Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

Teresa Palacios, J.Y. Pastor
Departamento de Ciencia de Materiales
Universidad Politécnica de Madrid

A. Muñoz
Departamento de Física
Universidad Carlos III de Madrid
Extreme conditions

- High ion/neutron flux
- High heat load (~ 10 MW/m²)
- High temperature
- Thermal stresses & cycling
- Off normal events (e.g. plasma disruption)
why tungsten as PFM?

features an **unique property combination**

- the highest melting point of all metals
- good thermal conductivity
- low tritium retention
- low physical sputtering yield
- high thermal resistance
- high temperature strength

at the divertor perform also a structural application, so ductility is needed and W has a **brittleness** problem.

oxidation resistance

\[+ \text{Y}_2\text{O}_3 \]
\[+ \text{V} \]
\[+ \text{Ti} \]
\[+ \text{La}_2\text{O}_3 \]

Operation temperature range

- Lower limit: ductile-brittle transition temperature (DBTT) 400-650 °C
- Upper limit: rxx temperature (RT) 1300 °C

rxx processes and irradiation effects during operation can induce embrittlement

\[
\begin{align*}
W &- 1 \text{ wt}\% \text{ Y}_2\text{O}_3 \quad (W-1Y) \\
W &- 2 \text{ wt}\% \text{ Ti} - 1 \text{ wt}\% \text{ La}_2\text{O}_3 \\
&\quad (W-2T1L)
\end{align*}
\]
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

<table>
<thead>
<tr>
<th>Material</th>
<th>Purity</th>
<th>Particle Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>99.9%</td>
<td>< 5 µm</td>
</tr>
<tr>
<td>Ti</td>
<td>99.9%</td>
<td>< 110 µm</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>99.5%</td>
<td>0.01-0.05 µm</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>99.5%</td>
<td>0.01-0.05 µm</td>
</tr>
</tbody>
</table>

Material processed in UC3M, Spain

MA 20h

Canned degassed
400 °C, 24 h

HIP
1300 °C, 2 h, 195 MPa
produced in UC3M, Spain

Ø = 30 mm
L = 50 mm

1.6 x 1.6 x 25 mm³

TPB tests samples

L = 25 mm
B = 1.6 mm
D = 1.6 mm
Lₛ = 16 mm
L = 50 mm

Smooth bend bars

Notched bend bars

HOW?
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

- notched samples
- diamond disc: \(\sim 200 \mu m \)
- diamond wire: \(\sim 75 \mu m \)
- fast, plastic damage, big notch root radius
- metal blade: \(\sim 5-7 \mu m \)
- no plastic damage
- slow complex process
notched samples

laser
1-50 nm

- no plastic damage
- no rxx of the tip grains
- similar to a crack

Profilometer image
TPB tests were performed in notched samples of the 4 methods to check the notch root radius effect.

- dispersion results
- 25-30% of the value
W-2T1L:
- with the addition of the alloying elements the grain size become nanometric
- change from polyedral coarse grains (pure-W) to coarse W grains and Ti pools surrounded by a W-Ti-La solid solution

E. Tejado, UPM
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

Y₂O₃ nanoparticles:
- spheroidal dispersoids with variable size
- located in the grain boundaries
- sometimes agglomeration

C. Ballesteros, UC3M

edx spectra from black contrast areas
FESEM image of W-2Ti-1La$_2$O$_3$ alloy with mapping (W), mapping (Ti) and mapping (La).

microstructure (W-2T1L)

E. Tejado, UPM
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

Mechanical properties

Hardness

- Small influence of the load
- Comparable results with instrumented method
- W-2T1L ↑ hardness

Young modulus

- Comparable values
- W-1Y ↓ E
- W-2T-1L Small increase of the values

*IET= Impulse Excitation Technique
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

TPB tests

- **displacement rate:** 100 µm/min
- **heating rate:** 50 °C/min

- **inert atmosphere (vacuum)**
 - T ≤ 1200 °C; 10⁻⁶ mbar

- **oxidation atmosphere (air)**
 - T ≤ 1000 °C

- **liquid N immersion**
 - T = -196 °C
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

TPB tests – flexural strength

linear elastic until failure (except 1200 °C)
slightly influence of the atmosphere
↑ flexural strength values (W-2T1L)
thermal degradation – W-2T1L T>1000 °C
TPB tests – flexural strength

Sample tested a 1200 °C (not break) intergranular progress of the crack
TPB tests - fracture toughness

Representative curves for some W-2T1L tensile tests

linear elastic until failure (all the T range)
improve of the behavior: ↑T (W-1Y), all T (W-2T1L)
Fracture surfaces of the tested samples at low (up) and high (down) temperature

- Pure-W
- W-1Y
- W-2T1L

flat, fracture decohesion by grain boundary
Mechanical Degradation of Tungsten Alloys at Extreme Temperatures in Vacuum and Oxidation Atmospheres

W-1Y 1000 °C, air

Bimodal morphology of grains:
- polyhedral coarse grains of W (surrounded by oxide needles)
- rounded smaller grains with dispersion of Yttria nanoparticles
• Powder route was used to process W-alloys with additions of Y_2O_3, Ti and La_2O_3.

• TPB tests were perform to obtain flexural strength, yield strength and fracture toughness (-196 to 1200 °C, air & vacuum). Moreover nanoindentation, Vickers and IET tests (H, E).

• Laser notching of the samples show a notch like crack with a root radio between 1-50 nm and less dispersion of the results.

• W-1Y_2O_3:
 • Slightly enhancement of properties at high T, but increased porosity.
 • Microstructure - Yttria nanoparticles located in the grain boundaries and bimodal morphology of grains.
 • Fracture analysis - intergranular breakage between grain boundaries (support the brittle behavior of the performed tests up to high T).

• W-2Ti-1La_2O_3:
 • The porosity slightly decreases and the grain size became nanostructured.
 • Mechanical properties according to TPB tests increase. The values remain stables in all the temperature range (exc. 1200 °C, ductile).
 • Fracture surfaces remain flat and show intergranular breakage between grain boundaries. Supported by brittle behavior of the performed TPB tests.
Thank you for your attention!
Pure-W is highly reactive with oxygen above 400 °C, but with the addition of the alloying elements (Ti, La$_2$O$_3$), the oxidation processes decreased (W-1Y, W-2T1L).

- The outer yellow scale remain thinner and the mass gain is lower in all the temperature range.
- At 1000 °C some cracks appears in the scale as a consequence of the stresses produced during oxide growing.