Fast-Twitch Glycolytic Skeletal Muscle Is Predisposed to Age-Induced Impairments in Mitochondrial Function

Robert A. Jacobs,1,2,4 Victor Díaz,1,3 Lavinia Soldini,4 Thomas Haider,2 Martin Thomassen,5 Nikolai B. Nordsborg,5 Max Gassmann,1,2,6 and Carsten Lundby1,4

1Zurich Center for Integrative Human Physiology (ZIHP) and
2Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Switzerland.
3Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain.
4Institute of Physiology, University of Zurich, Switzerland.
5Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
6Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru.

Address correspondence to Robert A. Jacobs, MSc, Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), Winterthurerstrasse 260, CH-8057 Zurich, Switzerland. E-mail: jacobs@vetphys.uzh.ch

The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high-resolution respirometry and mitochondrial protein expression in soleus, quadriceps, and lateral gastrocnemius skeletal muscles, which represent type 1 slow-twitch oxidative muscle (soleus) and type 2 fast-twitch glycolytic muscle (quadriceps and gastrocnemius), respectively, in young (10–12 weeks) and mature (74–76 weeks) mice. Electron transport through mitochondrial complexes I and III increases with age in quadriceps and gastrocnemius, which is not observed in soleus. Mitochondrial coupling efficiency during respiration through complex I also deteriorates with age in gastrocnemius and shows a tendency (p = .085) to worsen in quadriceps. These data demonstrate actual alterations in electron transport function that occurs with age and are dependent on skeletal muscle type.

Key Words: Mitochondria—Respiratory chain—Function theory of aging.

Received October 2, 2012; Accepted December 19, 2012

Decision Editor: Rafael de Cabo, PhD

An inherent flaw of the bioenergetic reliance on aerobic metabolism to sustain life is the corollary oxidant production (1), and consequently mitochondria serve as the primary source of in vivo oxidant production (2–5). Mitochondria-derived reactive oxygen species are largely accounted for by superoxide (O$_2^-$) production into the mitochondrial matrix at mitochondrial complex I (CI) (6–8) and into both the matrix and mitochondrial intermembrane space at mitochondrial complex III (CIII) (9–14). The progression of reactive oxygen species production beyond horrific concentrations precipitates deleterious and indiscriminate oxidation of nucleic acids, proteins, and lipids (5,15,16). These pernicious effects then correspondingly impair mitochondrial function, which result in greater oxidant production, and so on leading to a “vicious cycle” and eminent cellular demise (4,15,17). The mitochondrial theory of aging asserts that the biological aging process is facilitated by this progressive accrual of mitochondrial DNA (mtDNA) damage and reciprocal decline of mitochondrial function (18). Although evidence of increasing mtDNA alteration with age is supported by the literature, data suggestive of an impairment of mitochondrial function with aging are inconsistent.

Senescence corresponds with mounting indications of nuclear and mtDNA damage in both humans and animals (19–22). Moreover, mtDNA facilitated mutations lead to premature aging in mice (23) and humans (24). Transgenic studies show that reducing whole-body or tissue-specific mitochondrial superoxide dismutase, the enzyme that catalyzes the dismutation of mitochondria-generated O$_2^-$ to H$_2$O$_2$ (25), increases evidence of oxidative damage and premature aging (26–28). Alternatively, overexpression of endogenous mitochondrial catalase lessens oxidant damage, reduces an overall burden of disease (29), and increases life span (30). Indications of impaired mitochondrial function extending beyond measures of oxidant production or damage are lacking. Whether there are age-induced alterations in actual electron transport function remain unanswered (4).

Reports of functional impairments to mitochondria with aging are seemingly paradoxical. Mitochondrial enzymatic expression, protein synthesis, volume density, and oxidative capacity have been reported to decrease with age in humans and animals quadriceps (QUAD) skeletal muscle (19,31–37) as well as in a collection of lower limb skeletal muscle representative of mixed glycolytic and oxidative fibers (38–40). The age-induced loss of mitochondrial protein expression and oxidative capacity, however, fails to decrease...
in skeletal muscle primarily composed of type 2 fast-twitch glycolytic fibers (41–43). Modifications of mitochondrial content also differ with aging between *m. vastus lateralis* and *m. gastrocnemius* in humans (44). These differences have led to speculation that mitochondrial impairment with aging may differ across different skeletal muscle types (19,45). In vivo metabolic imaging techniques have provided preliminary evidence to support this assumption with skeletal muscle primarily composed of fast-twitch fibers exhibiting the greatest age-induced impairments (46,47).

Accordingly, the aim of this study is to examine mitochondrial protein expression along with analysis of respiratory capacity and control via high-resolution respirometry. Respirometric analyses using isolated mitochondrial preparations have been reported to exaggerate age-induced changes in mitochondrial function (48). Mitochondrial isolation techniques disturb native mitochondrial reticular networks in skeletal muscle (49) producing atypical and individual organelles through unregulated means (50–52). This alters innate mitochondrial characteristics (48,53–60) such as the loss of mitochondrial membrane integrity (61,62) and the ability to oxidize fatty acids (56). For respirometric analysis, we use saponin-permeabilized skeletal muscle preparations. This preparation allows for direct access to skeletal muscle mitochondria while maintaining both the cytocellular ultrastructure (51,63–68) and subcellular interactions with mitochondria (51,53,64,67–69). Cellular bioenergetics and metabolic channeling are predicated upon these factors (63,64,67,70). We have previously demonstrated that respirometric analysis using this in situ preparation in conjunction with biochemical assessment of mitochondria is more appropriate when attempting to differentiate between isolated changes in enzymatic expression versus an alteration in the functional capacity of a subcellular system (71–74). Accordingly, this specific mitochondrial preparation serves as the best model to examine respiratory capacity and control with aging. Respirometric analyses were carried out on soleus (SOL), QUAD, and lateral gastrocnemius (GAST) skeletal muscles, which represent type 1 slow-twitch oxidative muscle (SOL) and type 2 fast-twitch glycolytic muscle (QUAD and GAST), respectively. The skeletal muscles from one leg were quickly excised and placed in ice-cold biopsy solution for immediate respirometric analyses. The corresponding skeletal muscles from the opposite hind limb were then removed, frozen in liquid nitrogen, and stored at −80°C until processed for protein expression analysis (see Muscle Lysate Preparation, and Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis and Western Blotting sections).

Experimental Animals

A total of 24 male C57Bl/6 mice were used in the completion of this study, 12 young (10–12 week old) and 12 mature (74–76 week old) mice. All mice were housed in standard rodent cages (T3) with fixed temperature (21±1°C), free access to food and water, and a 12-hour light–dark cycle. Animals were euthanized by means of carbon dioxide followed by rapid excision of SOL, QUAD, and GAST. These muscles represent a type 1 slow-twitch oxidative muscle (SOL) and a type 2 fast-twitch glycolytic muscle (QUAD and GAST), respectively. The skeletal muscles from one leg were quickly excised and placed in ice-cold biopsy solution for immediate respirometric analyses. The corresponding skeletal muscles from the opposite hind limb were then removed, frozen in liquid nitrogen, and stored at −80°C until processed for protein expression analysis (see Muscle Lysate Preparation, and Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis and Western Blotting sections).

Muscle Lysate Preparation

The muscle samples were homogenized (Qiagen TissueLyser II, Retsch, Haan, Germany) in a fresh batch of buffer containing the following (in millimolar): 10% glycerol, 20 sodium-pyrophosphate, 150 NaCl, 50 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) (pH 7.5), 1% NP-40, 20 β-glycerophosphate, 2 Na3VO4, 10 NaF, 2 phenylmethylsulfonyl fluoride, 1 ethylenediaminetetraacetic acid (pH 8.0), 1 ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetacid (EGTA) (pH 8.0), 10 µg/mL aprotinin, 10 µg/mL leupeptin, and 3 benzamidine. Afterward samples were rotated end over end for 1 hour at 4°C and centrifuged at 16,500 g for 30 minutes at 4°C, and the supernatant (lysate) was used for further analysis. Total protein concentration in each sample was determined by a bovine serum albumin standard kit (Pierce, Rockford, IL), and all samples were diluted to the same protein concentration in ddH2O and a modified 6× Laemmli buffer (7 mL 0.5 M Tris base [pH 6.8], 3 mL glycerol, 0.93 g dithiothreitol, 1 g sodium dodecyl sulfate, and 1.2 mg bromophenol blue).

Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis and Western Blotting

Methods have been previously described in detail (75–77). Equal amounts (10 µg) of total muscle lysate proteins, determined during optimization of the different antibodies, were loaded in each well. Samples were loaded together with protein markers (Precision Plus All Blue and Dual Color, Bio-Rad Laboratories, Hercules, CA) on precasted gels (Bio-Rad Laboratories). Proteins were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and (217/2010) and were performed in accordance with the Swiss animal protection laws and institutional guidelines.

Experimental Procedures

Ethical Approval

The experimental protocols using laboratory animals were approved by the Kantonales Veterinäramt Zürich (217/2010) and were performed in accordance with the Swiss animal protection laws and institutional guidelines.

Methods have been previously described in detail (75–77). Equal amounts (10 µg) of total muscle lysate proteins, determined during optimization of the different antibodies, were loaded in each well. Samples were loaded together with protein markers (Precision Plus All Blue and Dual Color, Bio-Rad Laboratories, Hercules, CA) on precasted gels (Bio-Rad Laboratories). Proteins were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and...
Skeletal Muscle Preparation

Each part was immediately placed in ice-cold biopsy preservation solution containing 2.77 mM CaK2EGTA buffer, 7.23 mM K2EGTA buffer, 0.1 μM free calcium, 20 mM imidazole, 20 mM taurine, 50 mM 2-(N-morpholino) ethanesulfonic acid hydrate (K-MES), 0.5 mM dithiothreitol, 6.56 mM MgCl2•6H2O, 5.77 mM ATP, and 15 mM phospho-creatine (pH 7.1). Muscle samples were then gently dissected with a pair of fine-tipped forceps achieving a high degree of fiber separation verified microscopically. Chemical permeabilization followed via incubation in 2 mL of biopsy preservation solution with saponin (50 μg/mL) for 30 minutes in 4°C. Last, samples were washed with a mitochondrial respiration medium (MiR05) containing 0.5 mM EGTA, 3 mM MgCl2•6H2O, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, and 1 g/L bovine serum albumin (pH 7.1) for 10 minutes at 4°C.

Mitochondrial Respiration Measurements

Muscle bundles were blotted dry and measured for wet weight in a balance-controlled scale (XS205 DualRange Analytical Balance, Mettler-Toledo AG, Switzerland) maintaining constant relative humidity, providing hydration consistency as well as stability of weight measurements. Respiration measurements were performed in mitochondrial respiration medium 06 (MiR06; MiR05 + catalase 280 IU/mL). Measurements of oxygen consumption were performed at 37°C using the high-resolution Oxygraph-2k (Oroboros, Innsbruck, Austria) with all additions in each substrate, uncoupler, and inhibitor titration protocol added in series. Standardized instrumental calibrations were performed to correct for back diffusion of oxygen into the chamber from the various components, leak from the exterior, oxygen consumption by the chemical medium, and sensor oxygen consumption. Oxygen flux was resolved by software allowing nonlinear changes in the negative time derivative of the oxygen concentration signal (Oxygraph-2k, Oroboros). All experiments were carried out in a hyperoxygenated environment to prevent any potential oxygen diffusion limitation.

Respiratory Titration Protocols

Each titration protocol was specific to the examination of individual aspects of respiratory control through a sequence of coupling and substrate states induced via separate titrations, which were added in series as presented. The concentrations of substrates, uncouplers, and inhibitors used were based on prior experiments conducted for optimization of the titration protocols (71–73). A description of all three protocols is given in Table 1.

Table 1. Respirometric Titration Protocols

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>OC</th>
<th>ADP</th>
<th>G</th>
<th>S</th>
<th>Cyt C</th>
<th>FCCP</th>
<th>Rot</th>
<th>AmA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 mM</td>
<td>0.2 mM</td>
<td>5 mM</td>
<td>10 mM</td>
<td>10 mM</td>
<td>10 mM</td>
<td>1.5–3 μM</td>
<td>0.5 μM</td>
<td>2.5 μM</td>
</tr>
<tr>
<td>2</td>
<td>2 mM</td>
<td>5 mM</td>
<td>5 mM</td>
<td>10 μM</td>
<td>10 μM</td>
<td>10 μM</td>
<td>1.5–3 μM</td>
<td>0.5 μM</td>
<td>2.5 μM</td>
</tr>
<tr>
<td>3</td>
<td>0.5 μM</td>
<td>10 mM</td>
<td>5 mM</td>
<td>10 μM</td>
<td>10 μM</td>
<td>1.5–3 μM</td>
<td>2.5 μM</td>
<td>2.5 μM</td>
<td>2.5 μM</td>
</tr>
</tbody>
</table>

Notes: The three different titration protocols utilized in this study. Each row presents the substrate, uncoupler, or inhibitor and concentration titrated into the respiration medium, with all additions occurring sequentially as presented from left to right. ADP = adenosine diphosphate; AmA = antimycin A; Cyt C = cytochrome c; FCCP = carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone; G = glutamate; M = malate; OC = octanoyl carnitine; Rot = rotenone; S = succinate.
Titratio protocol 1

- Leak respiration in absence of adenylates (L_N) was induced with the addition of malate (2 mM) and octanoyl carnitine (0.2 mM). The L_N state represents the resting oxygen consumption of an unaltered and intact electron transport system (ETS) free of adenylates.
- Maximal electron flow through electron-transferring flavoprotein (ETF) and fatty acid oxidative capacity, P_{ETF}, were both determined following the addition of ADP (5 mM). In the P_{ETF} state, the ETF-linked transfer of electrons requires the metabolism of acetyl-CoA, hence the addition of malate, in order to facilitate convergent electron flow into the Q-junction from both CI and ETF allowing β-oxidation to proceed. The contribution of electron flow through CI is far below capacity and so here the rate-limiting metabolic branch is electron transport through ETF such that malate + octanoyl carnitine + ADP-stimulated respiration is representative of, rather than specific to, electron capacity through ETF (71,78,79).
- Submaximal state 3 respiratory capacity specific to CI, P_{CI}, was induced following the additions of glutamate (10 mM).
- Maximal state 3 respiration, oxidative phosphorylation capacity, P, was then induced with the addition of succinate (10 mM). P demonstrates a naturally intact ETS’s capacity to catalyze a sequential set of redox reactions that are partially coupled to the production of ATP via ATP Synthase. P maintains an electrochemical gradient across the inner mitochondrial membrane dictated by the degree of coupling to the phosphorylation system (63,65). This maximal state 3 state represents respiration that is resultant to saturating concentrations of ADP and substrate supply for both CI and succinate dehydrogenase. CII. Convergent electron input to CI and CII provides higher respiratory values compared with the isolated respiration of either CI (pyruvate and/or glutamate + malate) or CII (succinate + rotenone) (63,80). Consequently, P presents more physiological relevance to the study of mitochondrial function (81) and is necessary to establish confirmation of a complete and intact ETS.
- As an internal control for compromised integrity of the mitochondrial preparation, the mitochondrial outer membrane was assessed with the addition of cytochrome c (10 μM). If respiration significantly increased following titration of cytochrome c, then the measurement was removed and not included in statistical analysis. There was no indication of mitochondrial damage in the measurements included in the study as demonstrated by the average 3.5%, 2.9%, 7.5%, 5.3%, 6.3%, and 2.3% change in young and mature QUAD, SOL, and GAST respiration, respectively. All were either below or within the accepted 5%–15% elevation in respiration following exogenous cytochrome c titration, successfully verifying the integrity of the outer mitochondrial membrane (64).
- Phosphorylative restraint of electron transport was assessed by uncoupling ATP Synthase, CV from the ETS with the titration of the proton ionophore, and carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (0.5 μM per addition up to optimum concentrations ranging from 1.5 to 3 μM) reaching ETS capacity. The inner mitochondrial membrane potential is completely collapsed with an open transmembrane proton circuit in the ETS respiratory state. The uninhibited flow of electrons through the respiratory system can, therefore, indirectly serve as an indication of maximal mitochondrial membrane potential.
- Finally, rotenone (0.5 μM) and antimycin A (2.5 μM) were added, in sequence, to terminate respiration by inhibiting CI and CIII, respectively. With CI inhibited, electron flow is specific to CII, providing submaximal state 3 respiration through CII (P_{CII}).
- Inhibition of respiration with antimycin A then allows for the determination and correction of residual oxygen consumption, indicative of nonmitochondrial oxygen consumption in the chamber.

Titratio protocol 2.—This titration protocol was necessary for determination of coupling control of electrons through CI.
- L_N–malate (2 mM) and pyruvate (5 mM).
- P_{CI}–ADP (5 mM).
- Internal control for mitochondrial outer membrane integrity–cytochrome c (10 μM). There was no indication of mitochondrial damage in the measurements included in the study as demonstrated by the 0.3%, 1.3%, 0.1%, −0.3%, 4.3%, and −0.1% change in mouse young and mature QUAD, SOL, and GAST respiration, respectively.
- ETS–carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (0.5 μM per addition up to optimum concentrations ranging from 1.5 to 3 μM).
- CI inhibition–rotenone (0.5 μM).
- Residual oxygen consumption–antimycin A (2.5 μM).

Titratio protocol 3.—This titration protocol was necessary for determination of coupling control of electrons through CII.
- CI inhibition–rotenone (0.5 μM).
- L_N–succinate (10 mM).
- P_{CII}–ADP (5 mM).
- Internal control for mitochondrial outer membrane integrity–cytochrome c (10 μM). There was no indication of mitochondrial damage in the measurements included in the study as demonstrated by the 7.3%, 2.6%, 9.8%, 13.4%, 5.1%, and 7.3% change in mouse young and mature QUAD, SOL, and GAST respiration, respectively.
Respirometric values representing P_{C_i} and P_{C_{II}} did not differ across titration protocols. Consequently all P_{C_i} and P_{C_{II}} values achieved with the titration protocols for 2 and 3, respectively, were grouped with complementing respiratory state from titration protocol 1.

Data Analysis

All mass-specific respirometric values were controlled to account for the differences in mitochondrial content, as indicated by CII protein expression, across age and fiber types. In doing so, all CII protein expression data were adjusted to a value of 1. The degree by which the protein expression had to be adjusted to equal 1 was then applied to all mass-specific respirometric values corresponding with the appropriate age and skeletal muscle type, respectively. Values of P_{C_i} controlling for CI protein expression, P_{ETF} controlling for HAD protein expression, and P controlling for CIII protein expression all were also adjusted using the same method.

For all statistical evaluations, a p value of less than .05 was considered significant. Differences in respiratory capacities and protein expression with age and across skeletal muscle groups were initially compared using a two-way analysis of variance. When an analysis of variance was significant, differences in respiratory capacities and protein expression with age and across skeletal muscle groups were evaluated using pairwise comparisons with a Bonferroni adjustment (SPSS Statistics 17.0, SPSS, Inc., Chicago, IL). Indices of mitochondrial efficiency did not express a Gaussian distribution and therefore a Kruskal–Wallis analysis of variance. When an analysis of variance was significant, groups were initially compared using a two-way analysis of variance. When an analysis of variance was significant, pairwise comparisons with a Bonferroni adjustment were used to reveal differences between younger and older muscle as well as comparisons across muscle groups with the respective age groups.

RESULTS

Skeletal Muscle Protein Expression

As shown in Figure 1, protein expression for all mitochondrial enzymes was greatest in the slow-twitch SOL muscle. In young animals only the expression of CI and CIV differed between QUAD and GAST, both of which were lost with age. Only SOL expressed a change in mitochondrial protein content with age as CI, CII, and CV all increased (Figure 1A, B, and E, respectively). Though no significant changes in protein expression of CIII (Figure 1C) or CIV (Figure 1D) were apparent, both complexes showed a tendency to diminish with age in GAST (p = .060 and .063, respectively). Collectively, this analysis illustrates that the protein content for enzymes involved in mitochondrial oxidative phosphorylation is largely unaffected in primary fast-twitch glycolytic muscle (QUAD and GAST) but slightly increased in primarily slow-twitch oxidative muscle (SOL) with age.

Mitochondrial Respiration

Main effects of age on mass-specific respiration (pmol O₂/min/mg ww) were observed for P_{ETF} (p = .011) and P_{C_i} (p = .008). This was reflected by the higher P_{ETF} and P_{C_i} in mature QUAD (p = .031 and .037, respectively; Figure 2E) and GAST (p = .011 and .016, respectively; Figure 2I) versus their younger counterparts. There was also a main effect of muscle type on mass-specific respiration as SOL has greater respiration across all states compared with both QUAD and GAST (p < .001; Figure 2A).

Mass-specific respiration does not take into account differences in mitochondrial content between samples (Figure 1). Accordingly, all respirometric analyses were adjusted for CII protein content, a biomarker shown to express the best concordance with mitochondrial content and total cristae area as measured by transmission electron microscopy as well as myocellular respiratory capacity over protein concentrations for all other mitochondrial complexes (82). When controlling respiration to mitochondrial content, the main effect of age on respiration capacity (pmol O₂/min/CII) appeared to be silenced by the divergent fluctuations in mitochondrial function across skeletal muscle types in response to age. Respiratory states representing P_{C_i}, P, and ETS in QUAD and P_{C_i}, P, ETS, and P_{C_{II}} in SOL all lost respiratory capacity in response to age (Figure 2F and H). Conversely, GAST increased respiratory capacity at every respiratory state measured (Figure 2J) in response to age. The differences in respiratory capacity when controlling for mitochondrial content across skeletal muscle in younger and older mice are shown in Figure 2B and D, respectively.

Respiratory Capacity and Coupling Control Specific to Mitochondrial Complexes I and III

Electron transport and control specifically through CI and CIII are of particular interest as reactive oxygen species production at each respective complex accounts for the majority of mitochondria-specific oxidant production (9–14). In order to isolate analysis to these specific complexes, all P_{C_i} values, including respirometric values from both titration protocols 1 and 2, and maximal state 3 respirometric values, P, were adjusted to account for the differences in CI and CIII protein expression, respectively, with age and across muscle groups (Figure 1A and C).

There were main effects of age (p = .001) on P_{C_i} respiration when controlling for CI expression (pmol O₂/min/CI), which increased with age in both QUAD and GAST (p < .001) and decreased in SOL (p = .003; Figure 3A–C). The
coupling efficiency during P_c coupling efficiency during P_c
during PCI respiration deteriorated with age in GAST (p = .043) and showed a tendency to diminish in QUAD as well (p = .085; Table 2). Though no differences in respiratory capacity were observed across all young muscle groups during PCI when controlling for CI, the coupling control was superior in young QUAD and GAST over SOL (p = .021 and .009, respectively). In the older muscle both QUAD and GAST presented with higher P_c than SOL (p < .001) and both, again, expressed a tighter coupling efficiency than SOL (p = .004 and p < .001).

There were also main effects of age (p = .009) on maximal state 3 respiration and oxidative phosphorylation capacity, P, when controlling for CIII protein expression (pmol O2/min/CIII) (Figure 4A–C). Respiration capacity in both QUAD and GAST increased with age (p = .009 and .001, respectively), whereas SOL did not change (p = .144).

Figure 1. Protein expression of mitochondrial complexes and proteins with age. Skeletal muscle protein expression determined in young (10–12 weeks) and mature (74–76 weeks) C57Bl/6 mice. Protein expression for (A) CI, mitochondrial complex I or NADH dehydrogenase; (B) CII, mitochondrial complex II or succinate dehydrogenase; (C) CIII, mitochondrial complex III or cytochrome bc, complex; (D) CIV, mitochondrial complex IV or cytochrome c oxidase; (E) CV, mitochondrial complex V or ATP Synthase; and (F) HAD, 3-hydroxyacyl coenzyme a dehydrogenase, is illustrated in response to age and across skeletal muscles. Example blots for one analysis from one animal are shown above the graph. Values are means ± SD. In figure, a indicates significant difference in age within a skeletal muscle, p < .05; b shows significant difference between soleus (black) from both quadricep (grey) and lateral gastrocnemius (white) within the same age, p < .05; and c indicates differences between quadriceps and gastrocnemius within the same age, p < .05.
Figure 2. Skeletal muscle respirometric analysis. Mass-specific respiration across muscle groups in (A) young and (C) mature animals. Mass-specific respiration with age in mouse (E) quadriceps, (G) soleus, and (I) gastrocnemius skeletal muscles. Mitochondrial-specific respiration controlling for mitochondrial content, as assessed by mitochondrial complex II protein expression (82), across skeletal muscles in (B) young and (D) mature animals. Mitochondrial-specific respiration with age in mouse (F) quadriceps, (H) soleus, and (J) gastrocnemius skeletal muscles. LN, leak respiration without adenylates; P_{ET}, maximal fatty acid oxidation; P_{CI}, submaximal state 3 respiration through mitochondrial complex I (CI); P, maximal state 3 respiration–oxidative phosphorylation capacity; Cyt C, cytochrome c, internal test of mitochondrial membrane integrity; ETS, electron transport system capacity; and P_{CT}, submaximal state 3 respiration through mitochondrial complex II (CII). Data presented as mean ± SD. *, **, and *** indicate significant difference of p ≤ .05, p ≤ .01, and p ≤ .001, respectively.
Differences across young muscle groups were evident between both QUAD and SOL versus GAST \((p = .023 \text{ and } .001, \text{ respectively}) \) and across mature muscle groups with QUAD greater than SOL \((p = .020) \).

Respiratory Capacity and Control Specific to \(\beta \)-Oxidation

Only values of fatty acid oxidative capacity, \(P_{\text{ETF}} \), were adjusted to account for the differences in HAD protein expression (Figure 1D). \(P_{\text{ETF}} \) (pmol O\(_2\)/min/HAD) increased with age in QUAD \((p = .004) \) and showed a tendency to increase in GAST \((p = .065) \) (Figure 5). Differences across young and mature muscle groups were evident with both QUAD and GAST far below SOL \((p < .001) \). Though \(P_{\text{ETF}} \), when controlling for HAD, did not change in SOL (Figure 5), the coupling efficiency during \(\beta \)-oxidation diminished with age (Table 2). Despite this decrease with age, the coupling control of electron transport during \(\beta \)-oxidation in SOL was significantly better than younger and older QUAD \((p = .01 \text{ and } .05, \text{ respectively}) \). Coupling control during fat oxidation did not change with age in QUAD or GAST, though it did differ between young SOL and GAST \((p = .05) \). This difference was lost with age (Table 2).

DISCUSSION

The aim of this study was to analyze the effect of biological aging on respiratory capacities and mitochondrial coupling control across different skeletal muscle types as a function of age. Our main findings are (i) mitochondrial function is dependent on skeletal muscle type, irrespective of age; (ii) submaximal state 3 respiration specific to CI, \(P_{\text{CI}} \), increased in both QUAD and GAST but decreased in SOL when controlling for complex I protein expression; (iii) coupling control during CI was also lost with age in GAST and indicated a tendency for deterioration in QUAD but remained unchanged in SOL; (iv) maximal state 3 respiration and oxidative phosphorylation capacity, \(P \), increased with age in QUAD and GAST but not SOL when controlling for complex III protein expression; and finally (v) although the capacity for fat respiration increased with age in QUAD when controlling for differences in HAD protein expression across skeletal muscle types, the

<table>
<thead>
<tr>
<th>Table 2. Mitochondrial Coupling Efficiency With Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Young QUAD}) & (\text{Mature QUAD}) & (\text{Young SOL}) & (\text{Mature SOL}) & (\text{Young GAST}) & (\text{Mature GAST})</td>
</tr>
<tr>
<td>(\text{LCR}_{\text{ETF}}) & (0.54 \pm 0.16^*) & (0.53 \pm 0.18^*) & (0.33 \pm 0.09^{#}) & (0.41 \pm 0.05^{#}) & (0.57 \pm 0.29^{*#}) & (0.52 \pm 0.10)</td>
</tr>
<tr>
<td>(\text{LCR}_{\text{CI}}) & (0.15 \pm 0.03^{#}) & (0.20 \pm 0.07^{#}) & (0.24 \pm 0.11^{#}) & (0.29 \pm 0.06^{#}) & (0.12 \pm 0.06^{#}) & (0.17 \pm 0.03^{#})</td>
</tr>
<tr>
<td>(\text{LCR}_{\text{CII}}) & (0.69 \pm 0.13) & (0.76 \pm 0.07) & (0.54 \pm 0.25) & (0.72 \pm 0.11) & (0.68 \pm 0.19) & (0.66 \pm 0.11)</td>
</tr>
</tbody>
</table>

Notes: Leak control ratios (LCR) as indices of mitochondrial coupling and respiratory control across different skeletal muscles with age. GAST = gastrocnemius; \(\text{LCR}_{\text{ETF}} = \) coupling efficiency of electron transfer through electron-transferring flavoprotein (ETF) during \(\beta \)-oxidation; \(\text{LCR}_{\text{CI}} = \) coupling efficiency of electron transfer during respiration through mitochondrial complex I (CI); \(\text{LCR}_{\text{CII}} = \) coupling efficiency of electron transfer during respiration through mitochondrial complex II (CII); QUAD = quadriceps; SOL = soleus.

*\#Effect of age, difference between QUAD vs SOL, and difference in SOL vs GAST, respectively, with \(p < .05 \).

\(^* \)Difference with age, \(p = .085 \). Data are presented as mean ± SD.
coupling control during fat oxidation worsened with age only in SOL.

Variations in Mitochondrial Function Across Fiber Types

There is some dispute on whether differences in respiratory capacity fluctuate across different skeletal muscle types that vary in their biochemical makeup, tailoring oxidative function to specific metabolic demand (83). Initial reports suggested that respiratory differences could be accounted for simply by the differences in mitochondrial content (50, 84). This has since been refuted as various skeletal muscles have been shown to express respiratory differences across muscle types (46, 47, 85, 86). We recently substantiated these differences in mitochondrial function across muscle types as respiration capacities in both GAST and QUAD were greater than those in SOL at PCI, PCII, P, and ETS respiratory states when normalizing mass-specific respiration to citrate synthase activity (87). Although it seems evident that differences in function exist across different skeletal muscle fiber types, even when controlling for the disproportionate expression of mitochondria, the data

Figure 4. Respiratory capacity and control through mitochondrial complex III (CIII). Maximal state 3 respiration and oxidative phosphorylation capacity (P) when controlling for CIII protein expression with age in (A) quadriceps, (B) soleus, and (C) gastrocnemius skeletal muscles. *, **, and *** indicate significant difference of age, $p \leq .05$, $p \leq .01$, and $p \leq .001$, respectively.

Figure 5. Respiratory capacity and control through electron transferring flavoprotein (ETF) during maximal fat respiration. Submaximal state 3 respiratory capacity specific to the capacity for fat oxidation and electron transfer through ETF (PEF) when controlling for 3-hydroxyacyl coenzyme a dehydrogenase (HAD) protein expression with age in (A) quadriceps, (B) soleus, and (C) gastrocnemius skeletal muscles. *, **, and *** indicate significant difference of age, $p \leq .05$, $p \leq .01$, and $p \leq .001$, respectively. # indicates a tendency of a difference with age, $p = .065$.

by guest on January 31, 2013 http://biomedgerontology.oxfordjournals.org/Downloaded from
presented here demonstrate how important normalization of the mass-specific respirometric values can be to overall data interpretation.

Our findings specific to mitochondrial protein expression are contrary to studies suggestive of a progressive loss of mitochondria with age (34,48). We cannot exclude the possibility that some mitochondrial protein/fragments may have been lost as a result of our homogenization and centrifugation procedures. Thus, we cannot confirm that our mitochondrial protein determination is representative of the total per volume of muscle mass, possibly explaining the differences between studies. Alternatively, however, our results are in accordance with several studies reporting negligible to minor changes in mitochondrial protein expression with age, including an increase of expression that is dependent on skeletal muscle type (32,33,45,88). There is also evidence in mice of increased skeletal muscle mitochondrial protein synthesis with advancing age (88). Although it is unlikely that the preferential loss of mitochondrial protein during homogenization and centrifugation procedures biased our results, we cannot definitively exclude this possibility.

Skeletal Muscle Mitochondrial Respiratory Capacity and Control Across Skeletal Muscle Types With Age

Mitochondrial respiratory capacities across several different states diminished with age in QUAD and SOL (Figure 2F and H). These results coincide with previous reports where oxidative capacity is reported to decline with age in either QUAD or mixed muscle homogenates (19,31,33,35,36,38,39). Alternatively, mitochondrial respiratory capacities across all states increased with age in GAST (Figure 2J). The increase in respiratory capacity with age in GAST also corresponds with previous work that demonstrated a greater reliance with age of oxidative phosphorylation for ATP synthesis in primarily type 2 fast-twitch glycolytic skeletal muscle (41,42,89).

Mitochondria serve as a primary source of in vivo oxidant production (2–5) with the primary oxidative production occurring at CI (6–8) and CIII (9–14). Despite the macro decreases in mitochondrial-specific respiratory capacity in QUAD (Figure 2F), respiration and electron flow specifically through CI and CIII increased (Figures 3A and 4A). Coupling control during P_c decreased also had a tendency to deteriorate in QUAD (p = .085) in response to age (Table 2). Respiration and electron flow specifically through CI and CIII also increased in GAST, whereas coupling control during P_c worsened with age (Table 2). Electron coupling control is indicative of oxidant production as mitochondrial production of superoxide is closely related to mitochondrial coupling efficiency during respiration (9). Moreover, increased mitochondrial respiration capacity also results in increased oxidative damage and shorter life span (27). Respiratory capacity through CI diminished, whereas capacity through CIII and electron coupling control through CI remained unaffected by age in the slow-twitch oxidative SOL (Figures 3B and 4B, and Table 2, respectively). Highly glycolytic skeletal muscle has been shown to have higher oxidant production with a reciprocal lower capacity for oxidant scavenging compared with highly oxidative muscle (90). Predominantly fast-twitch skeletal muscle also has been reported to accrue age-associated oxidative damage, as assessed with protein carbonyl profiles across different skeletal muscle types, more rapidly than slow-twitch oxidative muscle (91). Collectively, the results from this study, in corroboration with these previous findings, provide the direct evidence of a predisposition to ETS dysfunction with age in type 2 fast-twitch glycolytic skeletal muscle that is not observed in type 1 slow-twitch oxidative muscle and has been previously suggested in humans using indirect metabolic imaging techniques (46,47). Preliminary evidence suggests that caloric restriction (92) and exercise (93) reduce mitochondrial oxidant production and may serve to counterbalance these age-related impairments in electron transport.

Ratios of coupling control are based on the supposition that a tightly coupled system can be distinguished from a dyscoupled system by the magnitude of difference between two steady respiratory states with identical substrate supply (94). We used leak control ratios as our indices of mitochondrial coupling control efficiency (Table 2). Leak control ratios are produced between two reciprocal respiratory states; a low flux state (ie, Lx with malate and pyruvate, state 4 respiration) compared with an equivalent high respiratory flux state (ie, P_c, submaximal state 3 respiration). An identical substrate supply is necessary to pair corresponding states. Flux control ratios demonstrate coupling efficiency using a theoretical minimum of 0.0, which indicates a fully coupled system, to a value of 1.0 representing a fully noncoupled or dyscoupled system (63). Although we show evidence of a loss of coupling control with aging during P_c in GAST and a tendency in QUAD, unfortunately coupling efficiency during maximal state 3 respiration could not be determined with the titration protocols utilized as there was no reciprocal leak state measured for P.

Respiratory Capacity and Control of Fat Oxidation With Aging

We found that the capacity for fat respiration increased with age without a reciprocal loss of coupling efficiency during β-oxidation in QUAD when controlling for differences in HAD protein expression (Figure 5 and Table 2, respectively). Conversely, capacity for fat respiration was unaltered with age in SOL, though the coupling control during fat oxidation diminished. Neither respiratory capacity nor control of fat oxidation was altered in GAST. Skeletal muscle intramyocellular lipid stores increase in
parallel with age-related decreases in mitochondria (37). Moreover, intramyocellular lipid content is also reported to drift away from the mitochondrial reticulum with age (37). The dysregulation of fat metabolism within skeletal muscle is associated with the development of insulin resistance and metabolic disease (95–97). The loss of mitochondrial coupling efficiency in type 1 slow-twitch fibers, such as observed here, may in part explain the reported insulin resistance in healthy, lean, elderly participants (38). This is of interest in regards to metabolic disease as well as aging and merits further investigation.

Conclusions

Here, we directly demonstrate impairments of mitochondrial function in response to aging in skeletal muscle. The specific age-induced alteration in function is dependent on skeletal muscle type. Skeletal muscle composed primarily of type 2 fast-twitch glycolytic fibers are predisposed to progressive impairments in mitochondrial function with age as type 1 slow-twitch oxidative fibers appear to protect against this effect.

Author Contributions

All respirometric measurements were performed at the Institute of Physiology at University of Zurich (R.A.J., V.D., L.S.), whereas the Western blot analyses were done at the Department of Exercise and Sport Sciences at University of Copenhagen (M.T.). The following is a list stating the contribution of each author to specific aspects of the study: (i) Conception and design of the experiments (R.A.J. and C.L.); (ii) Collection of data (R.A.J., V.D., L.S., and M.T.); (iii) Analysis and interpretation of data (R.A.J., V.D., M.T.); and (v) Drafting the article or revising it critically for important intellectual content (R.A.J., V.D., T.H., M.T., N.B.N., M.G., and C.L.).

References

33. Rasmussen UF, Krustup P, Kjaer M, Rasmussen HN. Experimental verification of the mitochondrial theory of aging. A study of

