Preface

These proceedings contain the papers accepted for presentation at the Second International Semantic Web Conference (ISWC 2003) held on Sanibel Island, Florida, U.S.A., October 20–23, 2003. Following the success of ISWC 2002 that was held in Sardinia in June 2002, ISWC 2003 enjoyed a greatly increased interest in the conference themes.

The number of submitted papers more than doubled compared with ISWC 2002 to 283. Of those, 262 were submitted to the research track and 21 to the industrial track. With rare exceptions, each submission was evaluated by three program committee members whose reviews were coordinated by members of the senior program committee. This year 49 papers in the research track and 9 papers in the industrial track were accepted.

The high quality of ISWC 2003 was the result of the joint effort of many people. First of all we would like to thank the authors for their high-quality submissions and the members of the program committee for their reviewing and review coordination efforts. We would like to extend special thanks to Christoph Bussler for chairing the industrial track, to Mike Dean for his help with the conference management software, the web site, and conference publicity, and to Massimo Paolucci for helping with the organization of the proceedings and arranging sponsorships. We would also like to thank Jeff Bradshaw for local organization; Jerome Euzenat for financial organization; Asun Gomez-Perez for organizing the tutorials; Sheila McIlraith and Dimitris Plexousakis for organizing the workshops; Raphael Malyankar for organizing the poster sessions; Jeff Heflin for organizing the software demonstrations; Steffen Staab for coordinating the semantic markup; Atanas Kiryakov for handling registrations; Ying Ding for organizing sponsorships; and the sponsors for their financial support.

October 2003

Katia Sycara, John Mylopoulos, Dieter Fensel
Organizing Committee

General Chair Dieter Fensel (University of Innsbruck, Austria)
Program Chair Katia Sycara (Carnegie Mellon University, USA)
Program Co-chair John Mylopoulos (University of Toronto, Canada)
Tutorial Chair Asum Gomez-Perez (Polytechnic University of Madrid, Spain)
Workshops Chairs Sheila McIlraith (Stanford University, USA)
Industrial Track Chair Christoph Bussler (Oracle, USA)
Poster Chair Raphael Malyankar (Arizona State University, USA)
Finance Chair Jerome Euzenat (INRIA, Rhone-Alpes, France)
Publicity Chair Mike Dean (BBN, USA)
Local Arrangements Chair Jeff Bradshaw (University of West Florida, USA)
Sponsor Chairs Ying Ding (University of Innsbruck, Austria)
Demonstration Chair Jeff Heflin (Lehigh University, USA)
Registration Chair Atanas Kiryakov (Sirma AI, Ltd., Bulgaria)

Senior Program Committee

Paolo Atzeni (Università di Roma, Tre, Italy)
Sonia Bergamaschi (University of Modena, Italy)
Stefano Ceri (Politecnico di Milano, Italy)
Umesh Dayal (Hewlett-Packard, USA)
Stefan Decker (USC ISI, USA)
Oren Etzioni (University of Washington, USA)
Alon Halevy (University of Washington, USA)
Frank van Harmelen (Vrije Universiteit, Amsterdam, The Netherlands)
Masahiro Hori (Kansai University, Japan)
Ian Horrocks (University of Manchester, UK)
Vipul Kashyap (National Library of Medicine, USA)
Roger King (University of Colorado, USA)
Ora Lassila (Nokia, USA)
David Martin (SRI, USA)
Brian McBride (Hewlett-Packard, UK)
Robert Meersman (Vrije Universiteit, Brussels, Belgium)
Riichiro Mizoguchi (Osaka University, Japan)
Peter Patel-Schneider (Lucent, USA)
Guus Schreiber (University of Amsterdam, The Netherlands)
Zbigniew Ras (University of North Carolina, USA)
Amit Sheth (University of Georgia, USA)
Rudi Studer (University of Karlsruhe, Germany)
Gerhard Weikum (University of Saarland, Germany)

Program Committee

Karl Aberer (École Polytechnique Federale de Lausanne, Switzerland)
Sudhir Agarwal (University of Karlsruhe, Germany)
Giuseppe Amato (ISTI-CNR, Italy)
Yuan An (University of Toronto, Canada)
Anjo Anjewierden (University of Amsterdam, The Netherlands)
Anupriya Ankolekar (Carnegie Mellon University, USA)
Budak Arpinar (University of Georgia, USA)
Andreas Becks (Fraunhofer Institute, Germany)
Domenico Beneventano (University of Modena, Italy)
Bettina Berendt (Humboldt University, Berlin, Germany)
Abraham Bernstein (University of Zurich, Switzerland)
Keith Bessette (University of Connecticut, USA)
Harold Boley (National Research Council, Canada)
Alex Borgida (Rutgers University, USA)
Omar Boucelma (LSIS-CNRS, France)
Paolo Bouquet (University of Trento, Italy)
Paolo Bresciani (ITC-IRST, Italy)
Jeen Broekstra (Administrator, The Netherlands)
Mark Burstein (BBN, USA)
Jorge Cardoso (University of Madeira, Portugal)
Jeremy Carroll (Hewlett-Packard, UK)
Vassilis Christophides (ICS-FORTH, Greece)
Nigel Collier (National Institute of Informatics, Japan)
Isabel Cruz (University of Illinois at Chicago, USA)
Susan Davidson (University of Pennsylvania, USA)
Maarten de Rijke (University of Amsterdam, The Netherlands)
Jos De Roo (Agfa-Gevaert, The Netherlands)
Mike Dean (BBN, USA)
Steven Demurjian (University of Connecticut, USA)
Thuong Doan (University of Connecticut, USA)
Chris Dollin (Hewlett-Packard, UK)
Martin Dzbor (Open University, UK)
David Embley (Brigham Young University, USA)
Skevos Evripidou (University of Cyprus, Cyprus)
Wenfei Fan (Bell Laboratories and Temple University, USA)
Richard Fikes (Stanford University, USA)
Tim Finin (University of Maryland, Baltimore County, USA)
Martin Frank (USC ISI, USA)
Jeremy Frumkin (University of Arizona, USA)
Norbert Fuchs (University of Zurich, Switzerland)
Avigdor Gal (Technion, Israel)
Jonathan Gelati (University of Modena, Italy)
Yolanda Gil (USC ISI, USA)
Paolo Giorgini (University of Trento, Italy)
Carole Goble (University of Manchester, UK)
Benjamin Grosof (MIT, USA)
William Grosso (SDForum, USA)
Francesco Guerra (University of Modena, Italy)
Nicola Guarino (CNR, Italy)
Siegfried Handschuh (University of Karlsruhe, Germany)
Andreas Hotho (University of Karlsruhe, Germany)
Zachary Ives (University of Pennsylvania, USA)
Anupam Joshi (University of Maryland, Baltimore County, USA)
Gerti Kappel (Vienna University of Technology, Austria)
Alfons Kemper (University of Passau, Germany)
Matthias Klusch (DFKI, Germany)
Manuel Kolp (University of Louvain, Belgium)
Donald Kossmann (Technical University of Munich, Germany)
Yannis Labrou (Fujitsu, USA)
Georg Lausen (University of Freiburg, Germany)
Alain Leger (France Telecom, France)
Chen Li (University of California, Irvine, USA)
Ling Liu (Georgia Tech, USA)
Bertram Ludaescher (University of California, San Diego, USA)
Robert MacGregor Manolescu (USC ISI, USA)
Ioana Manolescu (INRIA, France)
Ryuusuke Masuoka (Fujitsu, USA)
Massimo Marchiori (W3C and University of Venice, Italy)
Frank McCabe (Fujitsu, USA)
Luke McDowell (University of Washington, USA)
Sergey Melnik (University of Leipzig, Germany)
Daniele Montanari (Enidata SpA, Italy)
Pavlos Moraitis (University of Cyprus, Cyprus)
Boris Motik (FZI, Germany)
Enrico Motta (Open University, UK)
Haralambos Mouratidis (University of Sheffield, UK)
Claire Nedellec (MIG-INRA, France)
Natasha F. Noy (Stanford University, USA)
Borys Omelayenko (Vrije Universiteit, Amsterdam, The Netherlands)
Massimo Paolucci (Carnegie Mellon University, USA)
Terry Payne (University of Southampton, UK)
Adam Pease (Teknowledge, USA)
Patrons and Sponsors

Patrons

Platinum

Gold

Silver
Table of Contents

Foundations

Representing the UMLS® Semantic Network Using OWL
(Or “What’s in a Semantic Web Link?”) .. 1
 Vipul Kashyap, Alex Borgida

Reducing OWL Entailment to Description Logic Satisfiability 17
 Ian Horrocks, Peter F. Patel-Schneider

RDFS(FA) and RDF MT: Two Semantics for RDFS. 30
 Jeff Z. Pan, Ian Horrocks

Web Ontology Reasoning with Datatype Groups 47
 Jeff Z. Pan, Ian Horrocks

Merging Topics in Well-Formed XML Topic Maps 64
 Richard Widhalm, Thomas A. Mueck

Semantic Processing of the Semantic Web 80
 Kunal Patel, Gopal Gupta

Viewing the Semantic Web through RVL Lenses 96
 *Aimilia Magkanaraki, Val Tannen, Vassilis Christophides,
 Dimitris Plexousakis*

Infrastructure for Web Explanations 113
 Deborah L. McGuinness, Paulo Pinheiro da Silva

Ontological Reasoning

Semantic Coordination: A New Approach and an Application 130
 Paolo Bouquet, Luciano Serafini, Stefano Zanobini

Interoperability on XML Data ... 146
 Laks V.S. Lakshmanan, Fereidoon Sadri

C-OWL: Contextualizing Ontologies 164
 *Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen,
 Luciano Serafini, Heiner Stuckenschmidt*

Web Ontology Language Requirements w.r.t Expressiveness of
Taxonomy and Axioms in Medicine 180
 Christine Golbreich, Olivier Dameron, Bernard Gibaud, Anita Burgan
Semantic Web Services

Automating DAML-S Web Services Composition Using SHOP2 195
Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, Dana Nau

Surfing the Service Web ... 211
Sudhir Agarwal, Siegfried Handschuh, Steffen Staab

Adapting BPEL4WS for the Semantic Web: The Bottom-Up Approach to Web Service Interoperation 227
Daniel J. Mandell, Sheila A. McIlraith

Request Rewriting-Based Web Service Discovery 242
Boualem Benatallah, Mohand-Said Hacid, Christophe Rey, Farouk Toumani

Learning to Attach Semantic Metadata to Web Services 258
Andreas Hefé, Nicholas Kushmerick

Semantic Markup for Semantic Web Tools: A DAML-S Description of an RDF-Store ... 274
Debbie Richards, Marta Sabou

The DAML-S Virtual Machine 290
Massimo Paolucci, Anupriya Ankolekar, Naveen Srinivasan, Katia Sycara

IRS–II: A Framework and Infrastructure for Semantic Web Services 306
Enrico Motta, John Domingue, Liliana Cabral, Mauro Gaspari

Towards a Knowledge-Based Approach to Semantic Service Composition ... 319
Liming Chen, Nigel R. Shadbolt, Carole Goble, Feng Tao, Simon J. Cox, Colin Puleston, P.R. Smart

Security, Trust, and Privacy

Security for DAML Web Services: Annotation and Matchmaking 335
Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci, Katia Sycara

Trust Management for the Semantic Web 351
Matthew Richardson, Rakesh Agrawal, Pedro Domingos

Signing RDF Graphs .. 369
Jeremy J. Carroll

A Semantic E-Wallet to Reconcile Privacy and Context Awareness 385
Fabien L. Gandon, Norman M. Sadeh
Table of Contents

A Policy Based Approach to Security for the Semantic Web 402
 Lalana Kagal, Tim Finin, Annapam Joshi

Agents and the Semantic Web

Semantic Web Languages for Policy Representation and Reasoning:
A Comparison of K AoS, Rei, and Ponder ... 419
 Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers,
 Rebecca Montanari, Niranjan Suri, Andrzej Uszok

An Agent Framework for Inter-personal Information Sharing with
an RDF-Based Repository .. 438
 Koji Kamei, Sen Yoshida, Kazuhiro Kuwabara, Jun-ichi Akahani,
 Tetsuji Satoh

An Environment for Distributed Ontology Development Based on
Dependency Management .. 453
 Eiichi Sunagawa, Koji Kozaki, Yoshinobu Kitamura,
 Riichiro Mizoguchi

Beyond Ontology Construction; Ontology Services as
Online Knowledge Sharing Communities 469
 Yang Li, Simon Thompson, Zhu Tan, Nick Giles, Hamid Gharib

Information Retrieval

Semantic Annotation, Indexing, and Retrieval 484
 Atanas Kiryakov, Borislav Popov, Damyan Ognyanoff,
 Dimitar Manov, Angel Kirilov, Miroslav Goranov

An Approach for the Ranking of Query Results in the Semantic Web 500
 Nenad Stojanovic, Rudi Studer, Ljiljana Stojanovic

Querying Semantic Web Resources Using TRIPLE Views 517
 Zoltán Miklós, Gustaf Neumann, Uwe Zdun, Michael Sintek

Automatic Annotation of Content-Rich HTML Documents:
Structural and Semantic Analysis ... 533
 Saikat Mukherjee, Gaizhen Yang, I.V. Ramakrishnan

Multi-media

Semi-automatic Semantic Annotation of Images Using
Machine Learning Techniques .. 550
 Oge Marques, Nitish Barman

Integrating Structure and Semantics into Audio-visual Documents 566
 Raphaël Troncy
Table of Contents

SCULPTEUR: Towards a New Paradigm for Multimedia Museum
Information Handling .. 582
Matthew Addis, Mike Boniface, Simon Goodall, Paul Grimwood,
Sanghee Kim, Paul Lewis, Kirk Martinez, Alison Stevenson

Towards Ontology-Driven Discourse: From Semantic Graphs to
Multimedia Presentations .. 597
Joost Geurts, Stefano Bocconi, Jacco van Ossenbruggen,
Lynda Hardman

Tools and Metodologies

Benchmarking DAML+OIL Repositories 613
Yuanbo Guo, Jeff Heflin, Zhengxiang Pan

DAMLJessKB: A Tool for Reasoning with the Semantic Web 628
Joseph B. Kopena, William C. Regli

Prolog-Based Infrastructure for RDF: Scalability and Performance 644
Jan Wielemaker, Guus Schreiber, Bob Wielinga

Cooking the Semantic Web with the OWL API 659
Sean Bechhofer, Raphael Volz, Phillip Lord

Applications

WebScripter: Grass-Roots Ontology Alignment via
End-User Report Creation .. 676
Baoshi Yan, Martin Frank, Pedro Szekely, Robert Neches, Juan Lopez

Magpie – Towards a Semantic Web Browser 690
Martin Dzbor, John Domingue, Enrico Motta

Ontology-Based Resource Matching in the Grid – The Grid Meets
the Semantic Web .. 706
Hongxueda Tangmunarunkit, Stefan Decker, Carl Kesselman

A Q-Based Architecture for Semantic Information Interoperability on
Semantic Web .. 722
Zhen-jie Wang, Huan-ge Sheng, Peng Ding

Haystack: A Platform for Authoring End User Semantic
Web Applications .. 738
Dennis Quan, David Huynh, David R. Karger
Mangrove: Enticing Ordinary People onto the Semantic Web via Instant Gratification .. 754

FrameNet Meets the Semantic Web: Lexical Semantics for the Web 771
Srini Narayanan, Collin Baker, Charles Fillmore, Miriam Petruck

Industrial Track

ScadaOnWeb – Web Based Supervisory Control and Data Acquisition ... 788
Thomas Dreyer, David Leal, Andrea Schröder, Michael Schwan

ODESeW. Automatic Generation of Knowledge Portals for Intranets and Extranets ... 802
Oscar Corcho, Asunción Gómez-Pérez, Angel López-Cima, V. López-García, María del Carmen Suárez-Figueroa

Making Business Sense of the Semantic Web 818
Zavisa Bjelogrlic, Dirk-Willem van Gulik, Alberto Reggiori

KIM – Semantic Annotation Platform 834
Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan Ognyanoff, Miroslav Goranov

Ontology-Oriented Programming: Static Typing for the Inconsistent Programmer .. 850
Neil M. Goldman

Task Computing – The Semantic Web Meets Pervasive Computing 866
Ryusuke Masuoka, Bijan Parsia, Yannis Labrou

A Semantic Infosphere .. 882
Michael Uschold, Peter Clark, Fred Dickey, Casey Fung, Sonia Smith, Stephen Uczekaj, Michael Wilke, Sean Bechhofer, Ian Horrocks

Ontology-Based Information Integration in the Automotive Industry ... 897
Andreas Maier, Hans-Peter Schnurr, York Sure

Ontology-Based Query and Answering in Chemistry: OntoNova @ Project Halo .. 913
Jürgen Angele, Eddie Moench, Henrik Oppermann, Steffen Staab, D. Wenke

Author Index .. 929
ODESeW. Automatic Generation of Knowledge Portals for Intranets and Extranets

Oscar Corcho, Asunción Gómez-Pérez, Angel López-Cima, V. López-García, and María del Carmen Suárez-Figueroa

Laboratorio de Inteligencia Artificial
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo sn.
Boadilla del Monte, 28660. Madrid, Spain
{ocorcho,asun}@fi.upm.es
(alopez,vlopez,mcsuarez}@delicias.dia.fi.upm.es

Abstract. This paper presents ODESeW (Semantic Web Portal based on WebODE platform [1]) as an ontology-based application that automatically generates and manages a knowledge portal for Intranets and Extranets. ODESeW is designed on the top of WebODE ontology engineering platform. This paper shows the service architecture that allows configuring the visualization of ontology-based information for different kinds of users, establishing reading and updating access policies to its content, and performing consistency checking between the portal information and the ontologies underlying it.

1 Introduction

The terms knowledge portal, semantic portal and community web portal can be found in the literature ([6],[10]) to indistinctly refer to knowledge-based web sites that allow corporate access to information and applications. A good definition of what they are can be found in [6], where they are defined as web applications that "provide the means to select, classify and access, in a semantically meaningful and ubiquitous way, various information resources (e.g., sites, documents, data) for diverse target audiences (corporate, inter-enterprise, e-marketplace, etc.)." From now on, we will use the term "knowledge portal" to refer to this kind of applications.

Knowledge portals present structured views of the web according to what it is usually called a knowledge catalogue [6]. A knowledge catalogue holds descriptions about the resources available to the community members, and is more flexible and complex than conventional (relational or object) databases. Ontologies are commonly used for this task of structuring knowledge, since they represent shared knowledge within a community.

The process of content provision in knowledge portals is usually performed collaboratively, normally with few resources (manpower, money) [10]. This supposes a great effort to maintain the Web portal and to integrate the information it contains (even if it is using ontologies to structure it). Besides, content presentation is always a
hard task, especially in knowledge-intensive web sites where content is continuously updated. To ameliorate the hard task of knowledge portal management, we need applications that automate these difficult knowledge workflow processes (content provision and integration, content presentation, and content access), as well as frameworks that support them.

Furthermore, in this knowledge intensive portals we distinguish between ontology developers and content (knowledge asset) providers versus Intranet and Extranet users. Ontology developers are in charged of developing the ontologies, which will be used by the content providers as a primary piece of knowledge for describing knowledge assets and by the end users as an index used to browse the knowledge portal. Regarding the end users, we distinguish between Intranet and Extranet users. Intranet users, which are also content providers, access content inserted by themselves or by others members. Different Intranet users have different permissions either for inserting content on the knowledge portal or for browsing the collected assets. Finally, extranet users, who scarcely include new content, but mainly access the allowed content by the knowledge portal administrator. Therefore, knowledge portals must be created having in mind that they have to act both as Intranets (private networks contained within an enterprise, whose main purpose is to share company information and computing resources among employees) and as Extranets (defined as collaborative extensions of an Intranet, which expands access to individuals outside the company) 1.

In this paper, we present ODESeW, an ontology-based application built inside the WebODE ontology engineering workbench, that allows managing knowledge-intensive ontology-based Intranets and Extranets, providing the following functions:

- **Knowledge modelling**, by means of an ontology development platform that integrates several ontology development services. As the knowledge portal will be used on the web, is highly recommend to use an ontology server (and not a stand-alone ontology editor) that allows to build cooperatively the ontologies as well as to access the ontologies through the web. The use of an ontology server as a basic infrastructure over which the knowledge portal is built will ease the management in a sync way of the assets with respect to the ontology changes. From a software perspective, the knowledge portal will benefit from the present and further services provided by the ontology server.

- **Content editing/provision** by means of ontology instances editing. ODESeW allows inserting, updating and removing class instances, their attributes and relation instances, in multiple interlinked ontologies and with different editing permissions for the portal users. As part of the instance editing functions, ODESeW can be also used as a document management tool, which allows handling electronic documents.

- **Content presentation/visualization** by means of highly-configurable user-defined visualizations of ontology classes, relations and instances, and with different browsing permissions for the portal users. The ontology is used for indexing the knowledge assets and for browsing them accordingly. The ontology provides structure on this content that helps the user find knowledge assets. The content stored in the portal can be accessed dynamically with menus automatically generated from ontologies according to the user’s permission, visualizing

1 Both definitions are obtained from http://www.scotsmist.co.uk/glossary_e.html
differently the different types of information stored in the knowledge assets; an example is the shallow natural language generation functions for Extranet users. The knowledge portal also provides annotated markup of its assets in RDF(S), DAML+OIL and OWL.

• Content search and querying functions, based on a hybrid approach based on ontologies and keywords. The content search and querying modules use the WebODE API for accessing and querying the contents of the ontologies.

• Easy web site administration services, which allow managing the knowledge portal users, editing and visualization permissions, and several other portal management needs. Such services are only accessed by the users belonging to the knowledge portal administration group.

As an important advantage of ODESeW over other similar Knowledge portals (we must cite the ontoweb portal) is the automatic synchronization between the contents of the portal and the ontologies in which it is based. So, if an ontology is modified with the WebODE ontology editor, the changes will be automatically seen in the knowledge portal either for ontology conceptualization itself or for its instances.

The paper is structured as follows: section 2 presents the software architecture of ODESeW, paying special attention to its integration with the WebODE ontology engineering workbench. Section 3 describes the most relevant functions of ODESeW, grouped in content editing, content presentation, content search and querying, and portal administration. Section 4 shows a case study of the use of ODESeW in a real application: the Intranet and Extranet of the European funded project Esperonto. In section 5, we describe some related work, and we conclude and present further work in sections 6.

2 ODESeW Architecture

ODESeW has been built in the framework of WebODE, a scalable ontology engineering workbench that gives support to the ontology building methodology METHONTOLOGY [5].

As shown in figure 1, the ODESeW portal is one of the two main front-end applications of the WebODE workbench. The other one is the WebODE ontology editor, which integrates all the ontology editing and management functions of the platform.

WebODE is platform-independent, since it is completely implemented in Java. To allow scalability and easy extensibility, it is supported by an application server, so that services can be easily created and integrated in the workbench by means of a management console. One important advantage of using this application server is that it allows deciding which users or user groups may access each of the services of the workbench.

The figure also shows the most relevant services currently available in the WebODE workbench. The core of the WebODE’s ontology development services are: the cache, consistency and axiom services, and the ontology access service (ODE API), which defines an API for accessing WebODE ontologies. One of the main advantages of this architecture is that these services can be accessed remotely from any other application or any other instance of the WebODE workbench.
Furthermore, ontologies are stored in a relational database, so they can manage huge ontologies quite efficiently. And it is also easily extensible, so that the database manager can be changed, or any backend system can be plugged in the bottom of the architecture. Finally, WebODE also provides backup management functions for the ontologies stored in the server.

The figure shows that the import, export and evaluation services are running on top of the ontology access service. These services import ontologies from XML, XCARIN, RDF(S)[3][7], DAML+OIL [11], and OWL [4]; and export ontologies to XML, FLogic, XCARIN, RDF(S), OIL, DAML+OIL, and OWL. Ontologies are also exported to languages that are not specifically created for defining ontologies, such as Prolog, Jess, and Java. For instance, the Prolog export service is used as a basis of the WebODE’s inference engine. WebODE also evaluates ontologies written in RDF(S), DAML+OIL, and OWL.

Once described the main characteristics of the WebODE workbench, we will proceed to describe the services used by the ODESeW application. To implement ODESeW, we have built three more services on top of the ODE API, as shown in the right of the figure: ODESearch, permission and SeW.

- **ODESearch** allows querying the WebODE ontologies, by means of keywords or using the attributes of the ontology concepts as templates, as will be explained in section 3.3.
- The **permission** service is in charge of managing security in the access to the concepts, instances and attributes of the ontologies. It will manage both read and write access permissions to the content stored.
SeW gives support to the administration functions of the ODESeW application. It allows selecting which ontologies will be published in the portal, which types of users can access it (administrators, guest users, etc.), how instances in the ontology will be visualized in the portal, etc. These functions are described in section 3.4.

There are many advantages of having built ODESeW on top of the WebODE workbench. First of all, ODESeW can use any of the WebODE workbench services. For example, with the ontology import services we can import other ontologies in the workbench, and these new ontologies can be easily selected for publication in the ODESeW portal. Consequently, we can create a complete new knowledge portal (including its Intranet and its Extranet) in a very short period of time.

Another advantage is that we can edit any of the ontologies published with ODESeW using the WebODE ontology editor, and observe at run-time the modifications in the knowledge portal, which means that there is auto-synching of the portal with respect to the ontology.

3 ODESeW Functions

ODESeW generates automatically knowledge portals for Intranets and Extranets, both of which use the same assets and knowledge. The knowledge portal provides different functions in each case:

- If the knowledge portal is being used as an Intranet, corporate users will be able to insert and update content in the portal as content providers, browse the content that they have inserted or that other corporate members have inserted there, and perform searches and queries on that content. The ontologies issues either for indexing knowledge asset or for searching them more efficiently.

- If the knowledge portal is being used as an Extranet, external users will usually be able to edit very restricted parts of the content stored in the portal, and browse, query and search only the content identified as public content by the content providers.

Apart from these content provision, visualization, and access functions, ODESeW provides management services that allow configuring them.

In this section, we will present the main functionalities of ODESeW, grouped in the four categories of: content editing/provision, content presentation/visualization, content querying and search, and administration services.

Another interesting function in a knowledge portal is the possibility to modify the published ontologies. ODESeW does not give support to this function, since for this task the WebODE ontology editor can be used. All the changes done to ontologies with the WebODE ontology editor are viewed in run-time execution in ODESeW, with no need to restart the web server.

3.1 Content Editing/Provision

In an ontology-based knowledge portal, the provision of content mainly consists of editing concept instances, that is, inserting, updating and removing instances of
ontology concepts. ODESeW gives support to this task by allowing users to edit concept instances and the values of their attributes, and to connect such instances by means of relations, even if they belong to different ontologies. The ontology conceptualization editing is delegating to the WebODE application.

This content provision task in ODESeW is mainly performed by Intranet users, although ODESeW does not restrict it to Extranet users (the administrator of the knowledge portal may decide whether to give Extranet users editing permissions to specific parts of the ontologies published in the portal).

ODESeW gives support to the following content provision functions:

- **Instance creation and removal.** Users can create instances of any concept in any of the ontologies published in ODESeW, provided that the users have enough permissions to create such instances. The same occurs with the removal of concept instances.

- **Instance editing.** To edit instances, users are presented with the attributes of the concept from which the instance is instance of, as well as the attributes inherited through the concept taxonomy (multiple inheritance is allowed in ODESeW). Figure 2 shows the instance editing form for the instance Angel López-Cima of the concept PhD Student. The user can insert one or several values of any of these attributes, provided that their maximum cardinality and value type constraints are respected. All these constraints are checked by the WebODE platform.

 Depending on the attribute types, ODESeW gives different fields to insert and update their values. For instance, if the value type of an attribute is Date, ODESeW will present a calendar from where the user can select a specific date. In figure 2, the attribute Date Of Birth has a link to a calendar next to the Add Value button.

 If the value type is URL, the user can either insert directly a URL or upload a file (an image, a PDF document, etc.) that is converted to a URL inside the knowledge portal. In the example of figure 2, we could insert the URL http://delicias.dia.fi.upm.es/~alopez as a value of the attribute Homepage, and we have inserted an image file as a value for the attribute Photo.

- **Relation instance editing.** The bottom of the instance editing form shows the relations that can be applied to the instance being edited. In figure 2, we can see that a PhD Student can belong to an Organization and could be the contact Person of an Organization. These relations appear in the form because their domain is the concept Person, which is a superclass of PhD Student.

 If a user decides to create any of these relation instances, (s)he will be shown a list of candidate instances from the same or from other ontologies that are instances of the concept that is the range of the relation. For instance, if we selected the relation belong to in figure 2, we would be shown a list of instances of the concept Organization or any of its subclasses. WebODE also checks the integrity constraints of these relations.

3.2 Content Presentation/Visualization

Content visualization in an ontology-based knowledge portal mainly consists of showing the ontology concepts and their related instances, presenting the details of
Fig. 2. Editing form for the instance Angel López-Cima of the concept Phd Student in an ontology about persons.

ontology instances and their relations with other instances, and allowing the navigation through these relations and between the different ontologies published in the portal. Although not related to the human-consumption, content visualization also consists of producing the annotated markup of all the knowledge stored in the portal.

It is important to mention again that the content is the same for Extranet and Intranet users, but ODESeW visualize differently depending on the two types of users.

On the one hand, if ODESeW is being used as an Extranet, that is, the user has not logged in the portal (from now on, we will refer to non-logged users as guest users), the portal “hides” all the knowledge representation terminology (words such as ‘ontology’, ‘concept’, ‘instance’, etc). So, external users do not need to know that the knowledge portal is internally based on ontologies. In fact, they do not need to know the terminology used in the knowledge representation field to use the portal. To present the content in a mode user-friendly way, ODESeW includes a shallow natural language generation functions.

On the other hand, if ODESeW is being used as an Intranet, that is, the user has logged in the portal, the portal shows all the information that the user has access to,
without hiding the knowledge representation terminology nor using natural language generation functions. Since different users may have different access and write permissions for the content in the portal, we can consider that there are as many different views of the information as type of users of the Intranet.

Figures 3 and 4 show different visualizations of the same instance (a deliverable in the European project Esperonto) at the Extranet and the Intranet, respectively. In figure 4, the Intranet user can see and access to the information of the attribute **Online version**, but a guest user can not see the attribute as shows in figure 3 because this is a private attribute.

Apart from the previous functions, ODESeW has the following content provision features:

- **Automatically generated menus** to access the ontologies published in the portal.
- **Automatic generation of concept taxonomies from ontologies** to browse each of the published ontologies according to the permissions defined for each user. For Extranet users, apart from taking into account read permissions, the concept taxonomy will not show concepts that have not instances avoiding to the users access to a concept without any information (instances).
- **Instance lists visualization.** The instances of a concept (direct instances) and all its subconcepts (indirect instances) are shown by selecting the concept in the previous concept taxonomies. Each of the listed instances may have a description based on one or more of its attributes (as described in section 3.4). The portal only shows accessible instances according to the user read permissions. Figure 5 shows an example of an instance list where the instances of the concept Organization are described by their full name and their logo.
Instance details visualization. When visualizing an instance, users can see the attributes and relation instances for which they have read permissions. The visualization of each attribute is different depending on its value type (String, Date, URL, etc.). For instance, in figure 3 and 4, the URLs appear as links and the rest of attribute values appear as text boxes. URL attributes that contain an image file are visualized as images, as was shown in the editing form of figure 2. Besides, the portal administrator can set the order in which the attributes of instances will be visualized, as we explain in section 3.4. By default, attributes are presented in alphabetical order.

Annotated ontology markup. All the content visualized by the ODESeW is automatically generated as RDF code, and can refer to ontologies implemented in RDFS, DAML+OIL and OWL. To obtain this annotated markup, ODESeW uses the WebODE export services to these languages.

3.3 Content Search and Querying

In a data-intensive web-site, it is usually very difficult to find a specific piece of information, even in the case that content inside the portal is well structured. This problem is even more important in the case of the Extranet, since guest users do not need to have a clear idea of how the portal is structured.

For this reason, ODESeW includes a search engine that allows querying for information in one ontology or in all the ontologies of the portal. The search engine allows two kinds of search:
Keyword-based. As in other conventional search tools, the search engine looks for instances or concept names that contain the keywords specified in the query.

Ontology-based. ODESeW provides advanced search functions by means of a query form. The fields to be filled in at the query form are attributes and relations taken from the ontology. Once the user introduces the values (s)he is looking for, the search engines returns those instances that satisfy the conditions imposed in the attributes values specified in the form.

Though these are the most useful search and query facilities from the point of view of human-consumption, we must take into account that ODESeW also generates annotations in RDF for the content that it visualizes. This would allow other sites or agents to read the annotations and use that content in other environments.

3.4 Web Site Administration Functions

ODESeW provides a set of management tools that can only be accessed by the administrator user. This tool suite gives support to the basic management functions needed to maintain the knowledge portal, namely user management, permission management (security), ontology publication management, attribute ordering and instance list descriptions.

User management. With this function, the knowledge portal administrator can insert, remove or modify the users of the Intranet.
• **Permission management.** With this function, the knowledge portal administrator can manage the read and write permissions for each user, including the guest users (that is, the Extranet users).

 Read permissions can be defined on an instance basis, which means that the administrator can decide whether a user can visualize an instance or some attributes of the instance. They can be also defined on a concept basis, which means that the administrator can decide whether a user can visualize a concept (and its instances) or some attributes of the concept. By default, any user can visualize all the concepts, instances, and attributes stored in the portal.

 Write permissions are defined on a concept basis, which means that the administrator can decide whether a user can insert, modify or remove an instance of a specific concept. By default, only the administrator can insert concept instances.

• **Ontology management.** With this function, the administrator decides which ontologies are published in the knowledge portal. Any WebODE ontology can be added or removed from the portal.

• **Attribute ordering.** With this function, the administrator can set, for each concept, the order in which the attributes of all its instances will be visualized. Once the administrator has set the order of the attributes of a concept, (s)he can impose this order to the subclasses of the concept.

• **Instance description.** With this function, the administrator can define the set of attributes to be used to describe instances of a concept in the instance list visualization, together with the order in which these attributes will appear. As in the previous case, the description and the order can be imposed to the subclasses of the concept. Figure 6 shows a screenshot of this function while setting the description of the instances of the concept **Documentation**, where we have selected the **Title** and the **instance description**.

4 Esperonto Web Site. A Case Study of the Application of ODESeW

Esperonto [2] (IST-2001-34373) is a European project funded by the European Commission. The aim of this project is to bridge the gap between the current World Wide Web and the Semantic Web by providing a service to “upgrade” existing Web content to Semantic Web content.

The project Web site² has been developed as a knowledge portal, powered by ODESeW, with a twofold function: first, to serve as an Intranet for the compilation of all the knowledge generated in the project, and second, to serve as an Extranet for the dissemination of the results of the project.

Five ontologies have been developed in WebODE for this portal: **project, documentation, person, organization,** and **meeting.** They describe respectively R&D projects and their structure, documents that are generated in a project, people and organizations participating in it, and meetings (administrative, technical, etc.) held during a project lifecycle. Figure 7 shows the relationships between all these ontologies.

² http://www.esperonto.net
These ontologies were defined during the first months of the project life, and were used in the portal. Since then, they have experienced some modifications (adding and removing concepts, adding and removing attributes, etc.). Thanks to the strong interaction of ODESeW with WebODE, these modifications have not caused any consistency problems in the content stored in the portal.
As of July 2003, the Esperonto knowledge portal contains these 5 ontologies, with around 100 concepts, 200 attributes, 100 relations, 300 instances, which have resulted in more than 100Mbytes of information (this figure includes uploaded files).

We have defined three different visualizations of the Esperonto knowledge portal: the Extranet view for guest users, the Intranet view for the project partners, and a special view in the Intranet for the project officer. For each of these views, we have defined different levels of permissions in the portal. For instance, the guest user cannot insert instances in the portal, cannot access the restricted and private deliverables, can only access the PDF versions of public deliverables, etc.; the Intranet users have full read and write permissions for all the concepts, instances and attributes in the five ontologies; and the project officer view contains automatically generated reports of the project progress.

One of the advantages of using ODESeW on top of the WebODE ontology access service (ODE API) is that it is easy to access to the information in the portal programmatically, and that predefined queries can be easily constructed if needed. In the Esperonto portal home page, which is the only one that is usually modified manually by the portal administrator, we have defined several predefined queries, so as to generate automatically reports of public deliverables (which is the information most commonly looked for by the Extranet users, and even by the Intranet users), summarize the status of deliverables in the project, etc.

Finally, the Extranet of the Esperonto portal has undergone several usability tests by a third party company, which have allowed to improve most of its visualization functions.

5 Related Work

In this section we present related work in knowledge portals and languages that could be used to generate portals. We will focus on the similarities and differences with our approach.

A similar knowledge portal is the OntoWeb portal3 [9], which is used as a dissemination tool of the European thematic network OntoWeb. Knowledge in this portal is structured according to one ontology, which contains information about organizations, persons, documentation, events, etc. There are two ways of inserting content in this portal: by means of forms and by syndicating content annotated in external web resources. In contrast with ODESeW, the OntoWeb portal provides a workflow for publishing information, it is supervised by a privileged user (a reviewer), and provides a syndicator system. However, it works only with one ontology, all the users have the same view on the content stored in the portal and there are not such advanced permission management functions.

The OntoWebber [12] is a tool to build portal based on ontology and it was used to build the Semantic Web Community Portal as part of the OntoAgents project 4. This tool take the sources from ontologies in RDF or UML/XMI, or data based on HTML using corresponding data translator for these two last types of sources. In addition of the ontology domain of the portal, OntoWebber has other ontologies that’s

3 http://www.ontoweb.org
4 http://www-db.stanford.edu/Ontoagents/
ODESeW. Automatic Generation of Knowledge Portals for Intranets and Extranets

defines the portal site: maintenance (rules for content maintenance), personalization
(personalize content according the needs of users), presentation (look-and-feel of the
Web pages), content (rendering Web pages with the ontology information) and
navigation (links between Web pages) schemas. All these ontologies with a query
engine generate a portal with statically or dynamically information. This tool can
generate a portal fitting with the web developer necessity with all site-view ontologies
and powered by a rule engine, but all information is centralized in the local server in
contrast with ODESeW in which all functionality can be access remotely by web.

The OntoRoadMap portal\(^5\) has been also developed in the context of OntoWeb. It
includes six ontologies that describe ontology tools, languages, methodologies,
applications, events and business scenarios. These ontologies were developed with
WebODE and translated to a relational database schema, so that the portal was built
on top of them. The main difference with respect to ODESeW is that the portal and
the ontologies are not synchronized, in the sense that modifications in the ontologies
cannot be seen at run-time in the portal.

KAON portal\(^6\) is a tool that allows building ontology-based portals, based on the
SEAL framework (SEmantic portAL) \([8]\). Once the ontologies and the visualization
models for them have been built, KAON portal generates the ontology-based portal
using HTML pages. In contrast with ODESeW, the KAON portal has a syndicator to
acquire information from several sources. However, its main disadvantage is that
whenever information is updated from the sources or the ontology is modified, the
modifications are not seen in the generated portal at run-time, but it has to be
regenerated again.

There are also two languages that deserve special attention, since they could be
used for the generation and visualization of knowledge portals, apart from other kinds
of portals: RSS and XTM.

RSS\(^7\), also known as RDF Site Summary, Really Simple Syndication or Rich Site
Summary, is a RDF-based language for describing news or other Web content that is
available for distribution or syndication from a web site. Several tools based on RSS
are available, which are mainly aimed at dynamically generating and syndicating
news in a web site.

XML Topic Maps\(^8\) (XTM) is an XML-based language that provides a model and
grammar to represent the structure of information resources used to define topics and
the associations between topics. The topic map paradigm was fully formalized as an
ISO International Standard, ISO/IEC 13250:2000. Like with RSS, there are several
tools for web visualization of topics and portals based on topics.

6 Conclusions

In this paper we have presented ODESeW, an ontology-based application built on top
of the WebODE ontology engineering workbench that creates automatically
knowledge portals that can be used as Intranets and Extranets.

5 \(\) http://babage.dia.fi.upm.es/ontoweb/wp1/OntoRoadMap/index.html
6 \(\) http://kaon.semanticweb.org/
7 \(\) http://web.resource.org/rss/1.0/
8 \(\) http://www.topicmaps.org/xtm/1.0/
ODESeW provides functions for content provision, content visualization, and content search and querying. It also provides an easy-to-use tool suite for the administration of the generated knowledge portals.

Due to its integration in WebODE, we have seen that any modification in the ontologies published in the knowledge portal can be seen at run-time in it, in contrast with other knowledge portal generation tools, and that any set of ontologies implemented in RDF(S), DAML+OIL, and OWL, among others, can be easily included in ODESeW to generate instantly a new knowledge portal. Besides, ODESeW allows establishing read and write permissions for all the content stored in it. Finally, it provides different visualizations for Intranet and Extranet users, so that Extranet users do not have the feeling that they are using a knowledge portal, but a conventional one.

We have also presented how we are using ODESeW as the Intranet and Extranet of the European project Esperonto.

Some of the aspects of our future work in ODESeW will be focused on (a) including better natural language generation for the instance detailed descriptions in the Extranet; (b) adding more editing functions for content provision, such as transferring instances from one concept to another; (c) providing configuration management and evolution support for the content stored in the portal; (d) and improving the current news system by integrating it with ontological information and with RSS technology.

Acknowledgements. This work has been supported by the Esperonto project (IST-2001-34373), by two research grants from UPM ("Becas asociadas a proyectos modalidad B") and by a research grant from MEC (AP-2002-3828).

References

