Integrating geographical information in the Linked Digital Earth

Luis M. Vilches-Blázquez*, Boris Villazón-Terrazas¹, Oscar Corcho and
Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de
Informática, Universidad Politécnica de Madrid, Madrid, Spain

(Received 15 June 2012; final version received 3 March 2013)

Many progresses have been made since the Digital Earth notion was envisioned
thirteen years ago. However, the mechanism for integrating geographic information
into the Digital Earth is still quite limited. In this context, we have developed
a process to generate, integrate and publish geospatial Linked Data from several
Spanish National data-sets. These data-sets are related to four Infrastructure for
Spatial Information in the European Community (INSPIRE) themes, specifically
with Administrative units, Hydrography, Statistical units, and Meteorology. Our
main goal is to combine different sources (heterogeneous, multidisciplinary,
multitemporal, multiresolution, and multilingual) using Linked Data principles.
This goal allows the overcoming of current problems of information integration
and driving geographical information toward the next decade scenario, that is,
‘Linked Digital Earth.’

Keywords: geographical information; integration; Digital Earth; Linked Data

1. Introduction

In 1999, the Digital Earth was envisioned as a multiresolution, three-dimensional
representation of the planet that would make it possible to find, visualize and
make sense of vast amounts of geo-referenced information on physical and social
environments. Such a system would allow users to navigate through space and
time, accessing historical data as well as future predictions (based for example on
environmental models), and would support its use by scientists, policy-makers
and children alike (Gore 1999). Hence, The Digital Earth was motivated by the
insight that complex questions cannot be answered from within one domain alone
but span over multiple disciplines ranging from the natural and earth sciences to
the social sciences, information sciences, and engineering (Janowicz and Hitzlzer
2012).

In these 13 years, many progresses have been made toward this vision, by defining
standards, implementing prototypes, popularizing industry products, and building
applications through several initiatives around the world (Yang et al. 2010). Many of
the elements of Digital Earth are not only available but also used daily by hundreds
of millions of people worldwide; thanks to innovative ways to organize and present
the data and rapid technological advancements (Craglia et al. 2008).

*Corresponding author. Email: lmyilches@fi.upm.es