebao

and WebOnto [15]. WebOnto is an ontology editor for OCML ontologies. Its main advantage
over other available tools is that it supports editing ontologies collaboratively, allowing syn-
chronous and asynchronous discussions about the ontologies being developed.
The main similarity among the aforementioned environments is that all of them have a strong

relationship with a specific language (Ontolingua, LOOM and OCML, respectively). Actually,
they were created to allow browsing and editing easily ontologies in those languages. Further-
more, they were strictly oriented to research activities and most of them were built as isolated
tools that did not provide many extensibility facilities.

In the last years, a new generation of ontology-engineering environments have been developed.
The design criteria of these environments is much more ambitious than those of the tools men-
tioned. They have been created to integrate ontology technology in actual information systems.
As a matter of fact, they are built as robust integrated environments or suites that provide
technological support to most of the ontology lifecycle activities. They have extensible, compo-
nent-based architectures, where new modules can easily be added to provide more functionality
to the environment. Besides, the knowledge models underlying these environments are language
independent. Among these environments, we can cite Prot�eeg�ee 2000, WebODE and OntoEdit.
Prot�eeg�ee 2000 [60] has been developed by the Stanford Medical Informatics (SMI) at Stanford

University, and is the latest version of the Prot�eeg�ee line of tools. It is an open source, standalone
application with an extensible architecture. The core of this environment is the ontology editor,
and it holds a library of plugins that add more functionality to the environment. Currently, plugins
are available for ontology language importation/exportation (FLogic, Jess, OIL, XML, Prolog),
OKBC access, constraints creation and execution (PAL), ontology merge (PROMPT [59]), etc.
WebODE [1] is the successor of ODE (Ontology Design Environment) [5], and has been de-

veloped in the Artificial Intelligence Lab from the Technical University of Madrid (UPM). It is
also an ontology-engineering suite created with an extensible architecture. WebODE is not used as
a standalone application, but as a Web server with a Web interface. The core of this environment
is the ontology access service, which is used by all the services and applications plugged into the
server, especially by the WebODE�s Ontology Editor. There are several services for ontology

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 49

language importation/exportation (XML, RDF(S), OIL, DAMLþOIL, CARIN, FLogic, Jess,
Prolog), axiom edition with WebODE Axiom Builder (WAB) [12], ontology documentation,
ontology evaluation and ontology merge. WebODE�s ontologies are stored in a relational data-
base. Finally, WebODE covers and gives support to most of the activities involved in the ontology
development process proposed by METHONTOLOGY, although this does not prevent it from
being used with other methodologies or without following any methodology.
OntoEdit [65] has been developed by AIFB in Karlsruhe University. It is similar to the previous

tools: it is an extensible and flexible environment, based on a plugin architecture, which provides
functionality to browse and edit ontologies. It includes plugins that are in charge of inferring
using Ontobroker [14], of exporting and importing ontologies in different formats (FLogic, XML,
RDF(S), DAMLþOIL), etc. Two versions of OntoEdit are available: OntoEdit Free and On-
toEdit Professional. Recently, the KAON (Karlsruhe Ontology) tool suite has been developed as
the successor of OntoEdit.

Finally, with the huge emergence of the Semantic Web, tools for the development of
DAMLþOIL and RDF(S) ontologies have proliferated. In fact, the previous suites (Prot�eeg�ee
2000, WebODE and OntoEdit) allow importing and exporting DAMLþOIL and RDF(S) on-
tologies. There are also several isolated tools that create DAMLþOIL ontologies from different
perspectives; the most representative are: OILEd (a DL based tool), and DUET (a UML-based
plugin for Rational Rose).
OILEd [3] was initially developed as an ontology editor for OIL ontologies, in the context of

the European IST On-To-Knowledge project. The University of Manchester, the Free University
of Amsterdam and Interprice GmbH participated in this development. However, OILEd has
evolved and now is an editor of DAMLþOIL ontologies. OILEd users can connect to the FaCT
[39] inference engine, which provides consistency checking and automatic concept classification
features. OILEd also provides several documentation options (HTML, graphical visualization of
ontologies, etc.).
DUET [49] is being developed by AT&T Government Solutions Advanced Systems Group. It

offers a UML visualization and authoring environment for DAMLþOIL, which is integrated as
a plugin in the Rational Rose suite. Core DAMLþOIL concepts are being mapped into UML
through a UML profile for DAMLþOIL. This tool is not intended for knowledge engineers but
for database designers and systems engineers, who can model their ontologies with UML and then
translate them into DAMLþOIL, which can be applied to the software systems they are de-
veloping. This is not the only tool that is integrated as a plugin in the Rational Rose suite; for
instance, the Medius Visual Ontology Modeller (VOM) [44] has been also created similarly.

Many other ontology-related tools with other purposes exist nowadays: there are tools spe-
cialized in ontology merge (Chimaera [55], Prot�eeg�ee-PROMPT [59]), ontology translation between
languages (Ontomorph [9]), ontology-based web page annotation (COHSE, OntoMat, SHOE
Knowledge Annotator), ontology evaluation (OntoAnalyser, ONE-T, ODEClean), RDF query
engines (RDFSuite, Sesame, Inkling, Jena, etc.), etc. However, in this study we have focused only
on ontology development tools.
Below we present some conclusions of our work with the tools presented above, whose results

are also summarized in Table 2. We have compared all these tools with respect to the same eval-

50 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

uation framework, extending the one used in [11,16]. This comparative study has been performed
in the context of the SIG on Enterprise-Standard Ontology Environments of the OntoWeb the-
matic network, and is published in its deliverable D1.3 (‘‘A survey on ontology tools’’) [30].
From the KR paradigm point of view, there are two families of tools. OILEd and OntoSaurus,

which are description-logic based tools, and the rest of tools, which allow representing knowledge
following a hybrid approach based on frames and first order logic. Expressiveness of the under-
lying tool knowledge model is also important. All the tools allow representing classes, partitions,
relations, attributes, instances and axioms. However, only the Ontolingua Server, Ontosaurus and
Prot�eeg�ee 2000 provide flexible modelling components like metaclasses. Before selecting a tool for
developing an ontology, it is also important to know the inference services attached to the tool,
which includes: constraint and consistency checking mechanisms, type of inheritance (single,
multiple, monotonic, non-monotonic), automatic classifications, exception handling and execu-
tion of procedures. We can say that the Ontolingua Server and Prot�eeg�ee 2000 do not have an
inference engine. OILEd performs inferences using FACT inference engine [39], OntoEdit uses
Ontobroker [14], Ontosaurus uses the Loom classifier [54], WebODE uses Ciao Prolog [37] and
WebOnto uses OCML [56]. Besides, Ontosaurus and WebODE provide evaluation facilities.
WebODE includes a module that performs ontology evaluation according to the OntoClean
method [23,35]. OILEd and OntoSaurus are the only ones performing automatic classifications, as
they are based on description logic (DL) languages. Finally, none of the tools provide exception-
handling mechanisms.
Another important aspect is the software architecture and tool evolution, which considers which

hardware and software platforms are necessary to use the tool, its architecture (standalone, client/
server, n-tier application), extensibility, storage of the ontologies (databases, ASCII files, etc.),
failure tolerance, backup management, stability and tool versioning policies. From that per-
spective, most of the tools are moving towards Java platforms: WebOnto, OILEd, OntoEdit,
Prot�eeg�ee 2000 and WebODE. Storage in databases is still a weak point of ontology tools, since just
a few of them use databases for storing ontologies: the commercial version of OntoEdit, Prot�eeg�ee
2000 and WebODE. Backup management functionality is just provided by WebODE, and ex-
tensibility facilities are just allowed in OntoEdit, Prot�eeg�ee 2000 and WebODE.
Interoperability with other ontology development tools, merging tools, information systems

and databases; as well as translations to and from some ontology languages is another important
feature in order to integrate ontologies in applications. Most of the new tools export and import
to ad-hoc XML and other markup languages. However, there is not a comparative study about
the quality of all these translators. Moreover, there are no empirical results about the possibility
of exchanging ontologies between different tools and about the amount of knowledge that is lost
in the translation processes.
Concerning the methodology that the tool gives support to, WebODE gives support to

METHONTOLOGY, and OntoEdit gives support to On-To-Knowledge. However, none of the
tools analyzed includes: project management facilities, (semi)automatic knowledge acquisition
facilities, maintenance and they only provide a little support for ontology verification.
Related to the cooperative and collaborative construction of ontologies, WebOnto has the most

advanced features. In general, more features are required in existing tools to ensure a successful
collaborative building of ontologies. Finally, Usability aspects related to help system, edition and
visualization, etc., should be improved in most of the tools.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 51

Table 2

A comparison of ontology development tools

DUET OILEd Onto Edit

Professional

Ontolingua OntoSaurus Prot�eeg�ee 2000 WebODE WebOnto

General issues

Developers AT & T University of

Manchester

Ontoprise KSL

(Stanford

University)

ISI (USC) SMI

(Stanford

University)

UPM KMI (Open

University)

Current

release and

date

0.3 (Jul2002) 3.4 (Apr2002) 3.0 (Aug2002) 1.0.649

(Nov2001)

1.9.

(Mar2002)

1.8 (Jul2002) 2.0

(Mar2002)

2.3

(May2001)

Pricing policy Freeware Freeware Freeware and

licenses

Free Web

access

Open source

Evaluation

version

Open source Free Web ac-

cess Licenses

Free Web

access

Software architecture

Sw architec-

ture

Plugin Standalone Standalone

and client-

server

Client/server Client/server Standalone 3-tier Client/server

Extensibility No No Plugins None None Plugins Plugins No

Ontology

storage

No File File DBMS

(v3.0)

Files Files FileDBMS

(JDBC)

DBMS

(JDBC)

File

Backup

manage-

ment

No No No No No No Yes Yes

Interoperability translations to/from languages

Imports from

languages

DAMLþ
OIL

RDF(S),

OIL,

DAMLþ
OIL

XML

RDF(S)

FLogic

DAMLþ
OIL

Ontolingua

IDL KIF

LOOM IDL

ONTO KIF

C++

XML,

RDF(S),

XML Schema

XML,

RDF(S),

CARIN

OCML

Exports to

languages

DAMLþ
OIL

OIL RDF(S)

DAMLþ
OIL SHIQ

Dotty HTML

XML

RDF(S)

FLogic

DAMLþ
OIL SQL-3

KIF-3.0

CLIPS CML

ATP CML

rule engine

EpiKit IDL

KSL rule en-

gine LOOM

OKBC syntax

LOOM IDL

ONTO KIF

C++

XML,

RDF(S),

XML Sche-

ma, FLogic,

CLIPS, Java

HTML

XML,

RDF(S) OIL

DAMLþ
OIL CARIN

FLogic Pro-

log Jess Java

OCML Onto-

lingua GXL

RDF(S) OIL

5
2

O
.
C
o
rch
o
et
a
l.
/
D
a
ta
&
K
n
o
w
led
g
e
E
n
g
in
eerin

g
4
6
(
2
0
0
3
)
4
1
–
6
4

Knowledge representation and methodological support

KR paradigm-

of knowl-

edge model

Object ori-

ented classes

DL

(DAMLþ
OIL)

Framesþ
FOL

Framesþ
FOL

(Ontolingua)

DL (LOOM) Framesþ
FOLþMeta-
classes

Framesþ
FOL

Framesþ
FOL

Axiom

language

No Yes

(DAMLþ
OIL)

Yes (FLogic) Yes (KIF) Yes (LOOM) Yes (PAL) Yes (WAB) Yes (OCML)

Methodologi-

cal support

Yes (Rational

Rose)

No Yes (Onto-

Knowledge)

No No No Yes

(METHON-

TOLOGY)

No

Inference services

Built-in infer-

ence engine

No Yes (FaCT) Yes (Onto-

Broker)

No Yes Yes (PAL) Yes (Prolog) Yes

Other

attached

inference

engine

No No No ATP Yes JessFaCT

FLogic

Jess No

Constraint/

consistency

checking

No Yes Yes No Yes Yes Yes Yes

Automatic

classifica-

tions

No Yes No No Yes No No No

Exception

handling

No No No No No No No No

Usability

Graphical tax-

onomy

Yes No No Yes No Yes Yes Yes

Graphical

prunes

(views)

Yes No No No No Yes Yes Yes

Zooms No No No No No Yes No No

Collaborative

working

No No Yes Yes Yes No Yes Yes

Ontology

libraries

No Yes Yes Yes No Yes No Yes

O
.
C
o
rch
o
et
a
l.
/
D
a
ta
&
K
n
o
w
led
g
e
E
n
g
in
eerin

g
4
6
(
2
0
0
3
)
4
1
–
6
4

5
3

5. Ontology languages

At the beginning of the 1990s, a set of AI-based ontology implementation languages was
created. Basically, the KR paradigm underlying such ontology languages was based on first order
logic (i.e. KIF), on frames combined with first order logic (i.e. Ontolingua, OCML and FLogic) or
on DL (i.e. Loom).
KIF [24] is a language based on first order logic created in 1992 as an interchange format for

diverse KR systems. Ontolingua [18,32], which builds on KIF, was developed in 1992 by the KSL
at Stanford University. It combines the KR paradigms of frames and first order predicate calculus
(KIF). It is the most expressive of all the languages that have been used for representing ontol-
ogies, allowing the representation of concepts, taxonomies of concepts, n-ary relations, functions,
axioms, instances and procedures. Its high expressiveness led to difficulties in building reasoning
mechanisms for it. Hence, no reasoning support is provided with the language.
Loom [54] was developed simultaneously with Ontolingua at the Information Science Institute

(ISI) at the University of South California. Initially, it was not meant for implementing ontolo-
gies, but for general KBs. Loom is based on DLs and production rules, and provides automatic
classifications of concepts. The following ontology components can be represented with this
language: concepts, concept taxonomies, n-ary relations, functions, axioms and production rules.
OCML [56] was developed later, in 1993, at the KMI at the Open University. It was created

as a kind of ‘‘operational Ontolingua’’. In fact, most of the definitions that can be expressed in
OCML are similar to the corresponding definitions in Ontolingua, and some additional com-
ponents can be defined: deductive and production rules, and operational definitions for func-
tions. OCML was built for developing executable ontologies and models in problem solving
methods.
FLogic [46] was developed in 1995 at the Karlsruhe University. FLogic (Frame Logic) combines

frames and first order logic, allowing to represent concepts, concept taxonomies, binary relations,
functions, instances, axioms and deductive rules. FLogic is the only of the previous languages that
do not have Lisp-like syntax. Its inference engine, Ontobroker [14], can be used for constraint
checking and deducting new information.
In Spring 1997, the High Performance Knowledge Base program (HPKB) started. This re-

search program was sponsored by DARPA, and its objective was to solve many of the problems
that usually appear when dealing with large KBs (concerning efficiency, content creation, inte-
gration of the content available in different systems, etc.). One of the results of this program was
the development of the OKBC (Open Knowledge Base Connectivity) protocol [10]. This protocol
allows accessing KBs stored in different knowledge representation systems (KRSs). Of the systems
presented before, Ontolingua and LOOM are OKBC compliant.
The boom of the Internet led to the creation of ontology languages that exploited

the characteristics of the Web. Such languages are usually called web-based ontology lan-
guages or ontology markup languages. These languages are still in a development phase: they
are continuously evolving. These languages and the relationships among them are shown in
Fig. 2.
SHOE [53] was built in 1996 as an extension of HTML, in the University of Maryland. It uses

tags different from those of the HTML specification, thus it allows the insertion of ontologies in
HTML documents. SHOE combines frames and rules. SHOE just allows representing concepts,

54 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

their taxonomies, n-ary relations, instances and deduction rules, which are used by its inference
engine to obtain new knowledge.
Then, XML [7] was created and widely adopted as a standard language for exchanging in-

formation on the Web. As a consequence, SHOE syntax was modified to use XML and then,
other ontology languages were built on the XML syntax.
XOL [43] was developed by the AI center of SRI international, in 1999, as a XMLization of a

small subset of primitives from the OKBC protocol, called OKBC-Lite. It is a very restricted
language where only concepts, concept taxonomies and binary relations can be specified. No
inference mechanisms are attached to it, as it was mainly designed for the exchange of ontologies
in the biomedical domain.
RDF [50] was developed by the W3C (the World Wide Web Consortium) as a semantic-net-

work based language to describe Web resources. RDF Schema [8] was built by the W3C as an
extension to RDF with frame-based primitives. The combination of both RDF and RDF Schema
is normally known as RDF(S). RDF(S) is not very expressive, just allowing the representation of
concepts, concept taxonomies and binary relations. Some inference engines have been created for
this language, mainly for constraint checking.
These languages have established the foundations of the Semantic Web. 6 In this context, three

more languages have been developed as extensions to RDF(S): OIL, DAMLþOIL and OWL.
OIL [38] was developed in the framework of the European IST project On-To-Knowledge. It

adds frame-based KR primitives to RDF(S), and its formal semantics is based on DLs. The FaCT
classifier is used to perform automatic classifications of concepts.
DAML�ONT specification was released some time later in the context of the DARPA ini-

tiative DAML (DARPA Agent Markup Language). On December 2000, it was upgraded to
DAMLþOIL [40], which was created by a joint committee from the US and the EU in the
context of the DARPA project DAML. DAMLþOIL also adds DL-based KR primitives to
RDF(S). Both OIL and DAMLþOIL allow representing concepts, taxonomies, binary relations,
functions and instances. Many efforts are being put to provide reasoning mechanisms for
DAMLþOIL.
Finally, in 2001, the W3C formed a working group called Web-Ontology (WebOnt) Working

Group. 7 The aim of this group was to make a new ontology markup language for the Semantic
Web, called OWL (Web Ontology Language). They have already defined a list of main use cases

XML

RDF

OIL DAML+OIL

XOL
SHOE
(XML)

HTML

SHOE
(HTML)

RDFS

OWL

Fig. 2. The stack of ontology markup languages.

6 www.sciam.com/2001/0501issue/0501berners-lee.html.
7 http://www.w3.org/2001/sw/WebOnt/.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 55

http://www.sciam.com/2001/0501issue/0501berners-lee.html
http://www.w3.org/2001/sw/WebOnt/

for the Semantic Web, have taken DAMLþOIL features as the main input for developing OWL
and have proposed the first specification of this language [13]. OWL is divided in two layers:
OWLlite and OWL.

Below we present some conclusions of our work with the languages presented above. We have
built these conclusions by comparing all these languages with respect to the same evaluation
framework [11]. The symbol �þ� means that the feature is supported by the language, the symbol
��� means that the feature is not supported by the language, and the symbol ��� means that the
feature is not directly supported by the language but it can be represented using a workaround.
The results of this comparison are summarized in Table 3. In this table, we do not present the
results for OWL, since the specification is only a working draft and could evolve very fast. In the
current specification, the values are equivalent to those presented for DAMLþOIL.
Concepts, organized in taxonomies, binary relations and instances are the only components that

can be represented in all of the presented languages. However, some differences exist in the
primitives available in each language for representing concept taxonomies. In this sense, Onto-
lingua, LOOM, OCML, OIL, DAMLþOIL and OWL are more expressive, since they allow
creating exhaustive and disjoint subclass partitions of a concept.
In Ontolingua and SHOE, arbitrary n-ary relations can be created. In the rest of languages,

these relations must be represented by their decomposition into binary relations.
Functions can be defined easily in Ontolingua, LOOM, OCML, OIL, DAMLþOIL and OWL.

In FLogic they can be created by defining a relation and an additional axiom that restricts the
number of values that it can have.
Formal axioms are the most powerful means of representing knowledge in ontologies, and they

are usually used to represent those pieces of knowledge that cannot be represented with other
primitives of the language. Formal axioms can be defined in Ontolingua, LOOM, OCML and
FLogic.
Finally, rules can only be defined in LOOM and OCML, and procedures can only be defined in

Ontolingua (although they cannot be executed), LOOM and OCML.
Concerning the inference mechanisms attached to each language, they are diverse. Except for

the OIL inference engine (FaCT), inference engines are used to deduce new knowledge from the
ontology or check inconsistencies with its formal axioms. In LOOM and OIL, the inference engine
also performs automatic concept classifications.
In summary, KR paradigms underlying all the languages are diverse: frames, DLs, first (and

second) order predicate calculus, conceptual graphs, semantic networks, production rules, de-
ductive rules, etc. In many cases, they are based on combinations of several formalisms. Addi-
tionally, there is a tight interdependence between expressiveness and reasoning in all the
languages, in the sense that the expressive power of a language must be sometimes limited to
ensure a good reasoning service, as shown in [11].
The main lesson to learn from this study is that if we need to implement an ontology, we should

decide first what our application needs in terms of expressiveness and inference services, because
not all of the existing languages allow representing the same components and reason in the same
way. The representation and reasoning with basic information, such as concepts, taxonomies and
binary relations, is not usually enough if we want to create a heavyweight ontology and make
complex reasonings with it, and existing translations between languages are not good enough yet

56 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

to ensure that information is not lost in the process. Hence, making a good decision of using a
specific language for representing ontologies is crucial for developing an ontology-based appli-
cation.

Table 3

A comparison of ontology languages

Onto-

lingua

OCML LOOM FLogic XOL SHOE RDF(S) OIL DAML

Concepts

General issues

Metaclasses þ þ þ þ þ) þ))
Partitions þ � þ �))) þ þ
Documentation þ þ þ � þ þ þ þ þ

Attributes

Template (instance at-

tributes)

þ þ þ þ þ þ þ þ þ

Own (class attributes) þ þ þ þ þ)) þ þ
Local scope þ þ þ þ þ þ þ þ þ
Global scope � � þ) þ) þ þ þ

Facets

Default slot value) þ þ þ þ))))
Type constraint þ þ þ þ þ þ þ þ þ
Cardinality constraints þ þ þ � þ)) þ þ
Slot documentation þ þ þ) þ þ þ þ þ

Taxonomies

Subclass of þ þ þ þ þ þ þ þ þ
Exhaustive subclass

partitions

þ � þ �))) þ þ

Disjoint decomposi-

tions

þ � þ �))) þ þ

Not subclass of �) �)))) þ þ

Relations and functions

n-ary relations/func-

tions

þ þ þ � � þ � � �

Type constraints þ þ þ þ þ þ þ þ þ
Integrity constraints þ þ þ þ)))))
Operational definitions) þ þ þ)))))

Axioms

First order logic þ þ þ þ) �) � �
Second order logic þ))))))))
Named axioms þ þ)))))))
Embedded axioms þ þ þ))))))

Instances

Instances of concepts þ þ þ þ þ þ þ þ þ
Facts þ þ þ þ þ þ þ þ þ
Claims))))) þ � � �

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 57

6. Conclusions

Fig. 3 presents the relationships between the main methods and methodologies, tools and
languages that have been presented in this paper. From this study, we can extract the following
conclusions:

• There is no correspondence between ontology building methodologies and tools, except for
METHONTOLOGY and WebODE, and On-To-Knowledge and OntoEdit. Since there is no
technological support for most of the existing methodologies, they cannot be easily applied
in the ontology construction task. In fact, most of the tools just focus on few activities of
the ontology lifecycle: design and implementation.

• There are many ‘‘similar’’ ontology building tools available. However, they are not usually able
to interoperate, which provokes important problems when integrating ontologies in the ontol-
ogy library of a different tool, when merging ontologies available in different ontology tools or
languages, etc.

• Nowadays, it is not usually necessary to implement ontologies manually, as most of the avail-
able ontology tools are able to generate ontologies in many different ontology languages.

• Ontology markup languages are still in development phases, and they are continuously evolv-
ing, which makes it difficult to have up-to-date technology for managing them.

If we focus on ontology tools, the main problem to be solved in this area is the lack of inte-
grated environments for ontology development (except for some environments such as OntoEdit,
Prot�eeg�ee 2000 or WebODE). Tools are usually created as isolated modules that solve one type of
problems, but are not fully integrated with other activities of the ontology lifecycle. Consequently,
future work should be driven towards the creation of a common workbench for ontology devel-
opment (as shown in Fig. 4) that facilitates:

Fig. 3. Ontology methodologies, tools and languages.

58 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

• Ontology development during the whole ontology life cycle, including: knowledge acquisition,
edition, browsing, integration, merging, ontological mappings, reengineering, evaluation, trans-
lation to different languages and formats, interchange of content with other tools, etc.

• Ontology management: configuration management and evolution of isolated ontologies as well
as of ontology libraries.

• Ontology support: scheduling, documentation, advanced techniques for visualising the ontol-
ogy content, etc.

• Methodological support for building ontologies.

This ontology development workbench should be also accompanied by a set of ontology
middleware services that support the use of ontologies in other systems. Some of these services are:

• Software that helps to locate the most appropriate ontology for a given application.
• Formal metrics that compare the semantic similarity and semantic distance between terms of
the same or different ontologies.

• Software that allows incremental, consistent and selective upgrades of the ontology which is
being used by a given application.

• Query modules to consult the ontology.
• Remote access to the ontology library system.
• Software that facilities the integration of the ontology with legacy systems and databases.

Fig. 4. A proposed workbench for ontology development and use.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 59

Finally, a wide transfer of this technology into companies, with the subsequent development of
a large number of ontology-based applications in the Semantic Web context, will be achieved by
the creation of ontology application development suites, which will allow the rapid development
and integration of existing and future applications in a component based basis.

URLs

Tools

DUET: http://codip.grci.com/Tools/Tools.html.
OILEd: http://img.cs.man.ac.uk/oil/.
Ontolingua Server: http://ontolingua.stanford.edu/.
OntoSaurus: http://www.isi.edu/isd/ontosaurus.html.
OntoEdit: http://ontoserver.aifb.uni-karlsruhe.de/ontoedit/.
Prot�eeg�ee 2000: http://protege.stanford.edu/.
WebODE: http://delicias.dia.fi.upm.es/webODE/.
WebOnto: http://webonto.open.ac.uk/.

Projects

OntoWeb SIG on Enterprise-Standard Ontology Environments: http://delicias.dia.fi.upm.es//
ontoweb-fac/sig-tools/.
OntoWeb SIG on Ontology Language Standards: http://www.cs.man.ac.uk/�horrocks/Onto-
Web/SIG/.
OntoWeb Homepage: http://www.ontoweb.org/.

Acknowledgements

This work has been partially supported by the IST thematic network OntoWeb (IST-2000-
29243), the IST project Esperonto (IST-2001-34373), the CICYT project ‘‘ContentWeb: Plata-
forma Tecnol�oogica para la Web Sem�aantica’’ (TIC-2001-2745) and a FPU (Formaci�oon de Personal
Universitario) grant from UPM.

References

[1] J.C. Arp�ıırez, O. Corcho, M. Fern�aandez-L�oopez, A. G�oomez-P�eerez, WebODE: a scalable ontological engineering
workbench, in: First International Conference on Knowledge Capture (KCAP�01), ACM Press, Victoria, 2001, pp.

6–13.

[2] N. Aussenac-Gilles, B. Bi�eebow, S. Szulman, Revisiting ontology design: a methodology based on corpus analysis,
in: 12th International Conference in Knowledge Engineering and Knowledge Management (EKAW�00), Lecture
Notes in Artificial Intelligence, vol. 1937, Springer, Berlin, 2000, pp. 172–188.

[3] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens, OilEd: a reason-able ontology editor for the Semantic Web, in:

Joint German/Austrian conference on Artificial Intelligence (KI�01), Lecture Notes in Artificial Intelligence, vol.
2174, Springer, Berlin, 2001, pp. 396–408.

[4] A. Bernaras, I. Laresgoiti, J. Corera, Building and reusing ontologies for electrical network applications, in: Proc.

European Conference on Artificial Intelligence (ECAI�96), Budapest, Hungary, 1996, pp. 298–302.

60 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

http://codip.grci.com/Tools/Tools.html
http://img.cs.man.ac.uk/oil/
http://ontolingua.stanford.edu/
http://www.isi.edu/isd/ontosaurus.html
http://ontoserver.aifb.uni-karlsruhe.de/ontoedit/
http://protege.stanford.edu/
http://delicias.dia.fi.upm.es/webODE/
http://webonto.open.ac.uk/
http://www.cs.man.ac.uk/~horrocks/OntoWeb/SIG/
http://www.cs.man.ac.uk/~horrocks/OntoWeb/SIG/
http://www.cs.man.ac.uk/~horrocks/OntoWeb/SIG/
http://www.ontoweb.org/

[5] M. Bl�aazquez, M. Fern�aandez-L�oopez, J.M. Garc�ııa-Pinar, A. G�oomez-P�eerez, Building ontologies at the knowledge
level using the ontology design environment, in: B.R. Gaines, M.A. Musen (Eds.), 11th International Workshop on

Knowledge Acquisition, Modeling and Management (KAW�98) Banff, 1998.
[6] W.N. Borst, Construction of Engineering Ontologies, PhD Thesis, University of Tweenty, Enschede, NL––Centre

for Telematica and Information Technology, 1997.

[7] T. Bray, J. Paoli, CM. Sperberg-McQueen, E. Maler, Extensible Markup Language (XML) 1.0, second ed., W3C

Recommendation, 2000. Available from <http://www.w3.org/TR/REC-xml>.

[8] D. Brickley, R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft, 2002.

Available from <http://www.w3.org/TR/PR-rdf-schema>.

[9] H. Chalupsky, OntoMorph: a translation system for symbolic knowledge, in: Seventh International Conference on

Principles of Knowledge Representation and Reasoning (KR2000), Morgan Kaufmann, San Francisco, 2000, pp.

471–482.

[10] V.K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, J.P. Rice, Open Knowledge Base Connectivity 2.0.3, Technical

Report, 1998. Available from <http://www.ai.sri.com/�okbc/okbc-2-0-3.pdf>.
[11] O. Corcho, A. G�oomez-P�eerez, A roadmap to ontology specification languages, in: 12th International Conference in

Knowledge Engineering and Knowledge Management (EKAW�00), Lecture Notes in Artificial Intelligence, vol.
1937, Springer, Berlin, 2000, pp. 80–96.

[12] O. Corcho, M. Fern�aandez-L�oopez, A. G�oomez-P�eerez, O. Vicente, WebODE: an integrated workbench for ontology
representation, reasoning and exchange, in: A. G�oomez-P�eerez, V.R. Benjamins (Eds.), 13th International

Conference on Knowledge Engineering and Knowledge Management (EKAW�02), Lecture Notes in Artificial
Intelligence, vol. 2473, Springer, Berlin, 2002, pp. 138–153.

[13] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A.

Stein, OWL Web Ontology Language 1.0 Reference, W3C Working Draft, 2002. Available from <http://

www.w3.org/TR/owl-ref/>.

[14] S. Decker, M. Erdmann, D. Fensel, R. Studer, Ontobroker: Ontology based access to distributed and semi-

structured information, in: Semantic Issues in Multimedia Systems (DS8), Kluwer Academic Publisher, Boston,

1999, pp. 351–369.

[15] J. Domingue, Tadzebao and Webonto: Discussing, Browsing and Editing Ontologies on the Web, in: Proc. 11th

Knowledge Acquisition Workshop (KAW98), Banff, 1998.

[16] A. Duineveld, R. Studer, M. Weiden, B.Kenepa, R. Benjamis, WonderTools? A comparative study of ontological

engineering tools, in: Proc. 12th Knowledge Acquisition Workshop (KAW99), Banff, 1999.

[17] J. Euzenat, Corporative memory through cooperative creation of knowledge bases and hyper-documents, in: Proc.

10th Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW96), Banff, 1996.

[18] A. Farquhar, R. Fikes, J. Rice, The Ontolingua Server: A Tool for Collaborative Ontology Construction, in:

Proc. 10th Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW96) Banff, 1996, pp. 44.1–

44.19.

[19] M. Fern�aandez-L�oopez, A. G�oomez-P�eerez, M.D. Rojas-Amaya, Ontologies� crossed life cycles, in: Proc. 12th
International Conference in Knowledge Engineering and Knowledge Management (EKAW�00), Lecture Notes in
Artificial Intelligence, vol. 1937, Springer, Berlin, 2000, pp. 65–79.

[20] M. Fern�aandez-L�oopez, A. G�oomez-P�eerez, A. Pazos-Sierra, J. Pazos-Sierra, Building a chemical ontology using
METHONTOLOGY and the ontology design environment, IEEE Intelligent Systems & their applications 4 (1)

(1999) 37–46.

[21] M. Fern�aandez-L�oopez, Overview of Methodologies for Building Ontologies, in: IJCAI99 Workshop on Ontologies
and Problem-Solving Methods: Lessons Learned and Future Trends, Stockholm, 1999.

[22] M. Fern�aandez-L�oopez, A. G�oomez-P�eerez, N. Juristo, METHONTOLOGY: From Ontological Art Towards

Ontological Engineering, AAAI Symposium on Ontological Engineering, Stanford, 1997.

[23] A. Gangemi, N. Guarino, A. Oltramari, Conceptual analysis of lexical taxonomies: the case of wordnet top-level,

in: International Conference on Formal Ontology in Information Systems (FOIS�01), ACM Press, Maine, 2001, pp.

3–15.

[24] M. Genesereth, R. Fikes, Knowledge interchange format, Technical Report Logic-92-1, Computer Science

Department, Stanford University, 1992.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 61

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/PR-rdf-schema
http://www.ai.sri.com/~okbc/okbc-2-0-3.pdf
http://www.ai.sri.com/~okbc/okbc-2-0-3.pdf
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/

[25] A. G�oomez-P�eerez, A framework to verify knowledge sharing technology, Expert Systems with Application 11 (4)
(1996) 519529.

[26] A. G�oomez-P�eerez, Knowledge sharing and reuse, in: J. Liebowitz (Ed.), Handbook of Expert Systems, CRC, New
York, 1998, Chapter 10.

[27] A. G�oomez-P�eerez, Evaluation of ontologies, International Journal of Intelligent Systems 16 (3) (2001)10:1–10:
36.

[28] A. G�oomez-P�eerez, M. Fern�aandez-L�oopez, A. de Vicente, Towards a Method to Conceptualize Domain Ontologies,
in: ECAI96 Workshop on Ontological Engineering, Budapest, 1996, pp. 41–51.

[29] A. G�oomez-P�eerez, M.D. Rojas, Ontological reengineering and reuse, in: D. Fensel, R. Studer (Eds.), 11th European
Workshop on Knowledge Acquisition, Modeling and Management (EKAW�99), Lecture Notes in Artificial
Intelligence, vol. 1621, Springer, Berlin, 1999, pp. 139–156.

[30] A. G�oomez-P�eerez, A Survey on Ontology Tools, OntoWeb deliverable 1.3, 2001.
[31] T.R. Gruber, A translation approach to portable ontology specification, Knowledge Acquisition 5 (1993) 199–

220.

[32] T.R. Gruber. ONTOLINGUA: A Mechanism to Support Portable Ontologies, technical report, Knowledge

Systems Laboratory, Stanford University, 1992.

[33] M. Gr€uuninger, M.S. Fox, Methodology for the design and evaluation of ontologies, in: Workshop on Basic
Ontological Issues in Knowledge Sharing, Montreal, 1995.

[34] N. Guarino, M. Carrara, P. Giaretta, Ontologies and knowledge bases: towards a terminological clarification, in:

N. Mars (Ed.), Towards Very Large Knowledge Bases, Knowledge Building and Knowledge Sharing, IOS Press,

Amsterdam, 1995, pp. 25–32.

[35] N. Guarino, C. Welty, Ontological analysis of taxonomic relationships, in: 19th International Conference

on Conceptual Modeling (ER�00), Lecture Notes in Computer Science, vol. 1920, Springer, Berlin, 2000,

pp. 210–224.

[36] N. Guarino, C. Welty, A formal ontology of properties, in: 12th International Conference in Knowledge

Engineering and Knowledge Management (EKAW�00), Lecture Notes in Artificial Intelligence, vol. 1937, Springer,
Berlin, 2000, pp. 97–112.

[37] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garc�ııa, P. L�oopez, G. Puebla, The Ciao Logic Programming
Environment, in: International Conference on Computational Logic (CL2000) 2000.

[38] I. Horrocks, D. Fensel, F. Harmelen, S. Decker, M. Erdmann, M. Klein, OIL in a Nutshell, in: ECAI�00 Workshop
on Application of Ontologies and PSMs, Berlin, 2000.

[39] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for expressive description logics, in: 6th International

Conference on Logic for Programming and Automated Reasoning (LPAR�99), Lecture Notes in Artificial
Intelligence, Springer, Berlin, 1999, pp. 161–180.

[40] I. Horrocks, F. van Harmelen, Reference Description of the DAMLþOIL (March 2001) Ontology Markup
Language, Technical report, 2001. Available from <http://www.daml.org/2001/03/reference.html>.

[41] Y. Kalfoglou, D. Robertson, Managing Ontological Constraints, in: Proc. IJCAI99 Workshop on Ontologies and

Problem-Solving Methods: Lessons Learned and Future Trends, Stockholm, 1999.

[42] Y. Kalfoglou, D. Robertson, Use of formal ontologies to support error checking in specifications, in:

D. Fensel, R. Studer (Eds.), 11th European Workshop on Knowledge Acquisition, Modeling and

Management (EKAW�99), Lecture Notes in Artificial Intelligence, vol. 1621, Springer, Berlin, 1999, pp. 207–
224.

[43] R. Karp, V. Chaudhri, J. Thomere, XOL: An XML-Based Ontology Exchange Language, technical report, 1999.

Available from <http://www.ai.sri.com/�pkarp/xol/xol.html>.
[44] E.F. Kendall, M.E. Dutra, D.L. McGuinness, Towards a commercial ontology development environment, in: First

International Semantic Web Conference (ISWC�02), Lecture Notes in Computer Science, vol. 2342, Springer,
Berlin, 2002.

[45] JU. Kietz, A. Maedche, R. Volz, A method for semi-automatic ontology acquisition from a corporate intranet, in:

EKAW�00 Workshop on Ontologies and Texts, CEUR Workshop Proceedings, Juan-Les-Pins, vol. 51 (2000)

4.14.14.

62 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

http://www.daml.org/2001/03/reference.html
http://www.ai.sri.com/~pkarp/xol/xol.html
http://www.ai.sri.com/~pkarp/xol/xol.html

[46] M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and frame-based languages, Journal of the

ACM 42 (4) (1995) 741–843.

[47] M. Klein, D. Fensel, Ontology versioning on the Semantic Web, in: First International Semantic Web Workshop

(SWWS01), Stanford, 2001.

[48] M. Klein, D. Fensel, A. Kiryakov, D. Ognyanov, Ontology versioning and change detection on the Web, in:

A. G�oomez-P�eerez, V.R. Benjamins (Eds.), 13th International Conference on Knowledge Engineering and

Knowledge Management (EKAW02), Lecture Notes in Artificial Intelligence, vol. 2473, Springer, Berlin, 2002.

[49] P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, J. Smith, UML for ontology development,

The Knowledge Engineering Review 17 (1) (2002) 61–64.

[50] O. Lassila, R. Swick, Resource description framework (RDF) model and syntax specification, W3C Recommen-

dation (1999), http://www.w3.org/TR/REC-rdf-syntax/.

[51] O. Lassila, D. McGuinness, The Role of Frame-Based Representation on the Semantic Web, Technical Report

KSL-01-02, Knowledge Systems Laboratory, Stanford University, 2001.

[52] D.B. Lenat, R.V. Guha, Building Large Knowledge-Based Systems: Representation and Inference in the Cyc

Project, Addison-Wesley, Boston, 1990.

[53] S. Luke, J. Heflin, SHOE 1.01. Proposed Specification, SHOE Project technical report, University of Maryland,

2000. Available from <http://www.cs.umd.edu/projects/plus/SHOE/spec1.01.htm>.

[54] R. MacGregor, Inside the LOOM clasifier, SIGART bulletin 2 (3) (1991) 70–76.

[55] D.L. McGuinness, R. Fikes, J. Rice, S. Wilder, The Chimaera Ontology Environment, in: 17th National

Conference on Artificial Intelligence (AAAI�00), Austin, 2000.
[56] E. Motta, Reusable Components for Knowledge Modelling, IOS Press, Amsterdam, 1999.

[57] R. Neches, R.E. Fikes, T. Finin, T.R. Gruber, T. Senator, W.R. Swartout, Enabling technology for knowledge

sharing, AI Magazine 12 (3) (1991) 36–56.

[58] N.F. Noy, M. Klein, Ontology Evolution: Not the Same as Schema Evolution, Technical Report SMI-2002-0926,

Stanford, 2002.

[59] N.F. Noy, M.A. Musen, PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment, in:

17th National Conference on Artificial Intelligence (AAAI�00), Austin, 2000.
[60] N.F. Noy, R.W. Fergerson, M.A. Musen, The knowledge model of protege-2000: combining interoperabil-

ity and flexibility, in: 12th International Conference in Knowledge Engineering and Knowledge Management

(EKAW�00), Lecture Notes in Artificial Intelligence, vol. 1937, Springer, Berlin, 2000, pp. 17–32.
[61] Ath. Schreiber, B. Wielinga, W. Jansweijer, The KACTUS view on the �O� word. Technical Report, ESPRIT

Project 8145 KACTUS, University of Amsterdam, The Netherlands, 1995.

[62] S. Staab, H.P. Schnurr, R. Studer, Y. Sure, Knowledge processes and ontologies, IEEE Intelligent Systems 16 (1)

(2001) 26–34.

[63] L. Stojanovic, B. Motik, Ontology evolution with ontology, in: EKAW02 Workshop on Evaluation of Ontology-

based Tools (EON2002), CEUR Workshop Proceedings, Sig€uuenza, vol. 62, 2002, pp. 53–62.
[64] R. Studer, V.R. Benjamins, D. Fensel, Knowledge engineering: principles and methods, Data and Knowledge

Engineering 25 (1998) 161–197.

[65] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, D. Wenke, OntoEdit: collaborative ontology engineering for

the semantic web, in: First International Semantic Web Conference (ISWC�02), Lecture Notes in Computer
Science, vol. 2342, Springer, Berlin, 2002, pp. 221–235.

[66] B. Swartout, P. Ramesh, K. Knight, T. Russ, Toward Distributed Use of Large-Scale Ontologies, AAAI

Symposium on Ontological Engineering, Stanford, 1997.

[67] M. Uschold, Building Ontologies: Towards A Unified Methodology, Expert Systems, Cambridge, 1996.

[68] M. Uschold, M. Gr€uuninger, Ontologies: Principles methods and applications, The Knowledge Engineering Review
11 (2) (1996) 93–155.

[69] M. Uschold, R. Jasper, A Framework for Understanding and Classifying Ontology Applications, in: Proc.

IJCAI99 Workshop on Ontologies and Problem-Solving Methods, Stockholm, 1999.

[70] M. Uschold, M. King, Towards a Methodology for Building Ontologies, in: IJCAI95 Workshop on Basic

Ontological Issues in Knowledge Sharing, Montreal, 1995.

O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64 63

http://www.w3.org/TR/REC-rdf-syntax/
http://www.cs.umd.edu/projects/plus/SHOE/spec1.01.htm

MSc. Oscar Corcho received his BA in Computer Science (2000) and his M.Sc. on Software Engineering
(2001) from the Computer Science School at Universidad Polit�eecnica de Madrid, Spain. He received the third
Spanish award in Computer Science by Spanish Government (2001). He belongs to the Ontology Group of
the Artificial Intelligence Laboratory at the Computer Science School at UPM. His research activities include
ontology languages, translation problem and the Semantic Web. He visited the Stanford Medical Informatics
department (SMI) at Stanford University for two months in 2002, and was an invited consultant in the KMI
of the Open University (England) for two months in 1999. He participates at the OntoWeb thematic network
and the IST Esperonto and MKBEEM projects. His papers have been published in important conferences,
workshops and journals for the ontology community. He also acts as reviewer in some workshops and
conferences, and has organized the demo/industrial track session at the EKAW 2002 conference.

Dr. Mariano Fern�aandez-L�oopez is Assistant Professor at the Computer Science School at UPM. He received his
BA in Computer Science (1996), M.Sc. on Knowledge Engineering (2000), M.Sc. on Software Engineering
(2000), a Ph.D. degree cum laude in Computer Sciences (2001) by UPM. He was Teaching Assistant at the
Centro de Estudios Universitarios (CEU) (1998–1999), and Invited Professor in the Universidad Pontificia de
Salamanca. He belongs to the Ontology Group since 1995. His current research activities include, among
others: Ontological Engineering, and Electronic Commerce. He has published in different national and in-
ternational forums and journals. He is currently involved in several national and international research
projects (for example, the thematic network OntoWeb and the IST projects Esperonto and MKBEEM). He is
the tutorial and workshop organiser in the EKAW-2002 conference, and he is member of the committee of
EKAW-2002 and JIISIC-01. He lectures a Ph.D. course on ontologies at the AI Department at UPM.

Dr. Asunci�oon G�oomez-P�eerez is an Associate Professor at the Computer Science School at Universidad Po-
lit�eecnica de Madrid, Spain. She is BA in Computer Science (1990), M.Sc. on Knowledge Engineering (1991),
Ph.D. in Computer Sciences (1993) by Universidad Polit�eecnica de Madrid (UPM), Spain. She is also M.Sc. on
Business Administration (1994) by Universidad Pontificia de Comillas, Spain. She was visiting (1994–1995)
the KSL at Stanford University. She was also the Executive Director (1995–1998) of the AI Lab at the School.
Currently, she is advisor for research at the same Lab and she is the director of the Ontology group since 1995.
She is participating as a main node and member of the Executive Program Board Committee at the Ontoweb
thematic network and also at the IST Esperonto and MKBEEM projects. Her current research activities
include, among others: Theoretical ontological foundations, Methodologies for building and merging on-
tologies, Ontological Reengineering, Uses of ontologies in applications related with e-commerce and
Knowledge Management, Semantic Web, etc. She has published more than 60 papers on the above issues. She
has leaded several national and international projects related with ontologies funded by various institutions
and/or companies related. She has chaired the EKAW-2002 conference. She has been co-organizer of the

workshops and conferences on ontologies at IJCAI-01, ECAI-00, IJCAI-99, ECAI-98, SSS-97 and ECAI-96. She has taught tutorials
on Ontological Engineering at ECAI-98, SEKE-97 and CAEPIA-97. She acts as reviewer in many conferences and journals.

64 O. Corcho et al. / Data & Knowledge Engineering 46 (2003) 41–64

[Top 25 Journal list]

[Decision Sciences Web]

[Decision Sciences Subject Area on ScienceDirect]

--
© 2004 Elsevier | Last report run: July 2004

Data & Knowledge Engineering
Top 25 requested papers, April 2002 - April 2004
[about]

#requests

1 The semantic web: yet another hip?
Ying Ding, Dieter Fensel, Michel Klein and Borys Omelayenko

1119

2 Evaluations of architectural designs and implementation for database-driven web sites
Wen-Syan Li, Wang-Pin Hsiung, Oliver Po, K. Selcuk Candan and Divyakant Agrawal

994

3 Methodologies, tools and languages for building ontologies. Where is their meeting point?
Oscar Corcho, Mariano Fernandez-Lopez and Asuncion Gomez-Perez

923

4 Workflow mining: A survey of issues and approaches
W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm and A. J. M. M. Weijters

879

5 Ontologies for conceptual modeling: their creation, use, and management
Vijayan [Reference to Sugumaran] and Veda C. [Reference to Storey]

724

6 A model-driven ERP environment with search facilities
Jon Atle Gulla and Terje Brasethvik

643

7 Information agent technology for the Internet: A survey
Matthias Klusch

606

8 Data management issues in mobile and peer-to-peer environments
Budiarto, Shojiro Nishio and Masahiko Tsukamoto

597

9 Techniques for the evaluation of XML queries: a survey
Tae-Sun Chung and Hyoung-Joo Kim

563

10 Principles of component-based design of intelligent agents
Frances M. T. Brazier, Catholijn M. Jonker and Jan Treur

538

11 Protection and administration of XML data sources
Elisa Bertino, Silvana Castano, Elena Ferrari and Marco Mesiti

503

12 Building and maintaining ontologies: a set of algorithms
Nadira Lammari and Elisabeth Metais

488

13 Self-maintaining web pages: from theory to practice
Martin Bernauer and Michael Schrefl

464

14 Incremental mining of sequential patterns in large databases
Florent Masseglia, Pascal Poncelet and Maguelonne Teisseire

457

15 egoisst: a negotiation support system for electronic business-to-business negotiations in e-commerce
Mareike Schoop, Aida Jertila and Thomas List

451

16 Dipe-R: a knowledge representation language
Ruud van der Pol

407

17 A framework for abstracting data sources having heterogeneous representation formats*1
D. Rosaci, G. Terracina and D. Ursino

406

18 Enhancing information systems management with natural language processing techniques
Elisabeth Metais

404

19 Conceptual framework for document semantic modelling: an application to document and knowledge management in
the legal domain
D. Jouve, Y. Amghar, B. Chabbat and J. -M. Pinon

403

20 Web log data warehousing and mining for intelligent web caching
F. Bonchi, F. Giannotti, C. Gozzi et al.

389

21 Querying relational databases through XSLT
Jixue Liu and Millist Vincent

383

22 Extracting ontological concepts for tendering conceptual structures
Ahmad Kayed and Robert M. Colomb

370

23 Knowledge engineering: Principles and methods
Rudi Studer, V. Richard Benjamins and Dieter Fensel

370

24 AutoWF--A secure Web workflow system using autonomous objects
Ehud Gudes and Aharon Tubman

367

25 Designing data warehouses
Dimitri Theodoratos and Timos Sellis

366

Page 1 of 2Data & Knowledge Engineering - Most requested articles

08/01/2007http://www.elsevier.com/authored_subject_sections/S03/top/data_knowledge_enginee...

	Methodologies, tools and languages for building ontologies. Where is their meeting point?
	Introduction
	What is an ontology?
	Methods and methodologies for building ontologies
	Ontology development tools
	Ontology languages
	Conclusions
	Acknowledgements
	References

