FPGA-Based Wireless Sensor Node Architecture for High Performance Applications

Valverde Alcalá, Juan (2012). FPGA-Based Wireless Sensor Node Architecture for High Performance Applications. Thesis (Master thesis), E.T.S.I. Industriales (UPM).

Description

Title: FPGA-Based Wireless Sensor Node Architecture for High Performance Applications
Author/s:
  • Valverde Alcalá, Juan
Contributor/s:
  • Portilla Berrueco, Jorge
  • de la Torre Arnanz, Eduardo
Item Type: Thesis (Master thesis)
Masters title: Electrónica Industrial
Date: 4 March 2012
Subjects:
Faculty: E.T.S.I. Industriales (UPM)
Department: Electrónica, Automática e Informática Industrial [hasta 2014]
Creative Commons Licenses: None

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview

Abstract

While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today’s applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

More information

Item ID: 30115
DC Identifier: http://oa.upm.es/30115/
OAI Identifier: oai:oa.upm.es:30115
Deposited by: Investigador Contratado no doctor juan Valverde Alcala
Deposited on: 20 Jun 2014 07:21
Last Modified: 30 Jul 2015 11:53
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM