Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico (*Salmo Salar* L.) sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

Tutor: David Menoyo Luque

Madrid, enero de 2014
El presente Trabajo Fin de Carrera se ha desarrollado gracias al proyecto “Maximizing marine omega-3 retention in farmed fish: sustainable production of healthy food” (Omega3max) perteneciente al programa Marie Curie Actions (MC-IAPP GA285856) financiado por la UE.
AGRADECIMIENTOS

En primer lugar me gustaría agradecer a mi tutor, David Menoyo, por darme la oportunidad de descubrir el mundo de la investigación y prestarme su apoyo para poder comenzar a trabajar en el Departamento cuando hace algo más de un año me interesé por el mundo de la acuicultura, los salmones, los omega 3, las estrategias nutricionales, etc. También por haber guiado el desarrollo de este trabajo, agradezco enormemente su tiempo y su dedicación para formarme. El conocimiento y la gran experiencia en el tema me han servido de invaluable ayuda en la realización del estudio.

A Nuria y Rebeca, mil gracias por ayudarme tanto. Agradezco mucho vuestra cercanía y vuestro apoyo cuando estuve haciendo extracciones, retrotranscripciones y PCRs. Gracias por haber resuelto mis dudas en el laboratorio e insistirmne tanto en el cuaderno de laboratorio. De vosotras he observado de primera mano cómo es el mundo de la investigación, lo sacrificado que es y lo bonito que es. También agradezco mucho a Jose e Isabel de la Facultad de Veterinaria que me enseñaron el método para la extracción de ácidos grasos y me ayudaron en esa fase. Fue una buena experiencia allí que siempre recordaré.

A mi padre y a mi madre, quienes sin escatimar esfuerzo alguno sacrificaron gran parte de su vida para educarme. Gracias por creer en mí, gracias por darme la fuerza para irme superando y con la cual he logrado culminar con esfuerzo y satisfacción, terminando así mi formación académica.

A Javi, por todo su cariño de siempre, por escucharme y meterme caña con sus consejos. Espero poder devolverte, al menos parte de toda la alegría e ilusión que tú me das gratis cada día. Gracias por compartir mis alegrías y por animarme y ayudarme incondicionalmente en los momentos menos buenos y por tu paciencia durante esta escritura, sin duda tengo mucha suerte de haberte encontrado.

A Gianna, por su alegría y simpatía, nos hemos ayudado mucho en la puesta a punto de los genes. Gracias por compartir conmigo un verano en el laboratorio haciendo montones de PCR, no hubiera sido lo mismo si no hubieras decidido hacer aquí tu erasmus, contigo parecía todo más sencillo. A Rocío, por su comprensión, compañerismo y buenos ratos pasados en la escuela y fuera de ella y por poder contar contigo para todo. Gracias a las dos por ser para mí un ejemplo de trabajo en este último año.

A mis hermanos Pablo y Elena que aunque no entendían bien que estaba haciendo siempre me brindaron su ánimo.

A Marimar, mi madrina, por sus sugerencias y observaciones, su gran disposición y ofrecimiento.

Y al resto de amigos y compañeros de carrera que directa o indirectamente me han ayudado y apoyado y con quienes hoy comparto con ellos este triunfo.

Gracias a todos.
ÍNDICE DE CONTENIDO

1. RESUMEN ... 1

2. INTRODUCCIÓN ... 4
 2.1 Datos de producción de salmón Atlántico .. 5
 2.2 Los lípidos en la alimentación de salmones ... 7
 2.2.1 Importancia .. 7
 2.2.2 Limitación actual del aceite de pescado como ingrediente en dietas para salmón y alternativas puestas en marcha .. 8
 2.2.3 Metabolismo de ácidos grasos poliinsaturados de cadena larga 9
 2.2.4 Papel de los ácidos grasos de la dieta en la regulación de la expresión génica........... 13
 2.2.5 Sistema antioxidante en peces ... 17
 2.3 La vitamina E .. 19
 2.3.1 Estructura bioquímica de la vitamina E ... 19
 2.3.2 Funciones biológicas de la vitamina E en las células ... 20
 2.4 Interés por el γ-tocoferol ... 24
 2.4.1 γ-tocoferol: absorción, transporte, retención y metabolismo 24
 2.4.2 Reciente interés por los no-α-tocoferoles ... 25
 2.4.3 Hallazgos acerca de γ-tocoferol .. 25

3. OBJETIVOS E HIPÓTESIS DEL ESTUDIO ... 28

4. MATERIALES Y MÉTODOS ... 30
 4.1 Animales y dietas experimentales ... 31
 4.2 Toma de muestras de tejidos para análisis ... 34
 4.3 Análisis de ácidos grasos ... 34
 4.4 Análisis de la expresión de genes ... 35
 4.5 Análisis estadístico .. 37

5. RESULTADOS .. 38
 5.1 Efecto de las dietas en el perfil de ácidos grasos en filete .. 39
 5.2 Efecto de las dietas en el perfil de ácidos grasos en hígado .. 42
 5.3 Efecto de las dietas en el nivel de expresión génica en hígado .. 44

6. DISCUSIÓN .. 48
 6.1 Efecto de las dietas en el perfil y composición de ácidos grasos ... 49
 6.2 Efecto de las dietas sobre el metabolismo de los ácidos grasos ... 50

7. CONCLUSIONES ... 54

8. REFERENCIAS .. 56
ÍNDICE DE FIGURAS

Figura 1: Rutas de biosíntesis de LC-PUFA C_{20} y C_{22} en peces a partir de los precursores de las series n-3 y n-6 PUFA de C_{18} ... 10

Figura 2: Esquema general de las reacciones de las enzimas antioxidantes 18

Figura 3: Anillo cromanol de α-tocoferol y γ-tocoferol .. 22

Figura 4: Efecto de las dietas experimentales sobre los niveles de expresión de los genes implicados en la desaturación y elongación de ácidos grastos .. 44

Figura 5: Efecto de las dietas experimentales sobre los niveles de expresión de los genes implicados en la β-oxidación de los ácidos grastos .. 45

Figura 6: Efecto de las dietas experimentales sobre los niveles de expresión de los factores de transcripción nucleares ... 46

Figura 7: Efecto de las dietas experimentales sobre los niveles de expresión del gen GPx4b 47
ÍNDICE DE TABLAS

Tabla 1: Producción mundial estimada de salmón de acuicultura (millones de toneladas)........ 5
Tabla 2: Uso estimado mundial y demanda de harina y aceite de pescado por salmón Atlántico ... 6
Tabla 3: Composición de la ración según las diferentes etapas de crecimiento del salmón....... 7
Tabla 4: Familia de tocoferoles ... 20
Tabla 5: Composición y análisis proximal de las dietas experimentales.............................. 32
Tabla 6: Composición de ácidos grasos de las dietas control .. 33
Tabla 7: Concentración de los cebadores, condiciones de amplificación y eficiencias 36
Tabla 8: Longitudes de amplificación y secuencia de los cebadores específicos diseñados para los factores de transcripción PPARα y SREBP1 ... 37
Tabla 9: Efecto de las dietas experimentales sobre el perfil de ácidos grasos de filete.......... 41
Tabla 10: Efecto de las dietas experimentales sobre el perfil de ácidos grasos de hígado 43
GLOSARIO / ABREVIATURAS

<table>
<thead>
<tr>
<th>ADN</th>
<th>Ácido desoxirribonucleico</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA</td>
<td>Arachidonic Acid o ácido araquidónico (C20:4n-6)</td>
</tr>
<tr>
<td>ARN</td>
<td>Ácido ribonucleico</td>
</tr>
<tr>
<td>AGE</td>
<td>Ácidos grasos esenciales</td>
</tr>
<tr>
<td>AGT</td>
<td>Ácidos grasos totales</td>
</tr>
<tr>
<td>CA</td>
<td>Dieta control con alto contenido en EPA y DHA</td>
</tr>
<tr>
<td>CB</td>
<td>Dieta control con bajo contenido en EPA y DHA</td>
</tr>
<tr>
<td>c_t</td>
<td>Cycle threshold o ciclo umbral</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexenoic Acid o Ácido docosahexaenoico (C22:6n-3)</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicopesapentonoic Acid o ácido eicosapentaenoico (C20:5n-3)</td>
</tr>
<tr>
<td>FAO</td>
<td>Organización de las Naciones Unidas para la Agricultura y Alimentación</td>
</tr>
<tr>
<td>HUFA</td>
<td>High Unsaturated Fatty Acids o ácidos grasos altamente insaturados</td>
</tr>
<tr>
<td>LA</td>
<td>Linoleic Acid o ácido linoléico (C18:2n-6)</td>
</tr>
<tr>
<td>LC-PUFA</td>
<td>Long Chain Polyunsaturated Fatty Acids o ácidos grasos poliinsaturados de cadena larga</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein o lipoproteínas de baja densidad</td>
</tr>
<tr>
<td>LNA</td>
<td>Linolenic Acid o ácido linolénico (C18:3n-3)</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturates Fatty Acids o ácidos grasos monoinsaturados</td>
</tr>
<tr>
<td>NS</td>
<td>No significativo</td>
</tr>
<tr>
<td>OA</td>
<td>Oleic Acid o ácido oleico (C18:1n-9)</td>
</tr>
<tr>
<td>P</td>
<td>Probabilidad</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acids o ácidos grasos poliinsaturados</td>
</tr>
<tr>
<td>RIN</td>
<td>RNA Integrity Number</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxigen Species o Especies reactivas del oxígeno</td>
</tr>
<tr>
<td>RT-qPCR</td>
<td>Transcripción inversa y reacción en cadena de la polimerasa cuantitativa</td>
</tr>
<tr>
<td>SAF A</td>
<td>Saturated Fatty Acids o ácidos grasos saturados</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of the Mean o error estándar de la media</td>
</tr>
<tr>
<td>TAG</td>
<td>Triglycerids o triacilgliceroles</td>
</tr>
<tr>
<td>versus</td>
<td></td>
</tr>
<tr>
<td>$\gamma $toc</td>
<td>Gamma-tocoferol</td>
</tr>
</tbody>
</table>
1. RESUMEN
El aceite de pescado ha sido la principal fuente de grasa incluida en la dieta de salmón Atlántico ya que su uso optimiza el crecimiento y aporta grandes cantidades de ácidos grasos poliinsaturados (PUFA) omega 3, principalmente los ácidos eicosapentaenoico (EPA) y docosahexaenoico (DHA). En los años 90 se utilizaba un 24% de aceite de pescado en los piensos para salmón, sin embargo la escasez del recurso y la presión comercial sobre su demanda por parte de distintos sectores ha dado lugar a una progresiva reducción de su inclusión teniendo la industria como objetivo llegar a utilizar en 2020 tan sólo un 8%. Al reducir los niveles de aceite de pescado disminuye el contenido de EPA y DHA aportado, por lo que se hace necesario diseñar estrategias que permitan maximizar la retención de EPA y DHA en los tejidos del animal. De esta forma, la optimización del uso de antioxidantes para prevenir la peroxidación lipídica de los ácidos grasos poliinsaturados de cadena larga (LC-PUFA), puede ser una estrategia a seguir. Entre los antioxidantes empleados en acuicultura destaca la vitamina E. Aunque el α-tocoferol es el isómero principal de la vitamina E, estudios recientes sugieren que el γ-tocoferol presenta igualmente una potente actividad antioxidante. Sin embargo, hasta la fecha no hay muchos estudios con salmón Atlántico empleando γ-tocoferol como principal isómero añadido en la dieta. Además de su función como antioxidante, en investigaciones recientes la vitamina E ha mostrado capacidad para inducir de manera directa o indirecta la expresión de genes que codifican enzimas implicadas en el metabolismo de los ácidos grasos. Con esta perspectiva el presente trabajo tiene como principal objetivo determinar si la incorporación de 300 ppm de γ-tocoferol a la dieta del salmón da lugar a una mayor capacidad antioxidante en los tejidos del animal, disminuyendo la oxidación lipídica in vivo y afectando tanto a la composición como al metabolismo lipídico. Un total de 180 esguínes de salmón Atlántico (Salmo Salar) con un peso inicial de 137,4 ± 1g fueron distribuidos al azar y uniformemente en 6 tanques y fueron alimentados con una de las tres dietas experimentales. Se aportó agua salada a los tanques y la temperatura se mantuvo a 12°C. Las dietas experimentales se formularon para tener: bajo contenido en EPA y DHA (CB); alto en EPA y DHA (CA); y con bajos niveles de EPA y DHA pero con un suplemento de 300 ppm de γ-tocoferol como antioxidante (CB+γtoc). Las dietas fueron suministradas en tanques duplicados durante 14 semanas. Al final del experimento, se sacrificaron 4 peces de cada tanque y se tomaron muestras de hígado y filete izquierdo para realizar el análisis de ácidos grasos y de expresión génica. A pesar de que los peces alimentados con la dieta CB+γtoc presentaron 3 veces más concentración de γ-tocoferol en los tejidos, la administración de esta dieta no tuvo un efecto significativo (P>0.05) sobre la composición de EPA, DHA y ácido araquidónico (ARA) en los tejidos del salmón. Los resultados del análisis de expresión de genes mostraron que la...
incorporación de 300 ppm de γ-tocoferol dio lugar a una cierta inhibición del metabolismo lipídico tanto de genes relacionados con la β-oxidación como de aquellos relacionados con la síntesis de LC-PUFA. En cuanto al sistema de defensa antioxidante GPx4, los resultados indicaron que no hubo efecto estimulatorio del γ-tocoferol sobre el mismo. Sin embargo, se observó un aumento de omega 3 totales ($P<0.05$) en el músculo del animal. La incorporación de 300 ppm de γ-tocoferol tuvo un efecto limitado sobre la composición lipídica y un efecto inhibitorio del metabolismo lipídico a nivel de expresión.
2. INTRODUCCIÓN
2.1 Datos de producción de salmón Atlántico

Durante los últimos 40 años la producción de especies acuícolas ha crecido a una tasa anual del 8,3% (FAO, 2012) mientras que la pesca de captura se ha mantenido al 1,2% para el mismo periodo (Natale et al., 2013). De esta forma, en la actualidad la acuicultura es responsable de casi la mitad (47%) de los productos de la pesca que se consumen en todo el planeta en 2010 (FAO, 2012).

Cerca del 60% de la producción mundial de salmón Atlántico procede de acuicultura (Marine Harvest, 2012) siendo Noruega el principal productor (51%) y exportador de salmón Atlántico, seguido por Chile que está incrementando rápidamente su producción (26,7%) hacia los niveles previos a los registrados en 2010, aunque su situación sigue siendo delicada por la adaptación a la nueva normativa pesquera, el incremento de los costes y los efectos de las enfermedades en los centros productivos (FAO, 2012). A estos países les siguen Reino Unido (8,8%) y Canadá (7,1%). (Ethier, 2013; FAO, 2011). Los principales mercados mundiales son Asia, la Unión Europea y Norte América (EATiP, 2012). Históricamente, los principales países importadores de salmón Atlántico producido en Noruega son la Unión Europea, Rusia y Asia (Marine Harvest, 2012).

Como se puede observar en la Tabla 1, la producción mundial actual de salmón Atlántico está en aumento y se prevé que siga creciendo un 5% al año. En un período de 23 años (1987-2010) la producción anual de salmón Atlántico ha crecido un 2.000%, partiendo en el año 1987 con 70.000 toneladas y alcanzando una producción de 1,73 millones de toneladas en 2010. Se pronostica que se alcancen los 2,8 millones de toneladas en 2020 (FAO, 2011).

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción</th>
<th>Crecimiento (%/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1,573</td>
<td>0,8</td>
</tr>
<tr>
<td>2010</td>
<td>1,734</td>
<td>5,0</td>
</tr>
<tr>
<td>2015</td>
<td>2,213</td>
<td>5,0</td>
</tr>
<tr>
<td>2020</td>
<td>2,825</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Fuente: FAO, 2011

Los aceites y harinas de pescado han sido los ingredientes tradicionalmente utilizados por la industria productora de piensos para acuicultura. En cuanto a la utilización de la harina de pescado, por especies los salmones se sitúan en tercer lugar en cuanto a su consumo (13,7%), después de los camarones (27,2%) y otros peces marinos (18,8%). Sin embargo, en relación al aceite de pescado, los salmones ocupan el primer lugar en el empleo para piensos...
(36,6%), seguidos por otros peces marinos (24,7%), las truchas (16,9%) y los camarones (12,9%) (FAO, 2011).

En 2010, los piensos para salmones contenían un 22% de harina de pescado y un 12% de aceite de pescado (ver Tabla 2). En el futuro la tendencia se dirige a disminuir ambas materias primas estimándose que en 2020 lleguen a valores del 12% para harina de pescado y un 8% para el aceite de pescado.

Tabla 2: Uso estimado mundial y demanda de harina y aceite de pescado por salmón Atlántico

<table>
<thead>
<tr>
<th>Año</th>
<th>Harina de pescado (%)</th>
<th>Aceite de pescado (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>2010</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>2015</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>2020</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

Fuente: FAO, 2011

Las razones de la disminución de la harina de pescado en piensos para salmón son debidas a la mayor demanda de ésta en el mercado, mayores precios, el menor abastecimiento por las cuotas más exigentes, mayores controles de la pesca ilegal y por el uso de alternativas a esta materia prima más eficientes y rentables.

En el caso del aceite de pescado, disminuye su inclusión en los piensos para salmón por la creciente demanda por parte del sector para el engorde de peces y cultivo de crustáceos. Además, la ausencia de alternativas rentables que sean fuente de lípidos altamente insaturados (HUFA), con gran interés en el contenido en ácidos grasos EPA y DHA (Hole, 2009; Turchini, et al., 2009; Wang, 2009).

El salmón Atlántico es la especie dominante en la acuicultura europea de peces marinos, dada su tasa de crecimiento mayor y salud en cautiverio. En 2010 la producción fue de 1.140 millones de toneladas (EATip, 2012). De acuerdo con las estimaciones realizadas por Kontali Analyse, analista internacional especializada en los sectores de pesca y acuicultura, la producción global de salmón Atlántico en el continente europeo será en 2014 de 1.426 millones de toneladas con un aumento de 4,2%. Respecto a la producción en Noruega, Kontali Analyse estima un volumen 1.185 millones de toneladas con un aumento del 4,1%, mientras que para el término de 2013, proyecta una producción total de 1.138 millones de toneladas, lo que significa una disminución de -3,8% respecto de 2012 cuando en Noruega se obtuvo una producción de 1.183 millones de toneladas.
2.2 Los lípidos en la alimentación de salmones

2.2.1 Importancia

La importancia de los lípidos en la dieta de salmónidos radica en que son la principal fuente de energía utilizada por estos animales y porque cubren las necesidades de ácidos grasos esenciales (AGE) (NRC, 2011). Como se puede observar en la Tabla 3, las grasas son el segundo componente en importancia de la ración, constituyendo entre un 18 y un 25% desde la primera toma hasta que se convierte a esguín y aumentando hasta un 40% en la etapa de crecimiento en agua salada. En esta fase, el contenido de proteínas se reduce y el contenido de lípidos se incrementa hasta que el salmón alcanza la talla de mercado (~4 kg).

Tabla 3: Composición de la ración según las diferentes etapas de crecimiento del salmón

<table>
<thead>
<tr>
<th>% Composición</th>
<th>Fase de agua dulce</th>
<th>Fase de agua salada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alevín (< 2,5 cm)</td>
<td>Jaramugos-Pintos (60-100 g)</td>
</tr>
<tr>
<td>Proteína bruta (%)</td>
<td>50-60</td>
<td>50-60</td>
</tr>
<tr>
<td>Grasa bruta (%)</td>
<td>18-25</td>
<td>18-30</td>
</tr>
<tr>
<td>Almidón (%)</td>
<td>6-12</td>
<td>6-12</td>
</tr>
<tr>
<td>PD/ED (g/MJ)</td>
<td>23</td>
<td>23</td>
</tr>
</tbody>
</table>

Los salmones pueden utilizar la grasa, la proteína o los hidratos de carbono de la dieta como fuentes energéticas. Sin embargo, debido a que el uso de los hidratos de carbono es muy limitado, especialmente en la fase de cebo en agua salada donde se consideran más carnívoros que omnívoros, y que la proteína es un ingrediente caro y que puede dar lugar a problemas ambientales y de calidad de agua, la grasa se considera el principal nutriente energético en las dietas para salmón. Por lo tanto, un correcto manejo de los niveles de grasa en la dieta (hasta un 24%) incrementa la eficiencia en la utilización de la proteína (FAO, 2013). Los requerimientos de AGE de salmón Atlántico se satisfacen con un 1% de ácido linolénico (LNA, 18:3n-3) o bien con 0,5-1% de ácido eicosapentanoico (EPA, 20:5n-3) y ácido docosahexanoico (DHA, 22:6n-3) (NRC, 2011). En un estudio donde se han probado distintos niveles para optimizar el crecimiento se observó que con un nivel de omega 3 de hasta un 1% se lograba el crecimiento de manera más rápida, siendo la combinación de EPA y DHA la que dio mejores resultados respecto de la de LNA sólo. Por último, el contenido de la dieta en ácido linoleico (LA, C18:2n-6) no mostró ningún efecto cuando se incrementaba en la dieta. El estudio afirmó...
que la inclusión de ácidos grasos de la serie n-3 reducía la mortalidad en salmón mientras que la inclusión de LA no mostraba estos efectos beneficiosos (Ruyter et al., 2000a; 2000b).

Por tanto, la elección del tipo de aceite o mezcla de aceites que se emplee en la formulación es muy importante. Idealmente se recomiendan aquellos aceites ricos en PUFA para cubrir las necesidades de AGE, que además contengan cantidades significativas de ácidos grasos monoinsaturados (MUFA), mejores sustratos energéticos, y si es posible con punto de fusión bajo. Esto implica poca cantidad de ácidos grasos saturados (SAFA), ya que los peces tienen problemas de digestibilidad con estos ácidos grasos, debido en parte a estar sometidos a bajas temperaturas (NRC, 2011; S.C.A.H.A.W., 2003; Storebakken, 2002). Los aceites de pescado reúnen estos criterios y por ello han sido tradicionalmente usados en la alimentación piscícola.

2.2.2 Limitación actual del aceite de pescado como ingrediente en dietas para salmón y alternativas puestas en marcha

En los últimos años preocupa la disponibilidad constante de ingredientes de piensos para satisfacer la demanda de una acuicultura en crecimiento. De manera tradicional la alimentación de salmones se ha basado en el aporte de aceite y harina de pescado. En los años 90 se utilizaba aproximadamente un 59% de harina y un 24% de aceite de pescado en la fabricación europea de pienso para salmones. Debido a la escasez de estas materias primas y la gran demanda por parte de diversos sectores industriales, en la actualidad los niveles de harina y aceite de pescado se han reducido a un 29% y un 15% respectivamente, teniendo la industria como objetivo llegar a utilizar entre un 12% y un 8% de harina y aceite de pescado (Marine Harvest, 2012). Por lo tanto, se espera que los niveles de inclusión de aceite de pescado disminuyan a la vez que se prevé que el consumo total de esta materia prima en la acuicultura aumente (FAO, 2012).

La reducción de aceites y harinas de pescado se ha realizado gracias a la incorporación de fuentes vegetales en dietas para salmones. Investigaciones recientes con salmónidos (trucha arcoiris- Oncorhynchus mykiss, trucha común- Salmo trutta y salmón Atlántico- Salmo salar), han demostrado que es posible reemplazar gran parte del aceite de pescado por un tipo de aceite vegetal o mezcla de ellos sin afectar el crecimiento ni el consumo (Bell et al., 2003b; Richard et al., 2006; Sargent y Tacon, 1999). La sustitución parcial de los aceites de pescado en las dietas con fuentes de lipídos vegetales afecta la composición de lipídos tanto celular como de tejidos. Esto supone un descenso muy significativo de las concentraciones de EPA y DHA en el filete. Por ello, otros estudios han planteado usar dietas de finalización basadas en aceites
de pescado (Bell et al., 2003b; Glencross et al., 2003; Regost et al., 2003) para adaptar el nivel deseado de EPA y DHA en el producto final ya que el tipo y cantidad de lípidos (n-3 y n-6) que consume el animal se refleja en la composición de sus tejidos y de los fosfolípidos celulares (Bell et al., 1993). Sin embargo, desde el punto de vista práctico este tipo de dietas de acabado no parecen ser la solución ya que en los últimos meses de cebo es cuando aumenta más el consumo lo que implica niveles altos de aceite de pescado. Por lo tanto es necesario continuar con la búsqueda de fuentes ricas en omega 3 de cadena larga (EPA y DHA) y diseñar nuevas estrategias de alimentación para intentar maximizar la retención de estos ácidos grasos en los tejidos del animal.

Finalmente, cabe mencionar que se han estudiado otras fuentes alternativas, como el uso de aceite proveniente de bacterias o microalgas marinas con alto contenido en ácidos grasos altamente insaturados. Actualmente aún no es rentable para su empleo en alimentación piscícola, pero se espera que con el avance de métodos de producción de coste eficiente cambie esta situación (Tacon et al., 2011).

2.2.3 Metabolismo de ácidos grasos poliinsaturados de cadena larga

La sustitución de aceites de pescado (ricos en EPA y DHA) por aceites vegetales (ricos en LA y LNA) ha dado lugar a un creciente interés por el estudio del metabolismo de los ácidos grasos poliinsaturados de cadena larga (LC-PUFA) en peces. En concreto, por las rutas de conversión de ácidos grasos poliinsaturados, LA y LNA, en sus correspondientes productos de cadena larga, EPA, DHA y ARA (ver Figura 1) con alto significado y funcionalidad biológica. Estos estudios tienen por finalidad aumentar nuestro conocimiento sobre la esencialidad de los ácidos grasos en peces y además permiten diseñar estrategias nutricionales encaminadas a maximizar la retención de LC-PUFA en los tejidos del animal.

Las tres enzimas desaturasas principales, que incorporan dobles enlaces (Δ9, Δ6 y Δ5) comparten las mismas propiedades enzimáticas en mamíferos y en peces. Recientemente se ha identificado en peces la presencia de una desaturasa con actividad Δ4 (Monroig et al., 2011). Por lo tanto, en peces además de obtenerse DHA a partir de EPA siguiendo la ruta “alternativa” de Sprecher —en la que se elongan los productos de síntesis hasta ácidos de 24 átomos de carbono (ver Figura 1) y es al final de la ruta cuando mediante la enzima Δ6 desaturasa se obtienen los precursores 24:6n-3 y 24:5n-6 los cuales, tras sufrir una β-oxidación final en peroxisomas, se transforman a EPA y DHA —, también se puede producir DHA a partir de la elongación directa de 22:5n-3 vía Δ4 (Monroig et al., 2011).
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

Figura 1: Rutas de biosíntesis de LC-PUFA C20 y C22 en peces a partir de los precursores de las series n-3 y n-6 PUFA de C18. Fuente: Monroig et al. (2011) y NRC (2011), modificado.

Como se aprecia en el esquema de la Figura 1, la desaturación con Δ5 desaturasa sucede en un solo paso implicando a los ácidos 20:3n-6 ó 20:4n-3, mientras que la desaturación con Δ6 sucede en dos pasos. Primero realiza la reacción sobre el ácido graso linoleico (LA, 18:2n-6) o el ácido linolénico (LNA, 18:3n-3) y, en segundo lugar, sobre los ácidos grasos araquidónico (ARA, 24:4n-6) ó 24:5n-3, desconociéndose si éste segundo paso lo realizan distintas Δ6 (isoenzimas). El principal producto final tras desaturación y elongación de LNA es el DHA (22:6n-3) y para el caso de LA es el ARA. La enzima Δ6 desaturasa tiene preferencia por LNA, posteriormente por LA y en último lugar por el ácido oleico (OA, 18:1n-9), es decir, la afinidad es mayor para la serie n-3 que para los sustratos de la serie n-6 y n-9. Esto explica el hecho de que los peces, como otros animales, de forma general acumulan preferentemente más DHA que 22:5n-6.

El proceso de elongación de las cadenas de ácidos grasos se realiza gracias a las proteínas codificadas por los genes ELOVL. En salmón y en otras especies de peces, se ha clonado y caracterizado ADN complementario (ADNc) de esta familia de genes de elongasas de ácidos grasos, llamadas ADNc Elovl. Los análisis filogenéticos realizados agruparon los genes ADNc Elovl en un grupo con mucha similitud al de los mamíferos ELOVL5.

Posteriormente, en salmón se observó que eran dos genes, Elovl5a y Elovl5b y no uno solo, siendo el Elovl5a el que posee mayor preferencia por los sustratos PUFA n-3, incluso más...
que su homólogo en mamíferos, cuya actividad hacia ácidos grasos de C\textsubscript{22} es menor, comparado con C\textsubscript{18} y C\textsubscript{20} (Agaba et al., 2004; 2005). Esto no se ha observado con tanta claridad en Elovl5b.

Además, otras investigaciones han demostrado la existencia de un segundo gen Elovl2 en salmón Atlántico con especificidad por los PUFA que está relacionada con ELOVL2 de mamíferos. Comparando el gen ELOVL2 de ratones (Leonard et al., 2002) con la proteína Elovl2 de salmones, esta última muestra una baja actividad hacia ácidos grasos de C\textsubscript{18} y alta hacia C\textsubscript{20} y C\textsubscript{22} y posee una ligera capacidad de convertir MUFA (cerca del 4% de conversión de 16:1n-7), lo que no se observó en ELOVL2 de mamíferos (Leonard et al., 2002). Elovl2, pero no Elovl5a, incrementa sus niveles de expresión en respuesta a la inclusión en las dietas de aceite vegetal. Por ello, lo que diferencia a Elovl5 en peces y ELOVL5 en mamíferos frente a Elovl2 es la elevada actividad hacia LC-PUFA de C\textsubscript{22} que manifiesta este último.

La actividad enzimática difiere en los tejidos

El mayor o menor grado en el que el organismo lleva a cabo la conversión es proporcional a la actividad de las enzimas elongasas y desaturasas Δ5 y Δ6 en sus tejidos. Zheng et al. (2005) llevaron a cabo un ensayo de transcripción inversa y reacción en cadena de la polimerasa (RT-PCR) para medir la expresión de los genes Δ6 y Δ5 desaturasas y Elovl5 en salmón Atlántico. El resultado muestra que los tejidos con mayor actividad de estos genes son, por orden: el intestino, el hígado y el cerebro; y, en menor medida, los riñones, el corazón, las branquias, el tejido adiposo, el músculo y el bazo. Es más, la expresión de ambos genes desaturasa en intestino, hígado, músculo rojo y tejido adiposo fue mayor en los salmones alimentados con la dieta que contenía aceites vegetales que aquellos alimentados con aceite de pescado.

Regulación de la actividad enzimática por factores nutricionales y ambientales

a. Competencia de sustratos por la enzima Δ6 desaturasa

Tocher et al. (2001) estudian la desaturación de ácidos grasos en hígado de salmónidos y demostraron que la competencia de sustratos por la Δ6-desaturasa se produce a dos niveles:

- Si en la dieta se aporta gran cantidad de 18:3n-3 ó 18:2n-6 por separado, la cantidad de sus respectivos derivados de 20 átomos de carbono aumenta y la competencia de sustratos por la Δ6 desaturasa solamente se produce al obtener DHA.
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

- Si en la dieta se aportan conjuntamente concentraciones similares de 18:3n-3 y 18:2n-6, ambos sustratos compiten por la Δ6 desaturasa y por lo tanto la producción de 24:6n-3 para obtener DHA mediante acortamiento de la cadena es menor.

b. La disposición de precursores a través de la dieta disminuye la expresión de desaturasas

El mayor o menor grado en el que el organismo lleva a cabo la conversión viene determinado por la concentración de ARA, EPA y DHA como producto final. Si hay disponibilidad suficiente a través de la dieta y por lo tanto mucho producto final, entonces la expresión de dichas enzimas es muy reducida o prácticamente ausente.

Se sabe que los océanos son un medio abundante en EPA y DHA, procedentes de las diatomeas y flagelados, respectivamente, que a través de la cadena alimentaria son fuente de nutrientes para el zooplancton y a su vez para los peces. Esto hace distinguir entre aquellos peces de hábitat marino y los de agua dulce. Los primeros son poco eficientes para sintetizar DHA a partir de LNA y dependen de la dieta para tener asegurados los AGE. Por el contrario, las especies de agua dulce, con una alimentación pobre en LC-PUFA y limitante en DHA, son más eficientes convirtiendo LA y LNA a sus LC-PUFA satisfaciendo sus necesidades en AGE. En el caso particular del salmón Atlántico, al ser un pez anádromo, con fases de su ciclo vital tanto en agua dulce como salada, mantiene cierta capacidad de conversión de LNA y EPA a DHA (NRC, 2011; Tocher et al., 2001; Tocher, 2003).

En peces, se ha observado que la contribución de nicotinamida adenina dinucleótido fosfato reducida (NADPH) por la enzima málico o malato deshidrogenasa (ME) y la glucosa-6-fosfato deshidrogenasa (G6PD) se controla por la presencia de EPA y DHA que de manera específica modifican la lipogénesis. De hecho, en salmónidos, estos dos ácidos grasos in vivo e in vitro inhiben la síntesis de lípidos. Esto es importante, ya que indica que dietas a base de aceite de pescado, que son ricas en EPA y DHA, tienden a reprimir la actividad de las enzimas del hígado que intervienen en la lipogénesis (Álvarez et al., 2000; Menoyo et al., 2003). De la misma manera, si durante 20 semanas se administra una dieta en salmón Atlántico con la fuente de lípidos a base de aceite de linaza (rico en LNA), se ha observado que la expresión de los genes Δ5 desaturasa y Elovl se relacionan de forma directa e inversa respectivamente con el contenido en la dieta de LNA y HUFA n-3. Y al cabo de 40 semanas, la ruta de biosíntesis de HUFA se relaciona positivamente con el aceite de linaza. También se ha observado el mismo...
comportamiento con una dieta del 75% de aceite de colza en comparación con los peces que recibieron una alimentación a base de aceite de pescado (Jordal et al., 2005).

2.2.4 Papel de los ácidos grasos de la dieta en la regulación de la expresión génica

Genes implicados en el transporte y β-oxidación de los ácidos grasos

Tres de los genes implicados en el transporte y la β-oxidación de los ácidos grasos son el clúster de diferenciación 36 (CD36), la acil-CoA oxidasa (ACO) y la carnitín palmitoyltransferasa I (CPT1).

El CD36 es un gen que codifica para la proteína de membrana transportadora de ácidos grasos de cadena larga (FAT/CD36). Recientemente se ha demostrado que la presencia de este transportador en la membrana mitocondrial externa contribuye al transporte y control de la β-oxidación mitocondrial (Smith et al., 2011). En salmones el CD36 es el trasportador de ácidos grasos que más se expresa en hígado y músculo rojo, y además su regulación es sensible a cambios en la composición de ácidos grasos (aceites de pescado vs. aceites vegetales) (Torstensen et al., 2009). Hay estudios que han observado que puede ser regulado por los tocoferoles (Devaraj et al., 2001; Ricciarelli et al., 2000). Concretamente, altas concentraciones celulares de α-tocoferol disminuyen su expresión y bajas concentraciones provocan un aumento de la expresión. No hay estudios hasta la fecha con γ-tocoferol. Este gen se modula con lipoproteínas de baja densidad modificadas tras una oxidación y por los PUFA entre otra serie de compuestos (Adachi y Tsujimoto, 2006).

La expresión del gen ACO regula la actividad de la enzima acil-CoA que cataliza el último paso de la reacción de β-oxidación en los peroxisomas (Inestrosa et al., 1979). El gen ACO es regulado nutricionalmente en trucha arcoíris (Morais et al., 2007) y también en salmón Atlántico (Stubhaug et al., 2007). El cambio del aceite de pescado por aceites vegetales ejerce un efecto en la actividad de β-oxidación ya que se modifica la composición de los ácidos grasos (Torstensen y Stubhaug, 2004; Stubhaug et al., 2005; 2006; 2007). Estos estudios sugieren que los sustratos más afines para la β-oxidación son el EPA y el DHA y, por este motivo, el nivel de expresión de ACO es mayor entre los peces alimentados con aceite de pescado frente a los de aceites vegetales. Los mecanismos que explican los cambios en la β-oxidación inducidos por el tipo de dieta aún son desconocidos en peces.

El gen CPT1 codifica para la enzima principal que regula la oxidación de los LC-PUFA. Se encarga de catalizar la conversión de ácidos grasos-CoA en ácidos grasos-carnitina para su entrada en los mitocondrias (Kerner y Hoppel, 2000). Los cambios de expresión de actividad
este gen dependen de la disponibilidad de carnitina en el tejido, ya que la carnitina es un cofactor esencial desempeñando un papel importante en la actividad del gen y la oxidación de los ácidos grasos (Lin y Odle, 2003). Según varios estudios, se ha confirmado que un aumento de la concentración de carnitina en el interior de la mitocondria aumenta la actividad de CPT1, estimulando la actividad traslocasa y aumentando el flujo de la β-oxidación de ácidos grasos en la mitocondria (Pande y Parvin, 1980).

Factores de transcripción

Los factores de transcripción son proteínas que participan en la regulación de la transcripción del ADN que al ser activados adquieren la capacidad de regular la expresión génica en el núcleo celular, estimulando o reprimiendo la transcripción. Pueden actuar reconociendo y uniéndose a secuencias concretas de ADN, uniéndose a otros factores o uniéndose directamente a la ARN polimerasa.

El PPARα pertenece a la familia de receptores nucleares activados de proliferación de los peroxisomas (PPAR). Son factores de transcripción activados por ligando que responden a cambios de lípidos de la dieta modificando la expresión de genes que intervienen en el metabolismo de grasas y glúcidos y traducen esos cambios en actividad metabólica. Los ligandos normales son los ácidos grasos o derivados de ellos pero además pueden unir activadores que sean sintéticos. Concretamente, PPARα actúa en el hepatocito donde regula la homeostasis energética y se encarga de activar los genes necesarios para la β-oxidación de ácidos grasos (gen ACO) y de regular en condiciones de ayuno las enzimas Δ5 y Δ6 desaturasas. Por el contrario, PPAR-γ se encarga de la síntesis de grasas, inhibiendo a SERBP1 para disminuir la síntesis y las reacciones de desaturación (Michalick et al., 2006; Wang et al., 2003). Cabe destacar que los tocoferoles pueden interferir en la modulación de los PPAR de manera directa o indirecta. En el primer caso, ya que se ha observado que PPARγ tiene elementos respuesta al menos para el δ-tocoferol (De Pascale et al., 2006). O de manera indirecta a través del control del estrés oxidativo (Sulzle et al., 2004). Los metabolitos oxidados de los ácidos grasos polinsaturados son reguladores potentes de PPAR γ en menor medida el ácido linoleico y ARA (Wang et al., 2006; Xu et al., 2006; Zuo et al., 2006). En un estudio llevado a cabo por Sulzle et al. (2004), se alimentaron ratas durante 63 días con 25-250 mg de α-tocoferol/kg de alimento que contenía grasa fresca o grasa enranciada y se observaron las diferencias en la expresión de genes. Independientemente de la concentración de vitamina E que las dietas tenían, la dieta con grasa enranciada provocó una mayor activación de los genes marcadores de PPARα así como un aumento de la proliferación peroxisomal.
Las proteínas de unión al elemento de respuesta al esterol (SREBP) pertenecen a una familia de factores de transcripción que pueden unirse a las secuencias de promotores que contienen elementos reguladores de esterol. SERBP1a y SREBP1c, son las dos isoformas producidas por un único gen, serbf-1, mientras que SERBP2 se produce a partir del gen serbf-2. SREBP1 regula preferentemente la biosíntesis de triglicéridos mientras que SERBP2 la de colesterol. SREBP1 es un regulador fundamental de la desaturación, elongación de ácidos grasos y de la biosíntesis de fosfolípidos (Matsuzaka et al. 2002; Tabor et al. 1999). Se ha sugerido que se trata de un punto de control alostérico clave de la homeostasis de la membrana lipídica que influye fuertemente la composición de lípidos de ésta. Además, SREBP1 induce respuestas adaptativas frente a cambios en la dieta o en el entorno que provocan perturbaciones en los lípidos y comprometen el mantenimiento de una óptima composición de la membrana lipídica, supervivencia de la célula y sus funciones. Pequeños cambios en la concentración de lípidos en la membrana del orden del 10% son suficientemente significativos para alterar las propiedades de la membrana (Oresic et al., 2008). Los niveles de proteína nucleares de SREBP1 aumentan en hígado en respuesta a una dieta rica en grasa y tras un proceso de ayuno. La transcripción y activación de la proteína SERBP1 es regulada, por un lado, por el grado de saturación de los lípidos (Hannah et al., 2001; Thewke et al., 1998; Worgall et al., 1998). Y, por otro lado, puede ser regulado mediante el receptor nuclear hormonal LXR (Eberlé et al., 2004; Iwaski et al., 2009), aumentando su expresión cuando las células son tratadas con agonistas de LXR y disminuyendo su expresión cuando las células son tratadas con ácidos grasos insaturados (los productos de terminación de SREBP1c). Por ejemplo, la transcripción y procesamiento de SREBP1 está negativamente regulada por MUFA y PUFA (Hannah et al., 2001; Worgall et al., 1998; Thewke et al., 1998) y ARA (Lee et al., 2008). La activación de SREBP1 ocurre en respuesta a una demanda de lípidos general o local en la membrana lipídica (Castoreno et al., 2005). La sobreexpresión de SREBP1 resulta en un enriquecimiento entre 15-20% del contenido de oleato en hígado (Shimano et al., 1996) debido al incremento de la expresión de los genes desaturasa y elongasa, lo que demuestra la importancia de SREBP1 en la generación de especies lipídicas insaturadas a través de la regulación de desaturasas (Espenshade, 2006; Hagen et al., 2010).

El receptor X del hígado (LXR) es un miembro de la familia de receptores nucleares que actúan como mediadores de las señales metabólicas, nutricionales, hormonales y como factores de transcripción dependientes de ligando (Chiang, 2002; Jakobsson et al., 2012; Zhao y Dahlman-Wright, 2010). Este receptor nuclear LXR actúa en la homeostasis del colesterol, es decir, en su catabolismo, la absorción y el transporte a través de la regulación transcripcional.
de genes diana implicados en este proceso (Aranda y Pascual, 2001) y juega un importante papel en la regulación de varias rutas metabólicas, incluyendo el metabolismo de lípidos (Jakobsson et al., 2012).

Su actividad es modulada por la unión de oxiesteroles (productos de la autooxidación del colesterol) (Aranda y Pascual, 2001). En el hígado, la activación de LXR induce el catabolismo de colesterol a través de la expresión de la enzima colesterol-7α-hidroxilasa (CYP7A1) y la biosíntesis de ácidos grasos de novo (a través de SREBP1c, tal y como se ha mencionado anteriormente), lo que ha llevado a sugerir que los LXR actúan como sensores en el equilibrio entre el colesterol y el metabolismo de ácidos grasos (Cruz-García et al., 2009). Los resultados de Schultz et al. (2000) mostraron un mecanismo a través del cual LXR directamente activa la transcripción de SREBP1 presumiblemente a través de elementos de respuesta de LXR (LXRE) y donde la activación subsiguiente de genes que participan en la síntesis de ácidos grasos y triglicéridos, como la ácido graso sintasa (FAS), acetil-CoA carboxilasa (ACC) y Δ9-desaturasa, sucede secundariamente a la activación de SREBP1.

Existen pocas investigaciones que estudien alguna conexión entre la vitamina E y la ruta de señalización de LXR. Landrier et al. (2010) mostraron que α- y γ- tocoferol alteran el metabolismo de colesterol en el intestino. En el estudio de Koh et al. (2013), la ruta de señalización de LXR en hepatocitos modula los niveles de α-tocoferol que circula en plasma debido a la mayor expresión de α-TTP. Es decir, LXR regula la expresión de α-TTP a través de la interacción con el gen promotor por lo que un aumento de los niveles de α-tocoferol circulante proporcionan una menor expresión de LXR. Estas observaciones implican que la ruta de señalización de LXR podría ser un objetivo de interés para conseguir propiedades antioxidantes mediante el estado nutricional de la vitamina E (Koh et al., 2013).

LXR se expresa en una gran variedad de tejidos de salmón. Cruz-García et al. (2009) observaron que el tipo de dieta administrada a alevines de salmón Atlántico no afectó a los niveles de expresión de LXR. Sin embargo, hubo una tendencia a disminuir la expresión en los peces alimentados con aceites vegetales en comparación con los alimentados con aceite de pescado en salmones previos al esguinado en adelante y la diferencia fue significativa en salmones adultos.

Aunque los aceites vegetales y los aceites de pescado poseen misma proporción de SAFA y de MUFA, difieren en la composición de LC-PUFA. La diferente composición de los aceites vegetales (con alto contenido en PUFA de 18 átomos de carbono; LA y LNA) frente al aceite de pescado (con alto contenido en HUFA n-3; EPA y DHA) afecta a la regulación de la expresión de LXR, lo más probable mediante PPARα. LXR es un gen diana de PPARα (Tobin et
al., 2002), y, por tanto, los ligandos de PPARα en consecuencia regulan la expresión de LXR. Los ácidos grastos EPA y DHA aumentan la expresion de PPARα (Desvergn y Wahli, 1999), por lo que en salmones alimentados con aceites vegetales la expresión de PPARα puede estar disminuida y a su vez la de LXR (Ou et al., 2001).

2.2.5 Sistema antioxidante en peces

Al igual que los organismos aerobios, los peces son susceptibles al ataque de especies reactivas del oxígeno (ROS) y han desarrollado sistemas de defensas antioxidantes. Las ROS se generan por el funcionamiento normal de los procesos fisiológicos y son, de hecho, esenciales para el funcionamiento normal de las células. Sin embargo, el estrés oxidativo sucede cuando la producción de ROS excede su eliminación (Sies, 1991).

La defensa antioxidante de peces incluye sistemas enzimáticos y no enzimáticos que mantienen la proporción de ROS endógena a bajos niveles y atenúan el daño relacionado con su reactividad (Wilhelm Filho et al., 2001). Los enzimas clave que participan en el sistema de defensa son: catalasa (Cat), superóxido dismutasa (SOD), enzimas dependientes de glutatión (glutatión peroxida, GPx; glutatión reductasa, GR; y glutatión S-transferasa, GST) y glucosa-6- fosfato deshidrogenasa (G6PD) (ver Figura 2). Junto con estas enzimas, han sido detectados antioxidantes de bajo peso molecular, intracelulares, como carotenoides (β-caroteno), vitamina K, C, los tocoferoles, coenzima Q10, aminoácidos (cisteína, cisteamina, taurina), péptidos (glutatión) y sistemas quelantes de metales de transición (transferrina, ferritina, ceruloplasmina).

Todas estas enzimas antioxidantes han sido detectadas en la mayoría de especies de peces investigadas hasta la fecha (Halliwell y Gutteridge, 2000; Aras et al., 2009) incluyendo a teleósteros (mayoría de peces comunes y formas más evolucionadas) (Basha y Rani, 2003; Abele y Puntarulo, 2004).

Hasta ahora, muchos estudios han demostrado que el hígado es el órgano principal de expresión de ARNm de genes con función antioxidante en varias especies de peces (Basha y Rani, 2003; Kim et al., 2010). La expresión de genes con papel antioxidante es mayor en hígado y ello puede ser debido a que es un órgano donde suceden multitud de reacciones oxidativas y existe gran actividad metabólica (Lushchak et al., 2001; Gul et al., 2004; Avci et al., 2005).
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

Figura 2: Esquema general de las reacciones de las enzimas antioxidantes
Fuente: Mataix, 2005

 Sistema glutatión peroxidasa (GPx) y gen con papel antioxidante (GPx4)

GPx es una enzima que cataliza la reacción de oxidación de la glutatonia (GSH) a glutatióna disulfuro utilizando para ello peróxido de hidrógeno y usando como cofactor el selenio. La enzima GPx tiene como principal función proteger al organismo del efecto negativo de los peróxidos de lípidos (ROOH) formados de forma endógena en la bicapa lipídica de la membrana celular y reduciéndolos a sus correspondientes alcoholes (ROH). Cumple una función esencial para extinguir la reacción en cadena de la peroxidación lipídica (Reed 1990; Ursini et al., 1982; 1985) y para detoxificar peróxidos e hidroperóxidos en las células (Arthur, 2000 y Krikman y Gaetani, 2007).

Existen varias isoformas de la enzima que difieren en su localización subcelular. En particular, la isoforma GPx4 se localiza en el citosol y en la membrana. La estructura, función y regulación de GPx4 ha sido muy estudiada en mamíferos, en cambio, no tan extensivamente en peces. La capacidad de GPx4 para reducir los hidroxiperóxidos de lípidos en las membranas celulares la cataloga como una enzima antioxidante de mucha importancia en teleósteros, por ejemplo, los que acumulan niveles elevados de LC-PUFA omega 3 en los tejidos.

Los genes GPx son indicadores de estrés y del estado de bienestar de peces de acuicultura (Malandrakis, et al., 2014). Una baja actividad de esta enzima altera el estado redox de las células (Ojha et al., 2011). Esto puede inducirse en peces con condiciones de
hacinamiento, restricción al alimento y exposición a pesticidas y a trazas de metales en el medio. En el estudio de Wang et al. (2012) se observó una disminución de la expresión de GPx4a en salmón Coho (Oncorhynchus kisutch) en el sistema olfativo y estaba asociado con una exposición con cadmio in vivo. Por otro lado, ratas que sobreexpresan GPx4 están protegidas frente a un daño oxidativo en hígado (Ran et al., 2004).

2.3 La vitamina E

2.3.1 Estructura bioquímica de la vitamina E

Vitamina E es el término genérico usado para englobar a dos grupos de compuestos liposolubles: α-, β-, γ-, δ-tocoferoles y α-, β-, γ-, δ-tocotrienoles.

Los tocoferoles poseen un anillo cromanol que puede donar un átomo de hidrógeno para reducir radicales libres y una cadena fitil saturada hidrofóbica a base de unidades repetidas de isoprenoides que permite la penetración en membranas celulares. A diferencia de la familia de los tocotrienoles, que tienen la cadena fitil insaturada, la estructura de los tocoferoles está saturada y es lineal. Esto hace que los tocoferoles posean tres centros de asimetría en los carbonos 2’, 4’ y 8’, mientras que los tocotrienoles poseen dobles enlaces en las posiciones 3’, 7’ y 11’ y repercute en que difieran en su función biológica. Las enzimas y receptores moleculares en las células son altamente estero-selectivas y sólo interaccionan con uno de los enantiómeros de una de las moléculas quirales en un proceso llamado reconocimiento quiral. De modo que un enantiómero puede tener efecto deseado en el organismo mientras otro no poseer ninguno (Zingg, 2007b).

Cerca de la superficie polar se sitúa el anillo cromanol, mientras que la cadena fitil se encuentra interaccionando con los ácidos grasos de los fosfolípidos en la región no polar, siendo responsable de la cinética de transporte y retención en membranas no estando completamente fija en estas (Mataix, 2005).

Además, en el anillo cromanol, la diferente distribución de los radicales metilos también tiene implicación sobre la actividad biológica. En la siguiente tabla se muestran los distintos tocoferoles según el patrón de metilación en el anillo aromático:
Composición y metabolismo lipídico

Carmen Sanz Bayón

Tabla 4: Familia de tocoferoles

<table>
<thead>
<tr>
<th>Estructura química</th>
<th>Nombre</th>
<th>-R1</th>
<th>-R2</th>
<th>-R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-tocoferol</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td></td>
</tr>
<tr>
<td>β-tocoferol</td>
<td>-CH₃</td>
<td>-H</td>
<td>CH₃</td>
<td></td>
</tr>
<tr>
<td>γ-tocoferol</td>
<td>-H</td>
<td>-CH₃</td>
<td>-CH₃</td>
<td></td>
</tr>
<tr>
<td>δ-tocoferol</td>
<td>-H</td>
<td>-H</td>
<td>-CH₃</td>
<td></td>
</tr>
</tbody>
</table>

Como se puede observar en la Tabla 4, en α-tocoferol las posiciones -R₁ y -R₃ son grupos metilo. En β-, γ- y δ-tocoferol, uno o dos grupos metilo han sido reemplazados por átomos de hidrógeno. Esta diferencia hace que α-tocoferol en relación a γ-tocoferol posea mayores propiedades lipofílicas y por tanto, haciendo que α-tocoferol sea el tocoferol más soluble en lípidos (Kamal-Endin y Appelqvist, 1996).

En función de la posición espacial de los grupos metilo de la cadena isoprenoide, se pueden distinguir formas racémicas R (mismo plano) y S (planos diferentes). El α-tocoferol natural es un esteroisómero con RRR-configuración (d-configuración). La forma sintética de vitamina E consiste en una mezcla de isómeros R y S (dl-configuración o all-rac), siendo “l” menos activo que “d”. La forma sintética más frecuente es all-rac-α-tocoferol, mezcla de los ocho esteroisómeros en iguales proporciones y con diferente potencia biológica (Lodge, 2005).

En piensos o suplementos dietéticos, la vitamina E se administra protegida de la degradación oxidativa esterificándola con ácido acético. Los tocoferil acetatos no actúan como antioxidantes hasta que sucede la hidrólisis intestinal realizada por las enzimas digestivas antes de ser absorbidos en el organismo (Hung et al., 1982). En el interior del cuerpo las formas de vitamina E no son interconvertibles (Ball, 2006).

2.3.2 Funciones biológicas de la vitamina E en las células

A. Papel antioxidante

Como antioxidante, la vitamina E actúa en las membranas celulares de los tejidos donde protege a los lípidos insaturados frente a la oxidación de los radicales libres y evita la propagación de las reacciones de los radicales libres. Los radicales libres provienen del oxígeno y del nitrógeno y son generados a través del funcionamiento normal del metabolismo, por el transporte de electrones, la actividad de los fagocitos y por ciertas enzimas que generan ROS (p.ej oxigenasas y citocromo P₄₅₀). Son necesarios bajos niveles de radicales libres para la
La incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

regulación del crecimiento de las células y su desarrollo (Nordberg y Arner, 2001; Rice-Evans y Burdon, 1993; Zingg, 2007b).

La auto-oxidación in vivo suele ocurrir en muy bajos niveles pero puede suceder que la proporción se incremente si el animal está sujeto a un estrés oxidativo. Cuando se inicia la auto-oxidación, la reacción es en cadena y se van generando radicales peroxilo que reaccionan en cada ciclo con un nuevo PUFA. En ausencia de antioxidantes, la peroxidación lipídica se extiende siempre y cuando los PUFA estén disponibles. La reacción finaliza si dos radicales se combinan para formar una especie no radical. Si se administra vitamina E a través de la dieta va a competir con los PUFA para donar un átomo de hidrógeno al radical peroxilo, lo que genera un radical libre estable (radical tocoferol) e hidroxiperóxidos estables, y, por lo tanto, paraliza la consecución de la reacción en cadena. También protegen a otras moléculas contra la oxidación, por ejemplo, la vitamina A, los carotenoides y la coenzima Q. También actúa en sinergia con el sistema de la glutación peroxidasa (GPx) con selenio, y la vitamina C entre otras (Guillaume et al., 2004).

En peces, la importancia de esta función antioxidante es la de proteger los n-6 PUFA y sobretodo los n-3 PUFA porque son muy abundantes en los fosfolípidos e indispensable para mantener la integridad de las membranas de las que forman parte (Guillaume et al., 2004). Un alto nivel de PUFA en la dieta de los peces hace aumentar el requerimiento de vitamina E (Cowey et al., 1981; Watanabe et al., 1981) que en salmones están establecidos entre 35 y 60 mg/kg para optimizar crecimiento (NRC, 2011). Estos valores pueden variar dependiendo de la cantidad de lípidos de la dieta, de su calidad y de la suplementación con vitamina C (Cowey et al., 1981; Cowey et al., 1983; Hamre et al., 1997). Muchos estudios han demostrado que altos niveles de PUFA en la dieta incrementan la peroxidación en los tejidos de los peces (Olsen y Henderson, 1997; Olsen et al., 1999; Stephan et al., 1995; Tocher et al., 2002) puesto que son particularmente susceptibles de ser atacados por radicales oxígeno. Un daño incontrolado a los PUFA de las membranas celulares y la acumulación de los productos oxidados provocan efectos a nivel celular y orgánico (Chan, 1987; Sies, 1991).

In vivo, el poder antioxidante de los tocoferoles viene dado por:
- Su facilidad para ser metabolizado y retenido en los tejidos. Existe una discriminación hepática que favorece la retención de α-tocoferol mientras que los otros isómeros se metabolizan en gran medida y esto hace que la potencia antioxidante in vivo difiera.
- La habilidad de donar protones procedentes de los grupos metilos del anillo cromanol. Aumenta cuanto más metilado se encuentre el anillo cromanol (Traber y Atkinson, 2007).
El α-tocoferol es el isómero que reúne esta característica a diferencia de γ-tocoferol que carece de grupo metilo en la posición C-5 (ver Figura 3). De ahí que si un 100% de actividad antioxidante corresponde a RRR-α-tocoferol, RRR-γ-tocoferol posee 10-15% y RRR-δ-tocoferol <10% (Sheppard y Pennintong, 1993).

![Figura 3: Anillo cromanol de α-tocoferol y γ-tocoferol](image)

La localización, penetración y movimiento en la membrana celular,
- Y la eficiencia adicional del radical tocoferoxil para reciclarse por los agentes reductores del citosol.

Además de que el papel antioxidante pueda manifestarse in vivo también puede suceder post mortem cuando las dosis suministradas están por encima de las necesidades lo que contribuyen a proteger los lípidos de la peroxidación durante la conservación del alimento. Según Ackman et al. (1997) el salmón Atlántico (Salmo salar L.) es un modelo adecuado para la investigación del impacto de la oxidación de aceites alimentarios y de harinas de pescado sobre la calidad del producto.

B. Papel no-antioxidante

Aunque la vitamina E es el principal antioxidante liposoluble del organismo, no todas las propiedades de la vitamina E pueden corresponderse con esta acción. De hecho, existe controversia entre la comunidad científica en relación a si su función fundamental la ejerce como antioxidante o si destaca más por su papel como modulador específico de la señalización celular a través de la regulación de la actividad enzimática y la expresión de genes (Atkinson et al., 2008; Azzi y Stocker, 2000; Hamre, 2011; Traber y Atkinson, 2007; Zingg, 2007a, 2007b y 2007c). Además, a la vitamina E se le asocian otras funciones, como participar en la estimulación de los mecanismos inmunitarios (Ortuño et al., 2000) y el mantener las funciones de reproducción, con mucha relevancia en peces.

Recientemente continúa el interés del papel de los tocoferoles como inductores o inhibidores de la expresión de proteínas y genes e inhibir enzimas que generan ROS. Varias investigaciones afirman que estos efectos parecen depender del microambiente, es decir, de su concentración y de la presencia de otros antioxidantes u oxidantes y el equilibrio entre...
ellos. Este hecho es de especial relevancia puesto que al inducir o inhibir a enzimas implicadas en las señales de transducción esto puede llevar a la alteración del comportamiento de la célula, como por ejemplo la proliferación celular, la apoptosis, la supervivencia, la adhesión y la diferenciación celular.

Dependiendo de la clase de enzima que modulen los tocoferoles, los efectos de la regulación se explican tanto por la unión directa a enzimas implicadas en la señal de transducción, o por interferencia con la activación enzimática y la regulación redox de enzimas, por ejemplo reduciendo el daño de ROS y especies reactivas de nitrógeno (RNS) a enzimas y factores. La concentración celular y la localización de los tocoferoles pueden determinar el que sucedan estos procesos. Como molécula altamente hidrofóbica, el tocoferol se integra en las membranas lipídicas y en el pool de ácidos grasos libres. Los lugares de acción principales son el plasma y las membranas intracelulares, tanto actuando como secuestrador de ROS y RNS (previniendo de la peroxidación lipídica) o actuando como ligando para las enzimas, receptores, proteínas estructurales y transportadoras (αTP, TBP, TAP). Estas últimas están implicadas en la absorción y distribución de tocoferoles a los orgánulos celulares y pueden influir en la concentración intracelular de vitamina E y determinar si existe suficiente en el interior celular para afectar a la señal de transducción y a la expresión génica (Zingg, 2007a).

En relación al presente trabajo, cabe destacar el efecto de la vitamina E sobre la modulación del metabolismo lipídico. Aunque aún no está muy clara la relación entre la vitamina E y los PUFA, estudios en peces revisados por Mourente et al. (2007) muestran alteraciones en los niveles de PUFA en respuesta a dietas deficientes en vitamina E. En ratas se ha demostrado que la vitamina E de la dieta modula la Δ6 desaturasa aumentando o disminuyendo su actividad en los distintos tejidos (Despret et al., 1992). Por otro lado, Bell et al. (2000) observaron una mayor desaturación de LNA y EPA en los hepatocitos aislados de salmón alimentados con dietas deficientes en tocoferol. Del mismo modo, Tocher et al. (2003) observó cómo un aumento en la peroxidación lipídica inducida por dietas carentes de vitamina E provocó la activación de las reacciones de elongación y desaturación en truchas. Por lo tanto la vitamina E parece jugar un papel importante en la composición de los lípidos de membrana o bien de manera directa formando parte de la estructura y por lo tanto modificando su fluidez y composición, o bien de manera indirecta afectando a la actividad de enzimas tipo desaturasas, elongasas o fosfolipasas, además de controlar los niveles de peroxidación (protección de PUFA) a nivel de membrana en su papel como antioxidante.
2.4 Interés por el γ-tocoferol

Aunque α-tocoferol es el isómero principal de vitamina E, estudios recientes sugieren que γ-tocoferol presenta no solo una actividad antioxidante comparable sino que además desempeña otras funciones interesantes en la célula. Sin embargo, hasta la fecha no hay muchos estudios con salmón Atlántico empleando γ-tocoferol como único isómero en la dieta.

2.4.1 γ-tocoferol: absorción, transporte, retención y metabolismo

En mamíferos, α- y γ-tocoferol se absorben en el intestino en proporciones similares, pero los no-α-tocoferoles se excretan del organismo en proporciones mayores que α-tocoferol (Behrens y Madere, 1987; Kayden y Traber, 1993; Peake et al., 1972). Gracias a la presencia de una enzima fijadora de α-tocoferol en el hígado existe una discriminación positiva de este isómero sobre el resto, contribuyendo a la mayor retención de α-tocoferol en los tejidos del animal al ser distribuido desde el hígado en forma de lipoproteínas de muy baja densidad (Clément y Bourre 1997). El metabolismo de los isómeros de tocoferol tiene lugar de manera similar en el salmón Atlántico con la presencia de la proteína hepática fijadora de tocoferol (TTP) (Hamre et al. 1998).

Aunque el α-tocoferol es el tocoferol mayoritario encontrado en peces de agua salada (Ackman y Cormier, 1978), existen estudios posteriores confirmando que el γ-tocoferol puede depositarse junto con α-tocoferol en los lípidos intramusculares de salmón Atlántico (Salmo salar) (Sigurgisladottir et al., 1994 a y b). De las cuatro formas de tocoferol evaluadas, se observó que la deposición de γ-tocoferol en el músculo era proporcional a la de α-tocoferol cuando fueron ambos incluidos en la dieta mediante una mezcla natural. En el caso de β- y δ-tocoferol se depositaron en el músculo pero en menor medida. Al cabo de 15 semanas se alcanzó un equilibrio de las cuatro formas de tocoferol en el músculo. Otro estudio posterior de Parazo et al. (1998) investigaron la distribución de α- y γ-tocoferol en tejidos de salmón Atlántico alimentados con tres dietas diferentes: sin suplementos de tocoferol, all-rac-α-tocoferol y RRR-γ-tocoferol. El ratio γ-/α-tocoferol no se mantuvo constante en los diferentes tejidos lo que indicaba que existía una discriminación según el contenido en fosfolípidos de dichos tejidos. Los tejidos que eran ricos en fosfolípidos (músculo e hígado entre otros) mostraban ratios menores de deposición de γ-/α-tocoferol. Y, por el contrario, la grasa perivisceral, en la que abundan los triglicéridos (TAG) y no los fosfolípidos, es el tejido que con preferencia almacena γ-tocoferol.
2.4.2 Reciente interés por los no-α-tocoferoles

La atención puesta a los no-α-tocoferoles ha surgido desde que estudios en humanos han reflejado una relación inversa entre el contenido en tocoferoles en la alimentación con la mortalidad debida a enfermedades cardiovasculares (Knekt et al., 1994; Kushi et al., 1996). Así se demuestra para todos los isómeros excepto para el α-tocoferol cuando se administra solo (Saldeen y Saldeen, 2005). En este artículo de revisión se describe que este isómero no parece prevenir esta patología o de la muerte asociada a ella.

Por otro lado, en la lista del Reglamento relativo a complementos alimenticios se ha modificado el conjunto de compuestos que bajo el nombre de “vitamina E” están permitidos para ser añadidos y cómo deben ser designados. Anteriormente el conjunto de compuestos era poco extenso y destacaban las formas basadas en α-tocoferol. Esto se ha modificado a raíz de las nuevas propiedades halladas para la salud y actualmente en el Anexo II del último Reglamento (CE) nº 1170/2009 (por el que se modifican la Directiva 2002/46/CE y el Reglamento (CE) nº 1925/2006) se menciona por primera vez la mezcla de tocoferoles o tocoferoles mixtos (en la mezcla se incluye γ-tocoferol entre un 50-70%) o tocoferoles individuales (pudiendo añadirse 45 ppm de γ-tocoferol). Por tanto, se permite a partir de este momento utilizar el resto de isómeros en la fabricación de complementos alimenticios dentro de la Unión Europea. Esto viene a expresar el reciente interés por los no-α-tocoferoles a raíz de las nuevas propiedades halladas para la salud.

2.4.3 Hallazgos acerca de γ-tocoferol

A. Papel antioxidante

Como se ha indicado previamente, la relativa facilidad en donar el átomo de hidrógeno aumenta cuanto más metilado se encuentre el anillo cromanol de los diferentes tocoferoles. El γ-tocoferol carece de grupo metilo en la posición del carbono C-5 y por ello, no posee gran facilidad para donar el átomo de hidrógeno en comparación con α-tocoferol. Sin embargo, por el mismo hecho de no tener sustituido el C-5, le hace ser más efectivo para atrapar especies reactivas del nitrógeno, como el peroxinitrito, óxido de nitrógeno, dióxido de nitrógeno y otros compuestos de nitrógeno. Por ejemplo, la formación del compuesto 5-nitro-γ-tocoferol ha sido reclamada como uno de los beneficios de γ-tocoferol secuestrando especies reactivas del nitrógeno (Christen et al., 1997; Hensley et al., 2004). También posee ventajas para quedar metales en comparación con α-tocoferol (Stocker et al., 2003).
El estudio de Parazo et al. (1998) mostró resultados positivos en cuanto a que no sólo α- sino también γ-tocoferol actúa como protectores de la peroxidación lipídica. En el experimento se administraron diferentes dietas a salmones Atlántico algunas de las cuales se suplementaron con all rac-α-tocopherol (rica en α-tocoferol) y otra con RRR-γ-tocoferol (rica en γ-tocoferol). Los peces alimentados con la dieta control sin suplementación llevó a una mayor susceptibilidad a la peroxidación lipídica después del almacenamiento en congelación no así en el caso de los filetes de los peces con mayores concentraciones en α- y γ-tocoferol. Ambos isómeros fueron estabilizadores efectivos de los lípidos del filete durante el almacenamiento en congelación.

B. Papel no antioxidante

Varios estudios avalan la existencia de una acción no-antioxidante por parte de γ-tocoferol. Uno de ellos es el realizado por Kamal y Raghunathan (2012) quienes determinaron con el uso de dipalmitoilfosfatidilcolina (DPPC), compuesto empleado como modelo de membrana celular, la estructura del DPPC- tocoferol a partir de estudios de difracción con rayos-X. En la investigación se observó que el efecto de α- and δ-tocoferol en la bicapa parece ser muy similar pero γ-tocoferol parece ser el más eficiente para fluidificar la bicapa. El estudio indicó que los tocoferoles podrían tener cierta habilidad para inducir curvatura en las membranas celulares lo que podría ser determinante para algunas de sus funciones biológicas en la célula, ya que es uno de los parámetros que provoca una alteración de la actividad y concentración de proteínas a nivel local.

A continuación se enumeran varios efectos positivos de γ-tocoferol o mezclas de tocoferoles en el campo de la salud humana recogidos en el artículo de revisión de (Saldeen y Saldeen, 2005). Se mencionan investigaciones que evidencian que γ-tocoferol posee actividad antiinflamatoria, con implicaciones en el cáncer de colon; efecto antidiabético, reduciendo el riesgo de la enfermedad; atenuación de la proliferación vascular de células musculares lisas, mecanismo por el que se desencadena arteroesclerosis o hipertensión; prevención de cáncer de próstata, inhibiendo el crecimiento de las células cancerígenas si γ-tocoferol se encontraba en altos niveles en sangre; efecto en la enfermedad de Alzheimer, inhibiendo el estrés oxidativo causado por los compuestos reactivos de nitrógeno en el cerebro; y, por último, el efecto de sus metabolitos (γ-CEHC ó 2,7,8-trimetil-2′-carboxietil-6-hidroxicromano), factor natriurético que promueve la excreción de sodio y contribuye a la regulación del volumen de líquidos extracelulares protegiendo el sistema cardiovascular por la disminución de la presión sanguínea. Los mecanismos de acción por los que el γ-tocoferol ejerce estos efectos positivos
en la salud aún no están bien determinados. Según el estudio realizado por Nakamura y Omaye (2009), una de las vías en la que los tocoferoles median la expresión de genes parece ser regulada a través de la activación de factores de transcripción redox que incluyen a PPAR-γ y NF-κB, cuyos genes diana están asociados a la formación de ROS. En esta última hipótesis, los tocoferoles pueden regular genes cuyos productos influyen en la formación de las especies reactivas.
3. OBJETIVOS E HIPÓTESIS DEL ESTUDIO
Objetivo general del estudio

El principal objetivo del estudio es determinar si la incorporación de 300 ppm de γ-tocoferol en la dieta del salmón da lugar a una mayor capacidad antioxidante en los tejidos del animal y modula el metabolismo lipídico.

Hipótesis: es previsible que incluyendo γ-tocoferol aumente la capacidad antioxidante a nivel tisular disminuyendo la oxidación lipídica in vivo y por lo tanto se proteja y maximice la retención de EPA y DHA. Por otro lado, dado que el γ-tocoferol puede interferir de manera directa o indirecta sobre la expresión genes que codifican para enzimas moduladoras del metabolismo lipídico, la incorporación de γ-tocoferol en la dieta puede a su vez interferir en la síntesis o degradación de los ácidos grasos.

Objetivos específicos

Se pretende estudiar si la incorporación de γ-tocoferol tiene un efecto sobre:

1. La composición en ácidos grasos en el filete y el hígado del salmón.
2. El metabolismo lipídico determinado en hígado.
3. El sistema antioxidante GPx4 determinado en hígado.
4. MATERIALES Y MÉTODOS
4.1 Animales y dietas experimentales

La prueba se desarrolló en las instalaciones de Skretting ARC (Aquaculture Research Centre) en Stavanger (Noruega). Un total de 180 esguines de salmón Atlántico (*Salmo Salar*) con un peso inicial de 137,4 ± 1g fueron distribuidos al azar y uniformemente en 6 tanques de un metro de diámetro (30 peces por tanque) y fueron alimentados con una de las tres dietas experimentales por duplicado. Los peces fueron mantenidos en agua de mar a 12 °C.

Las dietas experimentales se formularon para satisfacer los requerimientos nutricionales de los esguines (NRC, 2011) y fueron fabricados en la planta experimental de Sketting ARC (Stavanger, Noruega) como pellets extruidos, de hundimiento lento de 4 mm. La composición basal de las dietas fue la misma excepto por las distintas mezclas de aceite añadido y el γ-tocoferol estudiado. Se utilizaron 3 tipos de dietas experimentales (Tabla 5): dieta CB, con niveles bajos de incorporación de aceite de pescado (3.9%) y, por lo tanto, con bajo contenido en EPA y DHA; dieta CA, con niveles actuales de incorporación de aceite de pescado (16%) y, por lo tanto, rica en EPA y DHA; y dieta CB+γtoc, con bajos niveles de EPA y DHA pero con un suplemento de 300 ppm de γ-tocoferol como antioxidante.

Cada dieta fue administrada *ad libitum* por duplicado. La duración de la prueba fue de 14 semanas hasta alcanzar un peso aproximado de 400g. Posteriormente fueron sacrificados 4 peces por tanque.

La formulación, composición analizada y nivel de α- y γ-tocoferol se muestra en la Tabla 5 y el perfil de ácidos grasos de las dietas control se recoge en la Tabla 6.
Tabla 5: Composición y análisis proximal de las dietas experimentales

<table>
<thead>
<tr>
<th>Ingrediente, %</th>
<th>CB</th>
<th>CA</th>
<th>CB+γtoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo</td>
<td>5.00</td>
<td>5.00</td>
<td>4.94</td>
</tr>
<tr>
<td>Gluten de trigo</td>
<td>16.81</td>
<td>17</td>
<td>16.81</td>
</tr>
<tr>
<td>Haba descascarillada</td>
<td>9.38</td>
<td>8.44</td>
<td>9.38</td>
</tr>
<tr>
<td>Concentrado de proteína de soja</td>
<td>31.00</td>
<td>31.09</td>
<td>31.00</td>
</tr>
<tr>
<td>Harina de pescado</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Aceite de palma</td>
<td>2.71</td>
<td>-</td>
<td>2.71</td>
</tr>
<tr>
<td>Aceite de linaza</td>
<td>1.17</td>
<td>-</td>
<td>1.17</td>
</tr>
<tr>
<td>Aceite de colza</td>
<td>16.3</td>
<td>8.57</td>
<td>16.3</td>
</tr>
<tr>
<td>Aceite de pescado</td>
<td>3.89</td>
<td>16.14</td>
<td>3.89</td>
</tr>
<tr>
<td>γ-tocoferol</td>
<td>-</td>
<td>-</td>
<td>0.06</td>
</tr>
<tr>
<td>Astaxantina 10%</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Vitaminas y minerales</td>
<td>3.71</td>
<td>3.72</td>
<td>3.71</td>
</tr>
</tbody>
</table>

Composición determinada

Grasa total, %	26.7	27.2	26.8
PB, %	45.6	45.8	44.8
EPA, %	1.93	4.28	1.7
DHA, %	1.87	3.55	1.68
α-tocoferol, mg/kg	192	215	189

CB: dieta control con bajo contenido en EPA y DHA
CA: dieta control con alto contenido en EPA y DHA
CB+γtoc: dieta control bajo con gamma tocoferol
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

Tabla 6: Composición de ácidos grasos de las dietas control

<table>
<thead>
<tr>
<th>Ácidos grasos (g/100 g ácidos grasos totales)</th>
<th>CB</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0</td>
<td>1.56</td>
<td>3.55</td>
</tr>
<tr>
<td>C16:0</td>
<td>10.35</td>
<td>10.28</td>
</tr>
<tr>
<td>C18:0</td>
<td>2.25</td>
<td>2.24</td>
</tr>
<tr>
<td>SAFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16:1n-7</td>
<td>1.75</td>
<td>3.95</td>
</tr>
<tr>
<td>C18:1n-9</td>
<td>41.17</td>
<td>32.64</td>
</tr>
<tr>
<td>C18:1n-7</td>
<td>2.88</td>
<td>2.96</td>
</tr>
<tr>
<td>C20:1 suma de isómeros</td>
<td>1.81</td>
<td>2.05</td>
</tr>
<tr>
<td>C22:1 suma de isómeros</td>
<td>1.05</td>
<td>1.44</td>
</tr>
<tr>
<td>MUFA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18:2n-6</td>
<td>17.39</td>
<td>14.51</td>
</tr>
<tr>
<td>C20:4n-6</td>
<td>0.18</td>
<td>0.44</td>
</tr>
<tr>
<td>Total omega 6</td>
<td>18.03</td>
<td>15.92</td>
</tr>
<tr>
<td>C18:3n-3</td>
<td>7.61</td>
<td>5.79</td>
</tr>
<tr>
<td>C18:4n-3</td>
<td>0.39</td>
<td>0.82</td>
</tr>
<tr>
<td>C20:4n-3</td>
<td>0.16</td>
<td>0.37</td>
</tr>
<tr>
<td>C20:5n-3 EPA</td>
<td>1.93</td>
<td>4.28</td>
</tr>
<tr>
<td>C22:5n-3</td>
<td>0.37</td>
<td>0.84</td>
</tr>
<tr>
<td>C22:6n-3 DHA</td>
<td>1.87</td>
<td>3.55</td>
</tr>
<tr>
<td>Total omega 3</td>
<td>12.45</td>
<td>15.91</td>
</tr>
<tr>
<td>Ratio n-6/n-3</td>
<td>1.45</td>
<td>1.00</td>
</tr>
</tbody>
</table>

CB: dieta control con bajo contenido en EPA y DHA
CA: dieta control rica en EPA y DHA
4.2 Toma de muestras de tejidos para análisis

Al final de la prueba, todos los peces se anestesiaron con meatacaina 0,5g/10L para ser pesados y medidos individualmente. Al final del experimento se tomaron 4 peces por tanque al azar (n=8 peces por dieta) y se sacrificaron. Inmediatamente se tomaron muestras de hígado y filete izquierdo para el análisis de ácidos grasos y de expresión génica. Aproximadamente 1g de hígado se congeló inmediatamente en nitrógeno líquido para el posterior análisis de ácidos grasos. Otra muestra de 1g de hígado se conservó en una solución preservadora de ARN (RNA later), para realizar los análisis de expresión génica. El filete izquierdo fue inmediatamente homogeneizado obteniéndose un paté que fue almacenado a -80 °C para el posterior análisis de ácidos grasos. Las muestras fueron enviadas al laboratorio del Departamento de Producción Animal de la Escuela Superior de Ingenieros Agrónomos de la Universidad Politécnica de Madrid donde se llevaron a cabo los análisis.

4.3 Análisis de ácidos grasos

El contenido de grasa de los tejidos y la determinación del perfil de ácidos grasos se realizó siguiendo la metodología de Segura y López-Bote (2014).

i. Extracción de lípidos totales

A partir de 0,2 g de tejido liofilizado se realizó una extracción de lípidos totales con diclorometano : metanol, evaporado en corriente de nitrógeno a 25°C y se calcularon los gramos de grasa por diferencia gravimétrica.

ii. Esterificación de ácidos grasos (metilación)

Los lípidos totales extraídos fueron sometidos a una esterificación con metilato sódico–metanol al 5% y ácido sulfúrico en metanol al 5%. Los ésteres metílicos de los ácidos grasos fueron extraídos con éter de petróleo. Se añadió el patrón interno C15:0 a una concentración de 200 mg/100ml.

iii. Condiciones de la cromatografía de gases

Los ésteres metílicos de los ácidos grasos fueron separados mediante cromatografía de gases (HP 6890 Series GC-MS System) por medio de un inyector (Agilent 7683 Series). El cromatógrafo estaba equipado con un detector de ionización de llama y la columna (J&W GC Column) estaba compuesta de fases estacionarias polares, cianopropilsilicona y polietilenglicol (30 m x 0.316 mm x 0.25 µm). Se utilizó una mezcla de nitrógeno e hidrógeno como gases transportadores y aire sintético comprimido como diluyente. Una vez inyectados a 170°C la
temperatura del equipo ascendió a 210°C en una tasa de 3.5°C min, luego a 250°C a una tasa de 7°C /min y mantenida constante durante 1min. La llama de ionización se mantuvo a 250°C. Los picos de los ácidos grasos fueron identificados por comparación con un estándar de ácidos grasos (Sigma–Aldrich, Alcobendas, España).

4.4 Análisis de la expresión de genes

i. Extracción de ácido ribonucleico (ARN)

La extracción de ARN se realizó a partir de aproximadamente 50 mg de tejido homogenizado en TRIzol usando un molino mezclador (MM-400 Restch, Stuttgart, Alemania). Para extraer el total de ARN se siguieron las instrucciones y recomendaciones del fabricante del Kit GenElute Mammalian Total RNA Miniprep (Sigma-Aldrich, Madrid, España) añadiendo un paso con ADNasa para eliminar la mayor parte de ADN genómico según el protocolo establecido por la casa comercial de Ambion.

La calidad de ARN extraído se verificó mediante la determinación del número RIN (RNA Integrity Number) con un bioanalizador (Agilent 2100). Se obtuvo un valor medio de RIN de 7.5. La cantidad se analizó mediante medida espectrofotométrica por absorbancia para conocer la concentración en cada muestra de ADN/ARN en el ratio A_{280}/A_{260} con un espectrofotómetro Epoch™ de BioteK® (programa Gen 5™ versión 1.11).

ii. Transcripción inversa y reacción en cadena de la polimerasa cuantitativa (RT-qPCR)

Seguidamente se llevó a cabo la retrotranscripción de ARN para la síntesis del ADN complementario (ADNc), de hebra simple, a partir de 1,5 μg de ARN utilizando el Kit SuperScript®VILOTM Master Mix de Invitrogen siguiendo las indicaciones de la casa comercial.

Los análisis de expresión se realizaron utilizando un equipo PCR cuantitativo a tiempo real de Applied Biosystems (7300 Real Time PCR System con 7300 System SDS Software RQ Study Application, versión 1.4.0.25). Se empleó el reactivo Fast SYBR® Green Master Mix de Applied Biosystem como agente intercalante de fluorescencia. Como genes de referencia se emplearon dos genes: el gen β-actina, usado comúnmente para la normalización de los valores de expresión en salmón Atlántico y otros salmónidos (Leaver et al. 2008b); y, factor de elongación 1 alfa (EF1α), de acuerdo con la validación realizada por Ingerslev et al. (2006) en la que se demuestra que este gen es estable y por tanto, apropiado como gen de referencia en salmón Atlántico en este tipo de estudios.
En la primera fase experimental se llevó a cabo una puesta a punto para confirmar o ajustar las condiciones de temperatura, concentración de cebadores y tiempo de anillamiento que a priori se recomendaba en los artículos consultados para los genes a estudio: delta 6-desaturasa (Δ6) y acil-CoA oxidasa (ACO) (Leaver et al., 2008b); delta 5-desaturasa (Δ5), elongasa de ácidos grasos de cadena muy larga 2 (Elovl2) y elongasa de ácidos grasos de cadena muy larga 5a (Elovl5a) (Morais et al., 2012 a y b); receptor X del hígado (LXR) (Minghetti et al., 2011), clúster de diferenciación 36 (CD36) (Schiller et al. 2012), carnitina palmitoiltransferasa I (CPT1) (Leaver et al., 2008a) y glutatión peroxidasa 4 (GPx4) (Wang et al., 2012).

Se empleó el método de cuantificación relativa $2^{\Delta\Delta Ct}$ para evaluar los cambios en la expresión génica. El desarrollo y el análisis de los datos del método se recogen en el artículo de Livak y Schmittgen (2001).

Posteriormente, en una segunda fase experimental con PCR se calcularon las eficiencias de expresión de todos los genes por medio de curvas estándar usando diluciones seriadas de cADN. Las condiciones definitivas de la prueba y los valores de eficiencia se recogen en la Tabla 7.

Tabla 7: Concentración de los cebadores, condiciones de amplificación y eficiencias

<table>
<thead>
<tr>
<th>Genes estudiados</th>
<th>Concentración del cebador (µM)</th>
<th>Tª annealing (°C)</th>
<th>Tiempo</th>
<th>Nº ciclos</th>
<th>Eficiencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actina</td>
<td>0.1</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>1.92</td>
</tr>
<tr>
<td>EF1α</td>
<td>0.5</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>1.93</td>
</tr>
<tr>
<td>Δ5</td>
<td>0.5</td>
<td>56</td>
<td>30”</td>
<td>40</td>
<td>1.94</td>
</tr>
<tr>
<td>Δ6</td>
<td>0.1</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>2.01</td>
</tr>
<tr>
<td>Elovl2</td>
<td>0.5</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>2.05</td>
</tr>
<tr>
<td>Elovl5a</td>
<td>0.5</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>1.91</td>
</tr>
<tr>
<td>ACO</td>
<td>0.1</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>2.06</td>
</tr>
<tr>
<td>CD36</td>
<td>0.2</td>
<td>60</td>
<td>30”</td>
<td>40</td>
<td>2.09</td>
</tr>
<tr>
<td>PPARα</td>
<td>0.4</td>
<td>55</td>
<td>30”</td>
<td>40</td>
<td>1.95</td>
</tr>
<tr>
<td>LXR</td>
<td>0.3</td>
<td>58</td>
<td>30”</td>
<td>40</td>
<td>1.97</td>
</tr>
<tr>
<td>SREBP1</td>
<td>0.2</td>
<td>58</td>
<td>30”</td>
<td>40</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Los cebadores para el análisis de la expresión de la proteína de unión al elemento de respuesta al esterol 1 (SREBP1) y el receptor nuclear activado de proliferación de los peroxisomas α (PPARα) se diseñaron a partir de las secuencias de Genbank publicadas utilizando el programa Primer Express de Applied Biosystem (Tabla 8).
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Tabla 8: Longitudes de amplificación y secuencia de los cebadores específicos diseñados para los factores de transcripción PPARα y SREBP1

<table>
<thead>
<tr>
<th>Gen</th>
<th>Nº Acceso al Genbank</th>
<th>Pares de bases (bp)</th>
<th>Secuencia del cebador</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBP1</td>
<td>NM_001195818</td>
<td>86</td>
<td>Fw 5´-CACTACTAGCCCCATGTTTTGATTG-3´</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rv 5´-CAGCCACTCTCTAAACACACCAA-3´</td>
</tr>
<tr>
<td>PPARα</td>
<td>AM230809.1</td>
<td>70</td>
<td>Fw 5´-GCTCCTTGGATGTCCCTGAGT-3´</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rv 5´-GCATCTAAGCGTGGATCCCT-3´</td>
</tr>
</tbody>
</table>

4.5 Análisis estadístico

Los datos obtenidos del análisis de ácidos grasos fueron analizados usando el Procedimiento GLM para diseños al azar del programa estadístico SAS (Statistical Analysis System) versión 9.0 (SAS Institute, 2002) utilizando la dieta como efecto principal. Se utilizaron contrastes no ortogonales para detectar diferencias entre CB vs. CA, CB vs CB+γtoc y CA vs. CB+γtoc. Se consideraron diferencias estadísticamente significativas si $P<0.05$.

Se utilizó el Modelo Lineal Mixto o Proc Mixed de SAS para el estudio de expresión génica siguiendo las recomendaciones de Steibel et al. (2009). Las eficiencias de los genes se utilizaron para transformar los valores de C_T (ciclo umbral; del inglés, cycle threshold) correspondientes siguiendo el modelo propuesto por Steibel et al. (2009). La media geométrica de los dos genes de referencia, β-actina y EF1α, se empleó para la normalización de los valores de expresión. Las interacciones entre las variables gen y tratamiento fueron analizadas. Los cambios de expresión son el resultado de comparar CB vs. CA, CB vs. CB+γtoc y CA vs. CB+γtoc, considerándose $P<0.05$ para declarar diferencias estadísticamente significativas.
5. RESULTADOS
Durante el desarrollo del segundo mes de prueba se detectó la presencia del ectoparásito *Ichthyobodo* (Costia) *necatrix*, causando una mortalidad acumulada de un 12% afectando de manera similar a los distintos tratamientos. Los animales fueron tratados con baños de formalina. Después del tratamiento los animales crecieron según lo esperado con tasas diarias de crecimiento específico de 1.5% no observándose diferencias entre las distintas dietas experimentales.

Tras analizar el contenido de γ-tocoferol en los tejidos se observó 3 veces más concentración en hígado (34.7 vs. 112.1 μmol/L) y filete (5.4 vs. 16.3 μmol/L) de los peces alimentados con la dieta CB+γtoc en comparación con CB lo cual corrobora que las dietas contenían aproximadamente la cantidad de γ-tocoferol esperada.

5.1 Efecto de las dietas en el perfil de ácidos grasos en filete

El contenido total de SAFA en el filete reflejó lo aportado en la dieta (Tabla 9). Los peces alimentados con la dieta CB mostraron menores cantidades de SAFA en el filete que los peces alimentados con la dieta CA. La dieta experimental CB+γtoc no mostró diferencias significativas respecto de la dieta CB. El total de MUFA resultó ser menor en el filete de los peces alimentados con la dieta CA respecto de los alimentados con la dieta CB ($P<0.001$). Además se observó una tendencia ($P=0.063$) a disminuir el nivel de MUFA en las muestras de los peces alimentados con la dieta CB+γtoc respecto de los de la dieta CB, efecto relacionado con la significativa disminución del ácido graso eicosanoico (C20:1n-9). Por lo tanto los niveles de SAFA y MUFA fueron mayores y menores respectivamente, en la dieta CA que en la dieta CB. La incorporación de γ-tocoferol no afectó de manera significativa al total de SAFA y MUFA.

El total de PUFA resultó ser mayor en el filete de los peces alimentados con la dieta CA respecto de los alimentados con la dieta CB ($P<0.001$) y se corresponde con la composición en PUFA de los piensos. Es interesante señalar la tendencia ($P=0.060$) a aumentar que se observó cuando se contrastó la dieta CB+γtoc frente a la dieta CB, hecho que se justifica por las diferencias encontradas en el contenido de omega 3 ($P<0.05$). Y esto se explica a su vez a partir del aumento de la cantidad de LNA ($P<0.05$) encontrado y las tendencias a aumentar en los ácidos grasos eicosatrienoico (C20:3n-3) ($P=0.071$) y eicosatetraenoico (C20:4n-3) ($P=0.089$) entre CB+γtoc frente a la dieta CB. Por lo tanto, se deduce que la suplementación con γ-tocoferol revela un aumento moderado del contenido total de omega 3, o lo que es lo mismo, del aumento del ratio n-3/n-6.
El total de omega 6 fue superior en los animales alimentados con la dieta CB en relación a los que tomaron la dieta CA ($P<0.001$). Se observó una tendencia ($P=0.066$) a disminuir el contenido en el ácido graso dihomo-γ-linolénico (C20:3n-6) en los peces alimentados con la dieta CB+γtoc respecto de los de la dieta CB. A pesar de ello, no derivó en una diferencia significativa en el contenido total de omega 6 en los peces alimentados con la dieta CB+γtoc frente a los que tomaron la dieta CB.

La dieta suplementada con γ-tocoferol no dio lugar a ningún efecto significativo en el contenido de los ácidos grasos ARA, EPA y DHA en filete.
Efecto de la incorporación de \(\gamma\)-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Tabla 9: Efecto de las dietas experimentales sobre el perfil de ácidos grasos de filete (valores expresados en % de ácidos grasos totales en tejido)

<table>
<thead>
<tr>
<th>Ácido Graso</th>
<th>CB</th>
<th>CA</th>
<th>CB+(\gamma)toc</th>
<th>SEM</th>
<th>(P) valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CB</td>
<td>CA</td>
<td>CB+(\gamma)toc</td>
<td>SEM</td>
<td>(P) valor</td>
</tr>
<tr>
<td>C14:0</td>
<td>1.54</td>
<td>3.06</td>
<td>1.49</td>
<td>0.01</td>
<td>***</td>
</tr>
<tr>
<td>C16:0</td>
<td>11.86</td>
<td>12.18</td>
<td>11.67</td>
<td>0.05</td>
<td>*</td>
</tr>
<tr>
<td>C18:0</td>
<td>3.06</td>
<td>3.07</td>
<td>3.09</td>
<td>0.03</td>
<td>NS</td>
</tr>
<tr>
<td>SAFA</td>
<td>17.02</td>
<td>18.96</td>
<td>16.78</td>
<td>0.07</td>
<td>***</td>
</tr>
<tr>
<td>C16:1n-7</td>
<td>1.86</td>
<td>3.71</td>
<td>1.80</td>
<td>0.02</td>
<td>***</td>
</tr>
<tr>
<td>C18:1n-9</td>
<td>44.59</td>
<td>37.50</td>
<td>44.17</td>
<td>0.11</td>
<td>***</td>
</tr>
<tr>
<td>C18:1n-7</td>
<td>1.87</td>
<td>2.45</td>
<td>1.82</td>
<td>0.03</td>
<td>***</td>
</tr>
<tr>
<td>C20:1n-9</td>
<td>2.79</td>
<td>2.87</td>
<td>2.66</td>
<td>0.02</td>
<td>NS</td>
</tr>
<tr>
<td>MUFA</td>
<td>52.32</td>
<td>48.21</td>
<td>51.74</td>
<td>0.12</td>
<td>***</td>
</tr>
<tr>
<td>C18:2n-6 LA</td>
<td>14.84</td>
<td>13.30</td>
<td>14.77</td>
<td>0.03</td>
<td>***</td>
</tr>
<tr>
<td>C20:3n-6</td>
<td>0.75</td>
<td>0.48</td>
<td>0.81</td>
<td>0.01</td>
<td>***</td>
</tr>
<tr>
<td>C20:4n-6 ARA</td>
<td>0.31</td>
<td>0.53</td>
<td>0.33</td>
<td>0.006</td>
<td>***</td>
</tr>
<tr>
<td>Total n-6</td>
<td>17.41</td>
<td>15.69</td>
<td>17.42</td>
<td>0.04</td>
<td>***</td>
</tr>
<tr>
<td>C18:3n-3 LNA</td>
<td>5.09</td>
<td>4.66</td>
<td>5.29</td>
<td>0.03</td>
<td>***</td>
</tr>
<tr>
<td>C20:3n-3</td>
<td>0.75</td>
<td>0.48</td>
<td>0.81</td>
<td>0.01</td>
<td>***</td>
</tr>
<tr>
<td>C20:4n-3</td>
<td>0.64</td>
<td>0.79</td>
<td>0.70</td>
<td>0.01</td>
<td>***</td>
</tr>
<tr>
<td>C20:5n-3 EPA</td>
<td>1.55</td>
<td>2.73</td>
<td>1.48</td>
<td>0.04</td>
<td>***</td>
</tr>
<tr>
<td>C22:5n-3</td>
<td>0.75</td>
<td>1.44</td>
<td>0.91</td>
<td>0.04</td>
<td>***</td>
</tr>
<tr>
<td>C22:6n-3 DHA</td>
<td>3.94</td>
<td>6.08</td>
<td>4.13</td>
<td>0.08</td>
<td>***</td>
</tr>
<tr>
<td>Total n-3</td>
<td>13.10</td>
<td>16.83</td>
<td>13.84</td>
<td>0.13</td>
<td>***</td>
</tr>
<tr>
<td>PUFA</td>
<td>30.51</td>
<td>32.52</td>
<td>31.26</td>
<td>0.15</td>
<td>***</td>
</tr>
<tr>
<td>Ratio n-3/n-6</td>
<td>0.75</td>
<td>1.07</td>
<td>0.79</td>
<td>0.007</td>
<td>***</td>
</tr>
</tbody>
</table>

Nota: Los niveles de significación son \(*P<0.05\), \(**P<0.01\), \(***P<0.001\), y no significativo NS para \(P>0.05\). Promedio ± SEM (Standard Error of the mean) (n=8). CB: dieta control con bajo contenido en EPA y DHA; CA: dieta control con alto contenido en EPA y DHA.
5.2 Efecto de las dietas en el perfil de ácidos grasos en hígado

Los peces alimentados con la dieta CA mostraron mayores contenidos en SAFA, PUFA y omega 3 en comparación a los que tomaron la dieta CB, que presentaron mayores niveles de MUFA y omega 6.

La dieta experimental CB+γtoc fue responsable de un aumento en hígado de SAFA ($P<0.05$) en relación al efecto en los peces que tomaron la dieta CB (Tabla 10). Ello se debe al mayor contenido de ácido esteárico (C18:0) encontrado ($P<0.001$).

El total de PUFA resultó ser mayor en el hígado de los peces alimentados con la dieta CA respecto de los alimentados con la dieta CB ($P<0.001$) y se corresponde con la composición en PUFA de los piensos. Es interesante señalar la tendencia a aumentar de ARA ($P=0.088$) y la disminución de LA ($P<0.01$) que se observó cuando se contrastó la dieta CB+γtoc frente a la dieta CB, responsable a su vez de la disminución observada en omega 6 ($P<0.01$). Sin embargo, los niveles de PUFA de los peces alimentados con CB+γtoc no variaron en comparación con los de CB (Tabla 10).

En relación a los omega 3, los peces alimentados con la dieta CB+γtoc no manifestaron diferencias significativas respecto de los peces de la dieta CB. Se observó una tendencia a disminuir ($P=0.064$) y ninguna variación en los niveles de EPA y DHA ($P>0.05$). La suplementación con γ-tocoferol no reveló variaciones significativas del contenido total de omega 3 en el hígado de los peces, o, lo que es lo mismo, en el ratio n-3/n-6 en comparación con los peces alimentados sin γ-tocoferol.
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

Tabla 10: Efecto de las dietas experimentales sobre el perfil de ácidos grasos de hígado (valores expresados en % de ácidos grasos totales en tejido)

<table>
<thead>
<tr>
<th></th>
<th>CB</th>
<th>CA</th>
<th>CB+γtoc</th>
<th>SEM</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CB vs.CA</td>
<td>CB vs.CB+γtoc</td>
<td>CA vs.CB+γtoc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14:0</td>
<td>0.90</td>
<td>1.39</td>
<td>0.76</td>
<td>0.02</td>
<td>0.002***</td>
</tr>
<tr>
<td>C16:0</td>
<td>11.38</td>
<td>13.87</td>
<td>12.06</td>
<td>0.31</td>
<td>0.003***</td>
</tr>
<tr>
<td>C18:0</td>
<td>5.64</td>
<td>6.09</td>
<td>6.91</td>
<td>0.12</td>
<td>0.004***</td>
</tr>
<tr>
<td>SAFA</td>
<td>18.24</td>
<td>21.79</td>
<td>20.62</td>
<td>0.35</td>
<td>0.003***</td>
</tr>
<tr>
<td>C16:1n-7</td>
<td>1.25</td>
<td>1.75</td>
<td>1.03</td>
<td>0.06</td>
<td>0.02**</td>
</tr>
<tr>
<td>C18:1n-9</td>
<td>36.19</td>
<td>24.50</td>
<td>33.29</td>
<td>1.09</td>
<td>0.003***</td>
</tr>
<tr>
<td>C18:1n-7</td>
<td>1.94</td>
<td>2.40</td>
<td>1.70</td>
<td>0.04</td>
<td>0.02**</td>
</tr>
<tr>
<td>C20:1n-9</td>
<td>3.84</td>
<td>3.60</td>
<td>3.59</td>
<td>0.11</td>
<td>0.004***</td>
</tr>
<tr>
<td>MUFA</td>
<td>44.18</td>
<td>33.09</td>
<td>40.60</td>
<td>1.24</td>
<td>0.003***</td>
</tr>
<tr>
<td>C18:2n-6 LA</td>
<td>10.18</td>
<td>7.30</td>
<td>8.89</td>
<td>0.17</td>
<td>0.003***</td>
</tr>
<tr>
<td>C20:3n-6</td>
<td>2.41</td>
<td>1.33</td>
<td>2.67</td>
<td>0.09</td>
<td>0.004***</td>
</tr>
<tr>
<td>C20:4n-6 ARA</td>
<td>1.81</td>
<td>2.65</td>
<td>2.36</td>
<td>0.13</td>
<td>0.004***</td>
</tr>
<tr>
<td>Total n-6</td>
<td>17.30</td>
<td>14.87</td>
<td>16.24</td>
<td>0.16</td>
<td>0.003***</td>
</tr>
<tr>
<td>C18:3n-3 LNA</td>
<td>2.15</td>
<td>1.71</td>
<td>1.85</td>
<td>0.06</td>
<td>0.004***</td>
</tr>
<tr>
<td>C20:3n-3</td>
<td>2.41</td>
<td>1.33</td>
<td>2.67</td>
<td>0.09</td>
<td>0.004***</td>
</tr>
<tr>
<td>C20:4n-3</td>
<td>0.69</td>
<td>0.71</td>
<td>0.82</td>
<td>0.04</td>
<td>0.004***</td>
</tr>
<tr>
<td>C20:5n-3 EPA</td>
<td>2.67</td>
<td>4.07</td>
<td>2.75</td>
<td>0.18</td>
<td>0.004***</td>
</tr>
<tr>
<td>C22:5n-3</td>
<td>1.12</td>
<td>1.94</td>
<td>1.19</td>
<td>0.09</td>
<td>0.004***</td>
</tr>
<tr>
<td>C22:6n-3 DHA</td>
<td>13.03</td>
<td>21.18</td>
<td>15.39</td>
<td>0.76</td>
<td>0.003***</td>
</tr>
<tr>
<td>Total n-3</td>
<td>20.29</td>
<td>30.24</td>
<td>22.54</td>
<td>0.90</td>
<td>0.003***</td>
</tr>
<tr>
<td>PUFA</td>
<td>37.58</td>
<td>45.11</td>
<td>38.78</td>
<td>0.99</td>
<td>0.003***</td>
</tr>
<tr>
<td>Ratio n-3/n-6</td>
<td>1.17</td>
<td>2.04</td>
<td>1.38</td>
<td>0.05</td>
<td>0.004***</td>
</tr>
</tbody>
</table>

Nota: Los niveles de significación son *P<0.05, **P<0.01, ***P<0.001, y no significativo NS para P>0.05. Promedio ± SEM (Standard Error of the Mean) (n=8). CB: dieta control con bajo contenido en EPA y DHA; CA: dieta control con alto contenido en EPA y DHA.
5.3 Efecto de las dietas en el nivel de expresión génica en hígado

Expresión de genes implicados en la desaturación y elongación de ácidos grasos

La Figura 4 recoge el comportamiento de los genes implicados en la desaturación y elongación de los ácidos grasos. El resultado para el gen de la enzima Δ5 desaturasa fue que disminuye de manera significativa el nivel de expresión a casi la mitad (0.4) en las muestras de los peces que tomaron la dieta CA \((P<0.05)\) mientras que no fue significativa la variación en las muestras de aquellos que fueron alimentados con la dieta CB+γtoc \((P>0.05)\).

En cuanto al gen de la enzima Δ6 desaturasa muestra en su resultado variación en sus niveles de expresión en las distintas dietas. Cuando los peces fueron alimentados con la dieta CA disminuye de manera significativa el nivel de expresión \((P<0.01)\) y en el caso de los peces alimentados con la dieta CB+γtoc, la variación fue muy significativa \((P<0.001)\), disminuyendo los niveles de expresión frente a los que manifiesta la dieta CB.

Figura 4: Efecto de las dietas experimentales sobre los niveles de expresión de los genes implicados en la desaturación y elongación de ácidos grasos

Respecto a los genes implicados en la elongación, el primero de ellos, el gen Elovl2, disminuye el nivel de expresión a la mitad \((P<0.01)\) en ambos tratamientos respecto de la dieta CB. Por otro lado, el gen de Elovl5a varía muy poco su expresión, presentando una tendencia a disminuir los niveles \((P=0.067)\) en las muestras de los peces que se alimentaron con la dieta CA y una tendencia a aumentar a casi el doble \((1.8)\) \((P=0.085)\) cuando las muestras procedían de los peces que tomaron la dieta suplementada con γ-tocoferol.
Expresión de genes implicados en el transporte y la β-oxidación de ácidos grasos

La Figura 5 recoge el comportamiento de los genes implicados en el transporte y la β-oxidación de los ácidos grasos. El gen ACO aumenta de forma notable en un 60% su nivel de expresión en las muestras de los peces que se alimentaron con la dieta CA ($P<0.05$) y, en cambio, disminuye aproximadamente a la mitad ($P<0.01$) en los peces que tomaron CB+γtoc.

El gen CD36 manifiesta una tendencia a disminuir su expresión cuando la dieta es rica en EPA y DHA ($P=0.06$) respecto de la dieta CB y, disminuye a la mitad ($P<0.01$) en el caso de las muestras de los peces alimentados con CB+γtoc.

El gen CPT1 se comporta de manera similar al gen anterior. Las muestras de los peces alimentados con CB+γtoc presentaron una disminución de la expresión de este gen ($P<0.01$) pero entre las muestras de las dietas control no hubo variación significativa.

Figura 5: Efecto de las dietas experimentales sobre los niveles de expresión de los genes implicados en la β-oxidación de los ácidos grasos

Expresión de factores de transcripción nucleares

La Figura 6 recoge el comportamiento de los factores de transcripción nucleares según los tres tratamientos. El factor de transcripción PPARα no cambió de manera significativa el nivel de expresión cuando los peces tomaron la dieta CA ($P>0.05$) pero sí en las muestras
cambio, cuando la dieta es CB+γtoc se observó una disminución del 40% de la expresión ($P<0.05$) respecto de la dieta CB.

El factor de transcripción LXR muestra variaciones en el nivel de expresión para ambos tratamientos respecto de la dieta CB. Cuando la dieta era rica en EPA y DHA disminuyó a la mitad ($P<0.01$) y en aproximadamente un 60% ($P<0.001$), en el caso de la dieta control bajo con el suplemento de γ-tocoferol.

![Diagrama de niveles de expresión de factores de transcripción nucleares](image)

Figura 6: Efecto de las dietas experimentales sobre los niveles de expresión de los factores de transcripción nucleares

El gen SREBP1 muestra una variación significativa ($P<0.01$) disminuyendo la expresión en las muestras de los peces que tomaron la dieta CA en más de un 60% ($P>0.05$). En cambio no hay efecto en las muestras de los peces alimentados con CB+γtoc respecto de los de la dieta CB.

Expresión de un gen con capacidad antioxidante en las membranas celulares

Por último, como se puede observar en la Figura 7, el gen GPx4b no presenta variación significativa en sus niveles de expresión según el tipo de dieta que recibieron los peces.
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Figura 7: Efecto de las dietas experimentales sobre los niveles de expresión del gen GPx4b
6. DISCUSIÓN
6.1 Efecto de las dietas en el perfil y composición de ácidos grasos

En el caso de las dos dietas control la composición de ácidos grasos en hígado y músculo de los salmones reflejaron directamente la aportada por el alimento. Esto coincide con estudios previos que muestran que los lípidos de la dieta poseen un impacto directo sobre el contenido de ácidos grasos en los tejidos de salmón Atlántico (Bell et al., 2002; 2003a; Dantagnan et al., 2012; Menoyo, 2004; Rosenlund et al., 2001; Turchini et al., 2009). La incorporación de 300 ppm de γ-tocoferol no afectó de manera significativa al total de SAFA y MUFA del filete. Tampoco se observaron efectos significativos en la cantidad de n-6 totales, ARA, EPA y DHA al comparar las dietas CB y CB+γtoc. Estos resultados se corresponden con los de Sigurgisladottir et al. (1994b) en el que la incorporación de tocoferoles naturales en la dieta no afectó al contenido lipídico ni a la composición de ácidos grasos músculo de salmón Atlántico. Pero difieren con el estudio de Ortiz et al. (2013) con filetes de salmón Coho o del Pacífico (Oncorhynchus kisutch). En esta investigación se comparó el efecto de una dieta enriquecida con antioxidantes sintéticos (butil-hidroxi-tolueno y etoxiquina) frente a dos dietas enriquecidas en tocoferoles naturales (α-, γ- y δ-tocoferol) y otra con un extracto de tocoferoles de romero. Una vez sacrificados, las muestras se analizaron tras un período de 18 meses a -18°C. Al igual que en el presente trabajo, las muestras de peces alimentados con tocoferoles indicaron un contenido superior de γ-tocoferol respecto de la dieta que carece del isómero. A nivel de composición en ácidos grasos, los peces reflejaron mayores contenidos en DHA y MUFA, pero menores en EPA y SAFA al ser comparados con sus homólogos de la dieta con antioxidante sintéticos. En el presente trabajo se observó un aumento del LNA, y una tendencia a aumentar los ácidos grasos C20:3n-3 y C20:4n-3 en relación al filete de la dieta CB dando lugar a una mayor concentración del total de ácidos grasos n-3. Estos resultados pueden deberse a una mayor protección del γ-tocoferol ante la oxidación si tenemos en cuenta que los valores de malondialdehído (MDA), indicadores de oxidación lipídica, fueron inferiores en los filetes de salmones suplementados con γ-tocoferol (valores no mostrados pero determinados por el Dr. Rimbach en la Universidad de Kiel).

Respecto al perfil de ácidos grasos en hígado, cabe destacar que la incorporación de γ-tocoferol dio lugar a un significativo aumento de la concentración del ácido graso C18:0. Esto puede estar relacionado con una posible inhibición de la Δ9-desaturasa ya que la vitamina E tanto por exceso como por defecto reduce esta enzima en el hígado de ratas (Okayasu et al., 1977). Por otro lado se observó un significativo descenso de la concentración de LA y una tendencia a aumentar los niveles de ARA en los salmones alimentados con γ-tocoferol. La menor concentración de LA puede ser debida a un uso prioritario de este ácido graso como...
Efecto de la incorporación de \(\gamma \)-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Carmen Sanz Bayón

50

sustrato energético en el hígado cuando se aporta en exceso (Stubhaug et al., 2007). Sin embargo los resultados de expresión obtenidos en el hígado (ver siguiente sección) relacionados con la \(\beta \)-oxidación no apoyan esta hipótesis. Por otro lado un descenso de LA junto con una tendencia a aumentar la concentración de ARA puede ser indicativa de una activación de las rutas de elongación y desaturación de los omega 6. En este sentido, se observó una tendencia a incrementar la expresión de la elongasa 5a y un descenso significativo de la \(\Delta 6 \) desaturasa en el hígado de los salmones alimentados con \(\gamma \)-tocoferol, lo que indicaría que la tendencia a aumentar la concentración de ARA puede explicarse por una elongación del LA hacia C20:2n-6 mediada por la elongasa 5a en lugar de la conversión directa a C18:3 n-6 vía \(\Delta 6 \) desaturasa. En condiciones de estrés oxidativo, bien producido por un descenso en la ingestión de antioxidantes o por la inclusión de pro-oxidantes en la dieta como en el caso de aceites enrajados, se observan cambios en enzimas elongasas y desaturasas dando lugar a aumentos en la producción de DHA y ARA (Bell et al., 2000). Teniendo en cuenta lo mencionado respecto al C18:0 y la tendencia a aumentar el ARA junto con los niveles más altos de malondialdehído (MDA) observados en el hígado (valores no mostrados pero determinados por el Dr. Rimbach en la Universidad de Kiel) es posible que la dosis empleada de 300 ppm de \(\gamma \)-tocoferol haya resultado excesiva tendiendo a observarse algunos efectos pro-oxidantes en el hígado.

6.2 Efecto de las dietas sobre el metabolismo de los ácidos grasos

Varios estudios anteriores con salmón han puesto de manifiesto una mayor actividad de desaturación y elongación de los ácidos grasos cuando el aceite de pescado de la dieta es reemplazado por aceites vegetales en el pienso (Bell et al., 1997, 2001, 2002; Tocher et al., 1997, 2000; Leaver et al., 2008a). Este efecto se produce tanto por la mayor presencia de sustratos para elongasas y desaturasas en las dietas ricas en aceites vegetales, como por los efectos inhibidores del EPA y DHA sobre la expresión de la \(\Delta 5 \) y \(\Delta 6 \) desaturasas (Seiliez et al., 2001; Thomassen et al., 2012). Dichos efectos inhibidores en el caso de los salmones parecen estar regulados en parte por el factor de transcripción SREBP1, ya que la presencia de EPA/DHA en el medio de cultivo disminuye su expresión y la de la \(\Delta 5 \) y \(\Delta 6 \) desaturasas (Minghetti et al., 2011). Del mismo modo, la presencia de un nivel alto de colesterol modula la expresión de la Elovl2 (disminuye) y la Elovl5a (aumenta) al aumentar la expresión de la LXR (Minghetti et al., 2011). Sin embargo en pruebas \textit{in vivo} la regulación del LXR por los lípidos de la dieta parece ser distinta y depende del estado de desarrollo y las necesidades energéticas del animal (Cruz-García et al., 2009). En el presente trabajo salmones alimentados con la dieta
CA, con mayor contenido en colesterol, EPA y DHA, mostraron una menor expresión de los genes SREBP1, LXR, Δ5 y Δ6 desaturasas y Elovl2 en el hígado frente a la dieta CB con mayor contenido en aceites vegetales. Mostrando además una tendencia a disminuir la expresión de la Elovl5a. Lo cual corrobora en gran parte las relaciones anteriormente citadas por Minghetti et al. (2011) en cultivo celular. En el estudio de Bell et al. (2002) observaron que la composición de los ácidos grasos en filete y el metabolismo de los ácidos grasos en hígado se veían afectados con el cambio de aceite en la alimentación de salmón Atlántico. La dieta 100% aceite de palma tuvo un efecto estimulador en la ruta de conversión para la producción de DHA a partir de LNA. Los principales productos del metabolismo de LNA fueron por orden: C20:4n-3 seguido de EPA, C18:4n-3, DPA y DHA. Esta mayor conversión por desaturación a través de la enzima Δ6-desaturasa también se confirmó por el incremento de ácido dihomo γ-linolénico (C20:3n-6), producido a partir de LA, en hígado de los peces alimentados con 100% aceite de palma. En el presente estudio se puede observar que la mayor expresión de la Δ5 y Δ6 desaturasas y Elovl2 en el hígado de los peces alimentados con la dieta CB se corresponde con una mayor acumulación de productos intermedios de las rutas de conversión de LC-PUFA (especialmente C20:3n-6, C20:3n-3 y C20:4n-3 teniendo en cuenta lo que aportan las dos dietas) en este tejido. Sin embargo, al igual que en los estudios anteriormente citados el aumento de la expresión de elongasas y desaturasas no llega a ser tan importante desde el punto de vista cuantitativo en la obtención de EPA, ARA y DHA y las dietas ricas en aceite de pescado muestran valores significativamente mayores.

En el caso de los salmones alimentados con γ-tocoferol no se observaron diferencias significativas en la expresión de la Δ5 desaturasa y el SREBP1 y una tendencia a aumentar la Elovl5a al compararlos con el CB, pero si una menor expresión de la Δ6 desaturasa, Elovl2 y LXR comportándose estos genes como en la dieta rica en aceite de pescado. Recientemente se ha demostrado que la vitamina E es capaz de regular la homeostasis del colesterol en cultivos celulares a través de la expresión de SREBP1, SREBP2 y LXR (Valastyan et al., 2008; Landrier et al., 2010). De esta forma en células intestinales suplementadas con γ-tocoferol la expresión de LXR disminuyó (Landrier et al., 2010) al igual que en el hígado de los salmones del presente estudio. En investigaciones en tejidos de rata, Despret et al. (1992) observaron que la relación entre los niveles de tocoferol y la actividad de las enzimas desaturasas eran tejido-dependientes. Esto es, un aumento de vitamina E estaba asociado con menor actividad de la enzima Δ6 desaturasa en el hígado, en línea con los resultados del presente estudio, pero mayor en cerebro. Como comentamos en el apartado anterior los cambios de expresión observados en este estudio se relacionaron con una menor concentración de LA y una
tendencia a aumentar el ARA. La presencia en salmones de otras dos Δ6 desaturasas (Fad_b y Fad_c) con además actividad Δ8 desaturasa (Monroig et al., 2011) hace posible que la presencia del γ-tocoferol en el hígado haya aumentado su expresión haciendo plausible la secuencia C18:2n-6→C20:2n-6→C20:3n-6→C20:4n-6. Esto deberá ser corroborado en un futuro tras el ensayo de las citadas Fad_b y Fad_c. Por otro lado, la actividad de las desaturasas mitocondriales está regulada por metabolitos secundarios de α-tocoferol como las tocoferol-quinonas que actúan como cofactores de la reacción (Infante, 1999). Teniendo en cuenta que la presencia de altos niveles de γ-tocoferol parecen acelerar el metabolismo del α-tocoferol (Yoshikawa et al., 2005) es posible que una mayor concentración de metabolitos en el hígado afecte a la actividad de las desaturasas. Por lo tanto la incorporación de γ-tocoferol en dietas para salmones tiene un efecto inhibitorio sobre la expresión de la Δ6 desaturasa y Elovl2 vía inhibición de LXR. Sin embargo la significativa reducción de LA y la tendencia a aumentar el AA y la expresión de Elovl5a hace necesarios futuros trabajos para esclarecer estas relaciones.

En salmones existe una cierta preferencia por determinados ácidos grasos para su uso metabólico en función de su estructura y concentración en la dieta. De esta forma los MUFA de cadena larga como el C22:1n-11 son preferentemente beta oxidados para la obtención de energía, al igual que el LA, LNA, EPA y DHA cuando se aportan en exceso en la dieta (Stubhaug et al., 2007). Además, en la fase de agua salada la β-oxidación de los ácidos grasos en el hígado se realiza en un 60% por los peroxisomas y un 40% en las mitocondrias (Stubhaug et al., 2007).

En el presente trabajo la expresión de la ACO indicadora de β-oxidación peroxisomal aumentó de manera significativa en los salmones alimentados con la dieta rica en aceite de pescado CA, mientras que la mitocondrial evaluada por la expresión de la CPT1 no cambió con la dieta. Estos datos son coincidentes con los aportados en salmón Atlántico alimentados con aceite de pescado vs. una mezcla de aceites vegetales similar a la usada en nuestro estudio (Stubhaug et al., 2007). Igualmente, Leaver et al. (2008a) no encontraron diferencias en la actividad de la CPT1 al alimentar salmones con aceite de pescado, aceite de linaza, colza o soja, sin embargo la expresión de ACO fue mayor en el hígado de salmones alimentados con linaza o con colza.

En relación al transporte de ácidos grasos mediante el trasportador CD36 se observó una tendencia a disminuir en la dieta más rica en aceite de pescado. Torstensen et al. (2009) no observaron cambios en la expresión hepática del CD36 al comparar salmones alimentados con aceite de pescado frente a aceites vegetales no observando tampoco cambios en la expresión de la CPT2 o la ACO. Por lo tanto a nivel hepático en salmones parece ser que se correlaciona bien el papel de CD36, transportador en la membrana mitocondrial externa.
contribuyendo al transporte y control de la β-oxidación mitocondrial como sugiere Smith et al. (2011) en ratas.

Es interesante señalar que en salmones alimentados con γ-tocoferol los niveles de expresión de ACO, CD36 y CPT1 disminuyeron de manera significativa respecto a la dieta CB en aproximadamente la mitad indicando una inhibición general de las reacciones de β-oxidación in vivo. Además, dicha disminución parece estar mediada por un efecto inhibitorio del γ-tocoferol sobre el PPARα. En modelos animales un aumento de la expresión del PPARα en hígado se asocia con un aumento en la β-oxidación mitocondrial y peroxisomal al incidir de manera positiva sobre la expresión de CPT1 y ACO (Leaver et al., 2008b). En el caso de los salmónidos se han probado ligandos que estimulan la expresión de PPARα teniendo como respuesta resultados muy dispares y poco concluyentes sobre los efectos en la expresión y actividad de CPT1 y ACO (Leaver et al., 2008b). Cabe destacar que los tocoferoles pueden interferir en la modulación de los PPAR de manera directa o indirecta. En el primer caso, ya que se ha observado que PPAR-γ tiene elementos respuesta al menos para el δ-tocoferol (De Pascale et al., 2006). O de manera indirecta a través del control del estrés oxidativo (Sulzle et al., 2004). Los metabolitos oxidados de los ácidos grasos poliinsaturados son reguladores potentes de PPAR (Wang et al., 2006; Xu et al., 2006; Zuo et al., 2006). Por otro lado, según estudios realizados por Devaraj et al. (2001) y Ricciarelli et al. (2000), el gen CD36 puede ser regulado por α-tocoferol el cual disminuye su expresión y bajas concentraciones provocan un aumento de la expresión.

En relación al sistema antioxidante GPx4 no hubo diferencias entre los niveles de expresión del gen GPx4b al comparar los peces alimentados con las dietas CB vs. CA ni entre CB+γtoc vs. CB. Por lo tanto teniendo en cuenta además que los niveles más altos de malondialdehído (MDA) fueron observados en el hígado de los salmones alimentados con las dietas CA y CB+γtoc (valores no mostrados pero determinados por el Dr. Rimbach en la Universidad de Kiel) no parece que exista un efecto modulador extra de γ-tocoferol para la defensa antioxidante a través de la glutación peroxidasas de salmón Atlántico.
7. CONCLUSIONES
I. La suplementación de la dieta CB con 300 ppm de γ-tocoferol no modificó de manera marcada la composición en ácidos grasos del filete, observándose cierta protección de los ácidos grasos omega 3 (LNA) pero sin lograr promover la acumulación de EPA y DHA.

II. La incorporación de γ-tocoferol en dietas para salmones provocó un efecto inhibitorio sobre la expresión hepática de la Δ6 desaturasa y Elovl2 vía inhibición de LXR. Sin embargo la significativa reducción en el hígado de LA y la tendencia a aumentar el ARA y la expresión de Elovl5a hace necesarios futuros trabajos para esclarecer estas relaciones y si la dosis aportada 300 ppm de γ-tocoferol tiene efectos pro-oxidantes.

III. En salmones alimentados con γ-tocoferol los niveles de expresión de ACO, CD36 y CPT1 disminuyeron de manera significativa respecto a la dieta CB en aproximadamente la mitad indicando una inhibición general de las reacciones de β-oxidación in vivo. Además, dicha disminución parece estar mediada por un efecto inhibitorio del γ-tocoferol sobre el PPARα.

IV. Los resultados de expresión del gen GPx4b indican que bajo nuestras condiciones experimentales no parece que exista un efecto modulador extra del γ-tocoferol para la defensa antioxidante a través de la glutatión peroxidasa hepática del salmón Atlántico.
8. REFERENCIAS
Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de \(\gamma \)-tocofeol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Ruyter, B., Røsjø, C., Einen, O., Thomassen, M.S., 2000b. Essential fatty acids in Atlantic salmon: time course of changes in fatty acid composition of liver, blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids. Aquaculture Nutrition, 6, 109-117.

Efecto de la incorporación de \(\gamma \)-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

Stubhaug, I., Froyland, L. and Torstensen, B.E. 2005. Beta-oxidation capacity of red and white muscle and liver in Atlantic salmon (Salmo salar L.) - Effects of increasing dietary rapeseed oil and olive oil to replace capelin oil. Lipids 40, 39-47.

Efecto de la incorporación de γ-tocoferol en dietas para salmón Atlántico sobre la composición y metabolismo lipídico

