Strictly and asymptotically scale invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions

Rodríguez Mesas, Antonio; Schwämmle, Veit y Tsallis, Constantino (2008). Strictly and asymptotically scale invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions. "Journal of Statistical Mechanics: Theory and Experiment", v. 2008 ; pp. 1-20. ISSN 1742-5468. https://doi.org/10.1088/1742-5468/2008/09/P09006.

Descripción

Título: Strictly and asymptotically scale invariant probabilistic models of N correlated binary random variables having q-Gaussians as N → ∞ limiting distributions
Autor/es:
  • Rodríguez Mesas, Antonio
  • Schwämmle, Veit
  • Tsallis, Constantino
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Statistical Mechanics: Theory and Experiment
Fecha: Septiembre 2008
Volumen: 2008
Materias:
Palabras Clave Informales: New applications of statistical mechanics, rigorous results in statistical mechanics, exact results
Escuela: E.U.I.T. Aeronáutica (UPM) [antigua denominación]
Departamento: Matemática Aplicada y Estadística [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The celebrated Leibnitz triangle has a remarkable property, namely that each of its elements equals the sum of its south-west and south-east neighbors. In probabilistic terms, this corresponds to a specific form of correlation of N equally probable binary variables which satisfy scale invariance. Indeed, the marginal probabilities of the N-system precisely coincide with the joint probabilities of the (N − 1)-system. On the other hand, the non-additive entropy Sq ≡ (1 − ∫_∞^∞▒〖p(x)]q)/(q - 1)〗 (q ∈ R; S1 = −∫_∞^∞▒〖p(x) ln p(x)〗), which grounds non-extensive statistical mechanics, is, under appropriate constraints, extremized by the (q-Gaussian) distribution pq(x) ∝ [1 − (1 − q)β x2]1/(1−q) (q < 3; p1(x) ∝ e−βx2 ). These distributions also result, as attractors, from a generalized central limit theorem for random variables which have a finite generalized variance, and are correlated in a specific way called q-independence. In order to provide physical enlightenment as regards this concept, we introduce here three types of asymptotically scale invariant probabilistic models with binary random variables, namely (i) a family, characterized by an index ν = 1, 2, 3, . . ., unifying the Leibnitz triangle (ν = 1) and the case of independent variables (ν →∞); (ii) two slightly different discretizations of q-Gaussians; (iii) a special family, characterized by the parameter χ, which generalizes the usual case of independent variables (recovered for χ = 1/2). Models (i) and (iii) are in fact strictly scale invariant. For models (i), we analytically show that the N → ∞ probability distribution is a q-Gaussian with q = (ν − 2)/(ν − 1). Models (ii) approach q-Gaussians by construction, and we numerically show that they do so with asymptotic scale invariance. Models (iii), like two other strictly scale invariant models recently discussed by Hilhorst and Schehr, approach instead limiting distributions which are not q-Gaussians. The scenario which emerges is that asymptotic (or even strict) scale invariance is not sufficient but it might be necessary for having strict (or asymptotic) q-independence, which, in turn, mandates q-Gaussian attractors.

Más información

ID de Registro: 3015
Identificador DC: http://oa.upm.es/3015/
Identificador OAI: oai:oa.upm.es:3015
Identificador DOI: 10.1088/1742-5468/2008/09/P09006
URL Oficial: http://iopscience.iop.org/1742-5468/2008/09/P09006
Depositado por: Memoria Investigacion
Depositado el: 06 May 2010 08:08
Ultima Modificación: 20 Abr 2016 12:36
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM