Signal-to-noise ratio of the MEG signal after preprocessing

González Moreno, Alicia; Aurtenetxe, Sara; López García, María Eugenia; Pozo Guerrero, Francisco del; Maestú, Fernando y Nevado, Angel (2014). Signal-to-noise ratio of the MEG signal after preprocessing. "Journal of Neuroscience Methods", v. 222 ; pp. 56-61. ISSN 0165-0270.

Descripción

Título: Signal-to-noise ratio of the MEG signal after preprocessing
Autor/es:
  • González Moreno, Alicia
  • Aurtenetxe, Sara
  • López García, María Eugenia
  • Pozo Guerrero, Francisco del
  • Maestú, Fernando
  • Nevado, Angel
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Neuroscience Methods
Fecha: Enero 2014
Volumen: 222
Materias:
Palabras Clave Informales: Magnetoencefalography (MEG); Artifact; Preprocessing; Noise-reduction; Signal-to-noise ratio
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Tecnología Fotónica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
Pdf - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (3MB)

Resumen

Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.

Más información

ID de Registro: 26439
Identificador DC: http://oa.upm.es/26439/
Identificador OAI: oai:oa.upm.es:26439
Depositado por: Memoria Investigacion
Depositado el: 01 Jun 2014 08:14
Ultima Modificación: 01 Ago 2015 22:56
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM