Electrodynamic tether applications and constraints

Sanmartín Losada, Juan Ramón; Lorenzini, Enrico C. y Martínez-Sánchez, M. (2010). Electrodynamic tether applications and constraints. "Journal of Spacecraft and Rockets", v. 47 (n. 3); pp. 442-456. ISSN 0022-4650. https://doi.org/10.2514/1.45352.


Título: Electrodynamic tether applications and constraints
  • Sanmartín Losada, Juan Ramón
  • Lorenzini, Enrico C.
  • Martínez-Sánchez, M.
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Spacecraft and Rockets
Fecha: Mayo 2010
Volumen: 47
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Física Aplicada a la Ingeniería Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img] PDF (Document Portable Format) - Acceso permitido solamente a usuarios en el campus de la UPM - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (19MB)


Propulsion and power generation by bare electrodynamic tethers are revisited in a unified way and issues and constraints are addressed. In comparing electrodynamic tethers, which do not use propellant, with other propellantconsuming systems, mission duration is a discriminator that defines crossover points for systems with equal initial masses. Bare tethers operating in low Earth orbit can be more competitive than optimum ion thrusters in missions exceeding two-three days for orbital deboost and three weeks for boosting operations. If the tether produces useful onboard power during deboost, the crossover point reaches to about 10 days. Power generation by means of a bare electrodynamic tether in combination with chemical propulsion to maintain orbital altitude of the system is more efficient than use of the same chemicals (liquid hydrogen and liquid oxygen) in a fuel cell to produce power for missions longer than one week. Issues associated with tether temperature, bowing, deployment, and arcing are also discussed. Heating/cooling rates reach about 4 K/s for a 0.05-mm-thick tape and a fraction of Kelvin/second for the ProSEDS (0.6-mm-radius) wire; under dominant ohmic effects, temperatures areover200K (night) and 380 K (day) for the tape and 320 and 415 K for that wire. Tether applications other than propulsion and power are briefly discussed.

Más información

ID de Registro: 26741
Identificador DC: http://oa.upm.es/26741/
Identificador OAI: oai:oa.upm.es:26741
Identificador DOI: 10.2514/1.45352
URL Oficial: http://arc.aiaa.org/doi/abs/10.2514/1.45352
Depositado por: Biblioteca ETSI Aeronauticos
Depositado el: 29 May 2014 07:31
Ultima Modificación: 23 Sep 2016 10:46
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM