An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks.

Castro Barbero, Carlos Manuel; Palacios, Francisco y Zuazua Iriondo, Enrique (2008). An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks.. "Mathematical Models & Methods in Applied Sciences", v. 18 (n. 3); pp. 369-416. ISSN 0218-2025. https://doi.org/10.1142/S0218202508002723.

Descripción

Título: An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks.
Autor/es:
  • Castro Barbero, Carlos Manuel
  • Palacios, Francisco
  • Zuazua Iriondo, Enrique
Tipo de Documento: Artículo
Título de Revista/Publicación: Mathematical Models & Methods in Applied Sciences
Fecha: Marzo 2008
Volumen: 18
Materias:
Palabras Clave Informales: Inviscid Burgers equation; Optimal control; Numerical approximation; Shocks.
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Matemática e Informática Aplicadas a la Ingeniería Civil [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (777kB) | Vista Previa

Resumen

We introduce a new optimization strategy to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks. We focus on the 1 − d inviscid Burgers equation. We first prove the existence of minimizers and, by a -convergence argument, the convergence of discrete minima obtained by means of numerical approximation schemes satisfying the so called onesided Lipschitz condition (OSLC). Then we address the problem of developing efficient descent algorithms. We first consider and compare the existing two possible approaches: the so-called discrete approach, based on a direct computation of gradients in the discrete problem and the so-called continuous one, where the discrete descent direction is obtained as a discrete copy of the continuous one. When optimal solutions have shock discontinuities, both approaches produce highly oscillating minimizing sequences and the effective descent rate is very weak. As a solution we propose a new method, that we shall call alternating descent method, that uses the recent developments of generalized tangent vectors and the linearization around discontinuous solutions. This method distinguishes and alternates the descent directions that move the shock and those that perturb the profile of the solution away of it producing very efficient and fast descent algorithms.

Más información

ID de Registro: 2924
Identificador DC: http://oa.upm.es/2924/
Identificador OAI: oai:oa.upm.es:2924
Identificador DOI: 10.1142/S0218202508002723
URL Oficial: http://www.worldscinet.com/m3as/18/1803/S02182025081803.html
Depositado por: Memoria Investigacion
Depositado el: 14 May 2010 09:41
Ultima Modificación: 20 Abr 2016 12:32
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM