Chebyshev expansion for the component functions of the Almost-Mathieu Operator

Abderramán Marrero, Jesús Carmelo (2007). Chebyshev expansion for the component functions of the Almost-Mathieu Operator. "Proceedings in Applied Mathematics and Mechanics", v. 7 (n. 1); pp. 2040071-2040072. ISSN 1617-7061. https://doi.org/10.1002/pamm.200700870.

Descripción

Título: Chebyshev expansion for the component functions of the Almost-Mathieu Operator
Autor/es:
  • Abderramán Marrero, Jesús Carmelo
Tipo de Documento: Artículo
Título de Revista/Publicación: Proceedings in Applied Mathematics and Mechanics
Fecha: Diciembre 2007
Volumen: 7
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Matemática Aplicada a las Tecnologías de la Información [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (139kB) | Vista Previa

Resumen

The component functions {Ψn(∈)} (n ∈ Z+) from difference Schrödinger operators, can be formulated in a second order linear difference equation. Then the Harper equation, associated to almost-Mathieu operator, is a prototypical example. Its spectral behavior is amazing. Here, due the cosine coefficient in Harper equation, the component functions are expanded in a Chebyshev series of first kind, Tn(cos2πθ). It permits us a particular method for the θ variable separation. Thus, component functions can be expressed as an inner product, Ψn(, λ, θ) = _T [ n(n−1) 2 ] (cos2πθ) • _A [ n(n−1) 2 ] (_, λ). A matrix block transference method is applied for the calculation of the vector _A [ n(n−1) 2 ] (_, λ). When θ is integer, Ψn(_) is the sum of component from _A [ n(n−1) 2 ]. The complete family of Chebyshev Polynomials can be generated, with fit initial conditions. The continuous spectrum is one band with Lebesgue measure equal to 4. When θ is not integer the inner product Ψn can be seen as a perturbation of vector _T [ n(n−1) 2 ] on the sum of components from the vector _A [ n(n−1) 2 ]. When θ = p q , with p and q coprime, periodic perturbation appears, the connected band from the integer case degenerates in q sub-bands. When θ is irrational, ergodic perturbation produces that one band spectrum from integer case degenerates to a Cantor set. Lebesgue measure is Lσ = 4(1 − |λ|), 0 < |λ| ≤ 1. In this situation, the series solution becomes critical.

Más información

ID de Registro: 2857
Identificador DC: http://oa.upm.es/2857/
Identificador OAI: oai:oa.upm.es:2857
Identificador DOI: 10.1002/pamm.200700870
URL Oficial: http://www3.interscience.wiley.com/journal/117925717/issue
Depositado por: Memoria Investigacion
Depositado el: 13 Abr 2010 10:11
Ultima Modificación: 20 Abr 2016 12:29
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM