1RM prediction: a data mining case study

Adrián Santos Parrilla
Supervised by Aurora Pérez Pérez

Master of Science Thesis

Facultad Informática
Universidad Politécnica de Madrid

June 30, 2014
Abstract

In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. $1RM$, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the $1RM$ assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the $1RM$ from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the $1RM$ in the bench press action, until reaching their actual $1RM$. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the $1RM$ prediction in the range between 1 and 10 repetitions. At 75% of the $1RM$ some subjects ($n = 5$) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects ($n = 20$) performed statistically significant ($p < 0.05$) more repetitions at 70% than at 75% of their actual $1RM$ in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for $1RM$ when all the sets are performed until exhaustion, as no significant differences ($p < 0.05$) were found in the RPE at 75%, 80% and 90% of the $1RM$. Also, years of experience and weekly hours of strength training are better correlated to $1RM$ ($p < 0.05$) than body weight. O’Connor et al. $1RM$ prediction equation seems to arise from the data gathered and seems to be the most accurate $1RM$ prediction equation from those proposed in literature and used in this study. Epley’s $1RM$ prediction equation is reproduced by means of data simulation from $1RM$ literature equations. Finally, future lines of research are proposed related to the problem of the $1RM$ prediction by means of genetic algorithms, neural networks and clustering techniques.

Key words: genetic programming, artificial neural network, periodization, one repetition maximum, performance, RPE, data mining, clustering.
En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de “Descubrimiento de conocimiento en bases de datos”) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0.05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El índice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias significativas (p < 0.05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0.05) que el peso corporal. La ecuación de O’Conner et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.

Palabras clave: programación genética, red neuronal artificial, periodización, una repetición máxima, performance, RPE, minería de datos, clustering.
Solo envidio a los que no nacieron todavía,
para ellos será lo que tu y yo creamos un día.
Rafael Lechowski
Contents

1 Introduction 1

2 State of the art 3
 2.1 The 1RM prediction problem ... 3
 2.1.1 Prediction formulas from submaximal loads 3
 2.1.2 Percentage of the 1RM .. 5
 2.1.3 Variables influencing the 1RM 6
 2.2 Data mining modeling ... 8
 2.2.1 Multilayer perceptron with backpropagation 8
 2.2.2 General linear regression with forward selection 12
 2.2.3 Genetic programming .. 14
 2.2.4 K-means algorithm .. 18
 2.3 Comparison criteria .. 19
 2.4 Evaluating the accuracy of a predictor 20

3 Problem definition 23
 3.1 Design of the experiment ... 24
 3.2 Data collection procedure .. 30
 3.3 Threats to validity ... 32

4 KDD process 35
 4.1 Tools used ... 35
 4.2 Data preprocessing ... 36
 4.2.1 Grouping the participants by means of clustering techniques. 41
 4.3 Linear regression models .. 44
 4.3.1 Interaction between weight and repetitions 46
 4.4 Multilayer perceptron neural network 47
 4.5 Genetic programming model ... 54
 4.6 Comparison between the different models 58
 4.6.1 Comparison between the different models generated 59
 4.7 Comparison between the different literature equations 64
 4.8 Post-hoc analysis ... 65
 4.8.1 Number of repetitions at a certain percentage of 1RM 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.2</td>
<td>Comparing repetitions until exhaustion at 70%-75% of 1RM</td>
<td>67</td>
</tr>
<tr>
<td>4.8.3</td>
<td>RPE and repetitions until exhaustion</td>
<td>68</td>
</tr>
<tr>
<td>4.9</td>
<td>Data simulation</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Conclusions</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>Future research</td>
<td>77</td>
</tr>
<tr>
<td>6.1</td>
<td>Genetic algorithm</td>
<td>77</td>
</tr>
<tr>
<td>6.2</td>
<td>Multilayer perceptron networks</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>6.2.1 Bootstrap and bagging techniques</td>
<td>80</td>
</tr>
<tr>
<td>6.3</td>
<td>Neural network: SOM</td>
<td>81</td>
</tr>
<tr>
<td>6.4</td>
<td>Clustering with k-means</td>
<td>81</td>
</tr>
<tr>
<td>6.5</td>
<td>Appendix A</td>
<td>83</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Different anthropometric variables include circumferences and lengths [1]. . . . 7
2.2 Computations of a neuron. ... 9
2.3 General multilayer perceptron architecture. ... 10
2.4 An individual tree structure. A possible individual in the population [2]. . . 14
2.5 Tree crossover [2]. .. 17
2.6 K-means execution [3]. .. 18
2.7 Random sub-sampling. ... 21
2.8 k-cross fold technique. .. 22

4.1 Distribution of the population attributes. ... 39
4.2 Distribution of weight and repetitions. ... 40
4.3 Comparison between the generated models. 62
4.4 Repetitions performed until exhaustion vs. %1RM. 65
4.5 Box plot: RPE at the end of the set. ... 70
4.6 Repetitions performed until exhaustion vs. %1RM. 71
4.7 Repetitions performed until exhaustion vs. %1RM. 72
List of Tables

2.1 1RM Prediction equations. 4
2.2 Applicability of the different percentages of the 1RM for different purposes [4]. 5
3.1 Borg’s normalized scale [5]. 28
3.2 Attributes collected in the study. 29
3.3 Tentative 1RM assessment protocol. 32
3.4 Attributes collected for each set. 32
4.1 Population attributes. 37
4.2 Population attributes normality test. 38
4.3 Weight normality test. 40
4.4 Correlations with 1RM. 41
4.5 Attributes used in the k-means algorithm. 42
4.6 K-means clustering. Cluster centroids. 43
4.7 Clustered individuals (n = 30, k = 4). 43
4.8 Linear regression models built. 45
4.9 Linear models with interaction between repetitions and weight. 47
4.10 Coefficients in interaction between weight and repetitions. 47
4.11 Attributes used in the multilayer perceptron models built. 51
4.12 RMSE and MAE with the random sub-sampling method (MLP). 52
4.13 RMSE and MAE with the 6-cross fold validation method (MLP). 52
4.14 RMSE and MAE with the the leave-one-out validation method (MLP). 53
4.15 Error descriptives for the MLP with two variables, and the MLP with 5 variables (n = 97). 54
4.16 U Mann Whitney test. 54
4.17 1RM prediction by means of genetic programming. 57
4.18 RMSE and MAE with the random sub-sampling method. 60
4.19 RMSE and MAE with the 6-cross-fold-validation method. 60
4.20 RMSE and MAE with the leave one out validation method. 61
4.21 Error descriptives for the MLP and Linear regression models (n = 76). 62
4.22 U Mann Whitney test. 63
4.23 Error descriptives for the MLP and Linear regression (interaction) models (n = 76). 63
4.24 U Mann Whitney test. 63
4.25 1RM Prediction equations from literature. .. 64
4.26 Descriptives of percentage and repetitions ($n = 5$). 66
4.27 Test of normality: repetitions and percentage. ... 67
4.28 Repetitions in the different groups (70-75%1RM). 68
4.29 %1RM in the different groups. ... 68
4.30 Descriptives of the %1RM in the three groups created. 69
4.31 Descriptives of the RPE at the end of the set in the three groups created. 69
4.32 Coefficients of the 1RM prediction equation by means of data simulation. ... 73
Acknowledgments

Me gustaría agradecer al Ayuntamiento de San Sebastián de los Reyes, Madrid, y muy en especial al gimnasio municipal “Claudio Rodríguez”, y al “Club Balonmano San Sebastián de los Reyes”, por abrirme sus puertas y hacerme sentir como en casa. A Aurora Pérez, por su enorme esfuerzo y dedicación revisandome el trabajo, y sus buenos consejos a la hora de corregir la memoria. Quería dar las gracias a todos los participantes que de forma completamente desinteresada formaron parte del experimento.

Especialmente a Daniel Campillo Bravo y Sandra Fernández Rodríguez por ayudarme a tomar las mediciones y estar ahí siempre que les he necesitado; sin vuestra ayuda todo esto no hubiera sido posible. A mi madre, por enseñarme el valor del trabajo duro y el sacrificio. A la memoria de mi abuela, siempre me acuerdo de las tardes tan felices que pasamos a tu lado. Os quiero.
Terms and definitions

- **Exercise**: physical activity that is planned, structured, repetitive and has as a final or an intermediate objective the improvement or maintenance of physical fitness. Exercise is used to improve health, maintain fitness and is important as a means of physical rehabilitation.\(^1\)

- **Repetition**: long for rep, a repetition is a single cycle of lifting and lowering a weight in a controlled manner, moving through the form of an exercise.

- **Set**: consists of several repetitions performed one after another with no break between them. Several repetitions form a set. It is also referred as an exercise set.

- **Dynamic muscular strength**: maximal force that can be generated by a muscle or muscle group. It is usually referred as 1RM, one repetition maximum or one execution maximum.

- **RPE**: or rating of perceived exertion, is one of the most popular methods in the field of heavy physical work and the perception of effort and exertion. Ratings of perceived exertion (or “effort and exertion”) are important complements to physiological measurements. Of all single indicators of the degree of physical strain, perceived exertion is one of the most informative. It integrates a great amount of information, with cues from the peripheral muscles and joints, cardiovascular and respiratory functions, and the central nervous system [6]. A category ratio scale, commonly referred to as the CR-10 scale is commonly used. In this category ratio scale, numbers from 0 to 10 are used. The number 10 implies an extremely strong perceptual intensity as in the perceived intensity in extremely heavy physical exercise like lifting and carrying extremely heavy weights.

Chapter 1

Introduction

IRM, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance [7].

Despite its universal application, the safety of a IRM protocol has been questioned as individuals new to maximal load-bearing activity may incur high muscular, bone and ligament stress with the risk of serious muscular injury. The direct assessment of a IRM has also been referred to as time consuming and impractical for large groups [8, 9]. Such limitations have led to the development of prediction models which employ sub-maximal loads in order to minimize the limitations and risks of maximal strength assessment [10].

Even though IRM is a key measurement in order to generate a well-founded training protocol for athletes, training prescription is typically based in a predetermined number of repetitions as further research is needed in this area [7]. This way, two different exercises at the same percentage of the IRM could lead to a different number of repetitions [11], or even different individuals could achieve different number of repetitions at the same % of the IRM for the same exercise (i.e. the bench press action at 90% IRM [12]).

IRM is one of the keys for generating periodized training protocols, as it helps when it comes to defining intensity per set in a certain exercise. This way, the IRM is fundamental for developing a training program based on prescribing exercise intensity as a percentage of the IRM [13, 14, 4]. Periodization, or periodized strength training refers to varying the training program at regular time intervals in an attempt to bring about optimal gains in strength, power, motor performance, and/or muscle hypertrophy [15]. Its main goal is to optimize training during time (longer or shorter periods) [15].

The training variables that can be manipulated in an attempt to optimize the training program include number of sets performed of each exercise, number of repetitions per set, exercises performed, number of exercises performed per training session, rest periods between sets and exercises, resistance used for a set, type of muscle action performed (e.g., eccentric, concentric, isometric), and number of training sessions per day and per week [15]. When prescribing a certain number of repetitions in a specific training program, a common way of doing it is just by selecting a percentage of the athlete’s one repetition maximum. Weight
assignment to an exercise set, is often characterized as the most critical aspect of resistance training. It can also be thought of in terms of “mechanical work“.

Several approaches have been taken so far to tackle the inherent problem of predicting the $1RM$, and in this study we will focus particularly in one of them (see Section 2.1.1): the prediction of the $1RM$ from submaximal loads. These tests, to predict the $1RM$ from submaximal loads, are called muscular endurance tests [7].

In Chapter 2, it is presented the problem of predicting the $1RM$ from submaximal loads, several predicting equations and the different variables that influence the $1RM$. It is also presented the different algorithms, methods and well-known data mining techniques that will be used along this study. Next, in Chapter 3, we take a look at the design of the experiment, the data collection procedure and the threats to validity of the present study. Then, in Chapter 4, it is presented the different tools used in this study, how the different proposed models for predicting the $1RM$ were built, and a comparison is conducted between these new proposed models for predicting the $1RM$. Widely used $1RM$ equations are compared as well attending to different performance criteria used in the study (see Section 2.3). A post-hoc analysis with the available data is shown, and by means of data simulation it is demonstrated how we can generate predicting equations from submaximal loads, just using data generated from literature equations. Afterwards, in Chapter 5 we can take a look at the conclusions of the present study, and finally, future lines of research are proposed in Chapter 6.
Chapter 2

State of the art

In this chapter, it is shown the state of the art of the 1RM prediction equations in Section 2.1. Then, a brief discussion of the different data mining modeling techniques used in this study is presented in Section 2.2. Then, some performance criteria used in this study for comparing the different models of the 1RM prediction proposed is presented in Section 2.3. Finally, in Section 2.4 we discuss different ways of evaluating the accuracy of the proposed 1RM prediction models.

2.1 The 1RM prediction problem

In this Section, we will take a look at the state of the art in the 1RM prediction. In Section 2.1.1, it is presented some of the different proposed prediction equations for the 1RM. Secondly, the implications of performing a certain exercise in a certain percentage of the actual one repetition maximum (exercise intensity) are exposed in Section 2.1.2. Finally, it is presented in Section 2.1.3 how different variables influence the subject’s one repetition maximum and how anthropometric variables could influence its prediction.

2.1.1 Prediction formulas from submaximal loads

The use of 1RM has been applied to prescribe training programs by strength coaches, health and fitness professionals [16]. However, investigators have identified the difficulty in completing 1RM testing on certain populations, and several 1RM strength prediction equations have been developed [8, 17, 18, 19, 20, 21, 22]. Some of these equations are reliable for certain populations [21] whilst other prediction equations come from an unknown population [8, 17, 18, 19]. Most of them are only suitable for certain exercises like chest press or leg press [8, 17, 18, 19, 20, 21], even though others like O’Connor’s have been tested as well in other single joint exercises such as arm curl [23]. Most of them are only applicable for a specific range of repetitions: between 2 and 10 repetitions [8, 17]; or fewer than 15 repetitions [21]. These formulas present variability according to their linearity: linear [8, 17, 18, 19] and
non-linear formulas \[20, 21, 22\]. Reliability of the 1RM test seems to be from moderate to high, with correlation coefficients ranging between 0.79 and 0.99, depending on the gender of the subjects and the exercise being tested \[7\].

Validation of the different equations \[8, 17, 18, 19, 20, 21, 22\] and specifically the O’Connor et al. equation \[19\], indicates that a certain formula could be used to develop individualized resistance programs for students, clients etc. \[8\]. This is of paramount importance to coaches and strength enthusiasts: a reliable one repetition maximum prediction equation could mean greater achievements in performance, as the intensity level would no longer be dependent on the number of repetitions performed until exhaustion, but in an objective intensity set explicitly by the trainer. This may lead to the creation of best suited formulas for different exercises, or even best suited formulas for the different population segments. The use of prediction equations should be safer for older populations and with those recovering from injury. For some purposes a measured 1RM may be warranted, but the prediction method allows for an accurate estimate without the need to elicit maximal muscle tension \[23\]. O’Connor et al. equation for predicting the 1RM from submaximal loads \[19\] seems to be one of the most reliable equations for bench press prediction \[16, 8, 23\].

Several approaches for predicting the 1RM were shown in literature \[16\]. Some of them (those predicting the one maximum repetition from submaximal loads \[8, 17, 18, 19, 20, 21, 22\]) will be compared (see Section 4.7) according to the different performance criteria (see Section 2.3) used in this study (RMSE, MAE and R). Some of these equations are shown in Table 2.1.

<table>
<thead>
<tr>
<th>Author</th>
<th>1RM prediction equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryzcki (1993)</td>
<td>$1RM = \frac{100w}{102.78 - 2.78r}$</td>
</tr>
<tr>
<td>Epley (1985)</td>
<td>$1RM = (1 + 0.333r)w$</td>
</tr>
<tr>
<td>Lander (1985)</td>
<td>$1RM = \frac{100w}{101.3 - 2.67123r}$</td>
</tr>
<tr>
<td>Lombardi (1989)</td>
<td>$1RM = wr^{0.1}$</td>
</tr>
<tr>
<td>Mayhew et al. (1992)</td>
<td>$1RM = \frac{100w}{52.2 + 41.9 \exp(-0.055r)}$</td>
</tr>
<tr>
<td>O’Connor (1989)</td>
<td>$1RM = w(1 + 0.025r)$</td>
</tr>
<tr>
<td>Wathen (1994)</td>
<td>$1RM = \frac{100w}{48.8 + 53.8 \exp(-0.075r)}$</td>
</tr>
</tbody>
</table>

There is a remarkable difference between the equations presented in Table 2.1: the linearity of some equations (Bryzcki \[8\], Epley \[17\], Lander \[18\] and O’Connor \[19\]), and those with a non-linear behavior (Lombardi \[20\], Wathen \[22\] and Mayhew et al.\[21\]). Non linear equations such as the ones proposed by Wathen \[22\] and Mayhew et al.\[21\], are more suitable when it comes to predicting the 1RM from submaximal loads that allow the individual to perform more than 10 repetitions with a correct technique. However, linear equations are suitable for a variable range of repetitions between 2 – 10RM, and in general, the lower the repetitions performed by the subject until exhaustion the more accurate tends to be the prediction.
2.1.2 Percentage of the 1RM

Resistance exercise intensity is commonly prescribed as a percent of 1RM. However, the relationship between the percentage of the 1RM and the number of repetitions performed at such percentage remains poorly studied, especially using free weight exercises [24].

Training prescription based on different percentages of the 1RM, has been used for years (at least since the late 1950s [15]) for different purposes such as increasing the athlete’s performance. It has been proposed [4], how at different percentages of the 1RM, different effects in the athlete’s performance occur (see Table 2.2).

<table>
<thead>
<tr>
<th>Load(%1RM)</th>
<th>Movement cadence</th>
<th>Rest intervals (minutes)</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 105 (eccentric)</td>
<td>Slow</td>
<td>4 – 5/7</td>
<td>Maximum strength and muscle tone</td>
</tr>
<tr>
<td>80 – 100</td>
<td>Slow to medium</td>
<td>3 – 5/7</td>
<td>Maximum strength and muscle tone</td>
</tr>
<tr>
<td>60 – 80</td>
<td>Slow to medium</td>
<td>2</td>
<td>Muscular hypertrophy</td>
</tr>
<tr>
<td>50 – 80</td>
<td>Fast</td>
<td>4 – 5</td>
<td>Power</td>
</tr>
<tr>
<td>30 – 50</td>
<td>Slow to medium</td>
<td>1 – 2</td>
<td>Medium resistance</td>
</tr>
</tbody>
</table>

Alternating training load according to the specific objectives of the athlete, or varying any of the other variables (such as number of sets, number of exercises, movement cadences, etc.) is reported to give enormous beneficial advantages to athletes (greater changes in strength, motor performance, total body weight, lean body mass, and percent body fat) with respect to nonperiodized training [15].

Based on the “RM continuum” (i.e. the range of repetitions and their relationship with different training goals like strength, hypertrophy, endurance or power) proposed by Fleck and Kraemer [25], strength gains are more pronounced when exercises are performed at intensities of 1-6RM (i.e. 6RM means that no more than 6 repetitions could be performed by the individual with correct technique for a certain action), hypertrophy is optimized at 6-12RM, and local muscular endurance is greatest at >12RM [24]. Loads of at least 90% 1RM may be optimal for strength gains in men, training performed at approximately 80% 1RM is optimal for hypertrophy, whilst muscular endurance training intensity should be lower than 80% 1RM [24].

Even though the 1RM is very dependent on the athlete’s characteristics and training status, no differences in number of repetitions performed at a given exercise intensity were
noted between trained and untrained males in three typical free-weight exercises (bench press, back-squat and arm curl) except during bench press at 90% of the 1RM [24]. The number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl [24]. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity [24].

2.1.3 Variables influencing the 1RM

As stated in [1], muscular strength can be determined by two components: muscle activation and muscle size. The first of these two components, muscle activation, is the result of efferent output from the central nervous system (CNS). This includes the control of motor unit recruitment (the number of active motor units) and motor unit firing rate (the rate at which they fire). Motor unit recruitment and firing rate are reflected in the amplitude of the interference pattern of the summed action potentials recorded by surface electromyography (sEMG). The second component of strength is based on the amount of contractile proteins within skeletal muscle. The amount of contractile tissue can be measured by cross-sectional area (CSA) and anthropometric measures used to infer muscle size [1].

Variables relationship influencing the one repetition maximum seems not to be fully understood [7]. In addition to repetitions number, other factors may affect the maximum amount of weight an individual can lift. Age, gender, ethnicity, limb lengths and circumferences, body mass, muscle mass, training routine, the rate of contractions and the time distribution between concentric, eccentric and recovery phases of a contraction cycle could all possible influence the load able to be lifted for a specific number of repetitions [16].

Kroll et al. [26] extended the research in this field by developing strength prediction equations using non-invasive simple measures of body weight (BW), body volume, segmental limb lengths and volumes of the upper limb for both males and females. Multiple regression analysis revealed that the best predictor of elbow flexion strength was BW for males ($R = 0.69$) and total upper limb volume for females ($R = 0.72$) [26]. Even though these anthropometric variables were applied in an elbow flexion, they could be significant as well for the flat bench press exercise.

Other variables such as range of motion or movement cadence have an influence in the 1RM. As stated by Marta Inez et al. [7], the number of repetitions at 75% of 1RM, at the speeds of 25 and 100s$^{-1}$, was also different between squat and bench press exercises, and between velocities for the same exercise. As well as velocity has a great influence in the 1RM prediction [7, 27], measurements of cross sectional area, circumferences of the limb involved in the movement and body mass seem to be the most important anthropometric variables related to strength [7].

Nevertheless, in a study with adolescent elite athletes [28], the variable years of training experience was better correlated to 1RM than any anthropometric variable [7]. Probably,
technique and experience have a greater impact in the assessment of the \(1RM\) rather than morphology [7].

As established in [29], hierarchical regression revealed an \(R = 0.87\) when predicting \(1RM\) from the NFL-225 test alone, which improved to \(R = 0.90\) with the addition of two different anthropometric variables: arm circumference and arm length. Equation 2.1 (fixed load of 225 lb) was proposed as a sensible model for predicting the \(1RM\) in the bench press action, with the addition of two different anthropometric measurements [29]:

\[
(2.1) \quad 1RM (lb) = 299.08 + 2.47 \text{armcircumference (cm)} - 4.60 \text{armlength (cm)} + 5.84 \text{reps}.
\]

Body circumferences or limb lengths are examples of anthropometric variables. In Figure 2.1 we can see as lengths examples: (a) L1, acromion process to deltoid tubercle; (b) L2, deltoid tubercle to olecranon process; (c) L3, olecranon process to ulnar styloid; (d) L4, ulnar styloid to tip of the third finger; and different circumferences examples: (a) AC, circumference at acromion process; (b) DEL, circumference at deltoid tubercle; ELB, circumference at olecranon process; (c) WJS, circumference at distal space to styloid process of the ulna; (d) HND, thickness of the base of the hand, cross-sectional height of a thenar and hypothenar eminence.

![Figure 2.1: Different anthropometric variables include circumferences and lengths [1].](image)

Other anthropometric variables include estimated fat-free mass, estimated percentage of body fat (determined by means of skin fold measurements in different sites such as anterior
thigh, axillaries fold and abdomen), etc. [30]

2.2 Data mining modeling

Three different data mining techniques will be used in this study to model the $1RM$ prediction: (a) multilayer perceptron with backpropagation algorithm; (b) general linear regression with forward selection; (c) genetic programming. One more data mining technique is used in this study to group the different subjects participating in the $1RM$ assessment: the k-means algorithm.

In this Section, we take a look at a general explanation of these algorithms, their advantages and disadvantages and how they work. In Section 2.2.1 the multilayer perceptron architecture is presented, its advantages and disadvantages and the backpropagation learning algorithm. Then in Section 2.2.2, we take a look at the linear regression with forward selection model, its pros and limitations. We continue showing a general genetic programming approach in Section 2.2.3 and finally, in Section 2.2.4 the k-means algorithm is presented.

2.2.1 Multilayer perceptron with backpropagation

Artificial neural networks (ANNs aforementioned), are massively parallel systems inspired by the architecture of biological neural networks, comprising simple interconnected units (artificial neurons). Neural networks have emerged as an important decision-making tool in different tasks such as predicting financial series, diagnosing medical conditions, identifying fraudulent credit card transaction or even predicting the failure rates of engines [31]. The value of neural network modeling techniques in performing complicated pattern recognition and non linear estimation has been demonstrated across an impressive spectrum of applications [32]. A few of these applications include particle accelerator beam control, credit card fraud detection, machine and hand-printed character recognition, mass spectra classification, quality control in manufacturing, petroleum exploration, war on drugs, medical applications, financial forecasting and portfolio management, and loan approvals [32].

Especially in the areas where non-linear relationships exist between dependent and independent variables, neural networks perform satisfactorily [31]. When designing the neural network architecture, maybe the most important point is to identify the main attributes that can affect the dependent variables. However, there is not a definite way of determining these attributes, and they are usually refined by trial and error approach such that different set of attributes are tested until the evaluation criteria (RMSE or MAE) is lower than a certain threshold [31].

A multilayer perceptron (MLP) is a kind of artificial neural network that consists of multiple layers of nodes in a directed graph, with each layer fully connected to the next one. MLP utilizes a supervised learning technique called backpropagation for training the network. Backpropagation networks are the most generalized neural networks currently in use [33]. This network requires data from which to learn. In order to learn, the network calculates the error, which is the difference between the desired response and the response, and a
portion of it (depending on the learning factor and the momentum) is propagated backwards through the network. At each neuron in the network the error is used to adjust weights, so that at the next epoch the error in the network response will be lower for the same inputs. This corrective procedure is called backpropagation and is applied continuously for each set of inputs or training data [32].

Classical backpropagation is a gradient method of optimization executed iteratively, with implicit bounds on the distance moved in the search direction in the weight space. This is achieved by incorporating a learning rate (the gain) and the momentum term (the damping factor) in the model [34].

Figure 2.2 (taken from [35]) shows an artificial neuron that computes the weighted sum of its \(n \) inputs and generates an output of \(y \). The neural network results from the arrangement of such units in layers, which are interconnected one to another. The resulting architectures solve problems by learning the characteristics of the available data related to the problem [35]. The activation function used is the sigmoid. Different activation functions have been used in different studies [34][32] such as the Gaussian, linear and a step-wise activation function, resulting generally in lower performance rates than the sigmoid.

![Figure 2.2: Computations of a neuron.](http://www.odec.ca/projects/2006/stag6m2/background.html)

In Figure 2.3\(^2\), we can take a look at a general MLP architecture.

The classical backpropagation algorithm is specified in Algorithm 1 [3].

\(^2\)Taken from http://www.odec.ca/projects/2006/stag6m2/background.html
Algorithm 1 Backpropagation learning algorithm.
1: Initialize all weights in network;
2: while \(\textit{epochs} < \) maximum number of epochs do
3: for each training tuple \(X \) in \(D \) do
4: \textbf{PROPAGATE THE INPUTS FORWARD:}
5: \hspace{1em} for each input layer unit \(j \) do
6: \hspace{2em} \(j \) outputs its actual input value
7: \hspace{1em} end for
8: \hspace{1em} for each hidden or output layer unit \(j \) do
9: \hspace{2em} compute the net input of unit \(j \) with respect to the previous layer, \(i \)
10: \hspace{2em} compute the output of each unit \(j \)
11: \hspace{1em} end for
12: \textbf{BACKPROPAGATE THE ERRORS:}
13: \hspace{1em} for each unit \(j \) in the output layer do
14: \hspace{2em} compute the error
15: \hspace{1em} end for
16: \hspace{1em} for each unit \(j \) in the hidden layers from the last to the first hidden layer do
17: \hspace{2em} compute the error with respect to the next higher layer \(k \)
18: \hspace{1em} end for
19: \hspace{1em} for each weight \(w_{i,j} \) in network do
20: \hspace{2em} compute the weight variance
21: \hspace{2em} weight update
22: \hspace{2em} end for
23: \hspace{1em} end for
24: end while

Figure 2.3: General multilayer perceptron architecture.
We can observe a series of particularities in both the architecture (see Figure 2.3) and the learning algorithm phases (see Algorithm 1):

- **Input layer:** contains the input neurons. In each training step, each neuron in this layer will receive as an input the value of a specific tuples’ attribute.

- **Weights input-hidden layer:** weights connecting the input layer and the hidden layer. The initial value of these weights is usually random.

- **Hidden layers:** number of different hidden layers used in the model. It is reported that no more than one or two hidden layers are needed [36] for most of the problems, as they are considered universal approximators.

- **Hidden neurons:** basically all the different nodes that will interact with the input nodes and the output nodes in a single hidden layer network. The number of neurons needed is best determined empirically.

- **Weights hidden-output layer:** weights connecting the hidden layer with the output layer. The initial value of these weights is usually random.

- **Output layer:** comprised of several output neurons used to predict the desired dependent variables.

- **Learning rate:** percentage of the error between the prediction and the actual value of the dependent variable that will be back propagated changing the connection weights between the different layers in the multilayer perceptron network.

- **Momentum:** simply adds a fraction \(m \) of the previous weight update (epoch \(n - 1 \)) to the current one. It is commonly used to prevent the system from converging to a local minimum or saddle point.

- **Epochs of training:** during iterative training of a neural network, an epoch is a single pass through the entire training set, followed by the prediction of the test set. When the number of epochs is equal to a certain number, the learning algorithm stops.

- **Total connectivity:** all the neurons of the layer \(n - 1 \) are connected to all the neurons of the layer \(n \). The initial weights of the connections between nodes (neurons) were set randomly.

In general, MLP networks with backpropagation provide a series of advantages compared to other methods:

- **Adaptive learning:** they have the ability to learn how to predict values, based on the data given for training. This way, just by selecting some representative cases of each of the population segments, it should be able to predict their actual one repetition maximum.
• Fault tolerance: they are robust models, and are suitable when there is partial destruction of the data, noisy data or outliers [3]. They perform better than other approaches such as linear regression when it comes to outliers, what makes them less sensitive to the variability of data values.

• Real-time operation: easy to integrate in hardware and software solutions.

• Once trained, the multilayer perceptron is capable of predicting in an accurate way data tuples never showed before to the network.

MLP networks with backpropagation present several disadvantages as well:

• Risk of overfitting: when learning is performed too long (too many epochs) or because of an excessive number of hidden neurons or layers, the neural network tends to “learn by heart” the tuples forming the training set instead of building a model with a proper generalization power. In overfitting, the performance on the training examples still increases while the performance on unseen data becomes worse.

• Adjustment of parameters and architecture: momentum, learning rate, and architecture distribution (number of hidden layers and neurons), are best obtained empirically.

• Attribute selection: it can be determined by means of sensitivity analysis how important a certain variable is, but just after generating the model (i.e. varying/altering the values of the attribute in the test set, and looking at the response). This way, if a certain variable does not modify the output as expected or within a certain threshold, it can be eliminated following the Occam’s razor principle.

2.2.2 General linear regression with forward selection

By far, the most widely used approach for numeric prediction (hereafter referred to as prediction) is regression. Regression analysis can be used to model the relationship between one or more independent or predictor variables and the dependent or response variable (continuous-valued). Many problems can be solved by linear regression, and even more can be tackled by applying transformations to the variables so that a nonlinear problem can be converted to a linear one [3].

Multiple linear regression is an extension of straight-line regression so as to involve more than one predictor variable. It allows response variable y to be modeled as a linear function of, say, n predictor variables or attributes. Our training data set, D, contains data of the form $X_i = (X_{i1}, X_{i2}, ..., y_{i1})$, where the X_i represents a tuple, the different attribute values are represented as $(X_{i1}, X_{i2}, ..., X_{in})$ and y_{i1} represents the actual value of the dependent variable. An example of a multiple linear regression model based on n predictor attributes or variables $X_1, X_2, ..., X_n$ is [3]:

$$Y = w_0 + w_1 X_1 + w_2 X_2 + ... + w_n X_n$$

where $X_1, X_2, ..., X_n$ are the values of the independent variables.
The estimates for the w_i coefficients are computed so as to minimize the sum of squares of differences between the predicted values and the observed values. The sum of squared differences is given by the “Sum of Squares of Error” $= \sum (y - y^*)^2$

\begin{equation}
SSE(w_0, w_1, w_2, ..., w_n) = \sum (y - (w_0 + w_1X_1 + w_2X_2 + ... + w_nX_n))^2
\end{equation}

at minima

\begin{equation}
\delta \left(\frac{SSE}{w_i} \right) = 0
\end{equation}

and $w_i=$unique solution

Finding the best subset of predictors (independent variables) for predicting the dependent variable, involves two opposing objectives. On one hand, we want every independent variable that is even remotely related to the dependent variable to be included. On the other hand, we can optimize the inclusion of all these variables into the equation, including as few variables as possible, in order to decrease the complexity of data collection and model maintenance. There are many different strategies for selecting variables for a regression model.

One of the most common approaches for selecting the variables when fitting a regression model is the forward selection method (confidence factor equal to 95%), which involves starting with no variables in the model, testing the addition of each variable using a chosen model comparison criterion (t-test probability), adding the variable (if any) that most improved the model (attending to R^2), and repeating this process until no variable improves the model or none of the remaining variables are significant. Recall that the R^2 of the regression is the fraction of the variation in your dependent variable that is accounted for (or predicted by) your independent variables. Note that once a variable enters the model, it cannot be deleted.

The inclusion of the different independent variables in the linear regression model is based on the p-value. The p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value ($p < 0.05$) indicates that you can reject the null hypothesis. In other words, a predictor that has a low p-value is likely to be a meaningful addition to your model because changes in the predictor’s value are related to changes in the dependent variable. Conversely, a larger (insignificant) p-value suggests that changes in the predictor are not associated with changes in the response.\(^3\)

Linear regression has several advantages:

- Easy to understand and interpret: its output is just a linear formula.
- Parameters do not need to be adjusted (just the confidence factor) or is not very sensitive to changes in the parameters: this way is really easy to generate the model.
- Following the “forward selection” method, all the variables in the model will be significant variables at a confidence factor given, this way, you can be sure that your data’s most statistically significant variables are all included in the model.

Linear regression presents several disadvantages as well:

- May not be as good as neural networks when it comes to noisy instances or outliers.
- Assumes that the variance of the dependent variable is the same for every value of the independent variable (homogeneity of variances or homoscedasticity).

2.2.3 Genetic programming

Genetic Programming (GP aforementioned), is a method to evolve computer programs. GP algorithms follow Darwins theory of evolution, often paraphrased as “survival of the fittest”. In GP there is a population of individuals that reproduce with each other. Over time, the best individuals will survive and eventually evolve to do well in the given environment [2].

The fundamental elements of an individual are its genes, which come together to form a genetic code. An individual is a tree-like structure and such there are two types of genes: *functions* and *terminals*. Terminals are leaves (nodes without children) while functions are nodes with children. The function’s children provide the arguments for the function [2]. As an example, it is shown in Figure 2.4 a possible individual.

![Figure 2.4: An individual tree structure. A possible individual in the population [2].](image)

In the example (see Figure 2.4) there are two functions (+ and x) and three terminals (3, x and 6). These genes available to the GP system must be selected or created by the user. This selection is crucial, as a wrong selection could lead to a system incapable of evolving a solution.

All these genes, could somehow be combined, in order to increase their performance and suitability for solving a certain problem. Individuals performance is measured by means of what is usually called a *fitness test*. Those individuals ranking high in the *fitness test* will be those that are better solutions to the problem.

Thus, biasing the system evolution so that highly ranked individuals reproduce more frequently, these individuals could reproduce with one another to produce a new population, which almost certainly, could be better than the average of the previous population. After the reproduction process takes place, this population of off-spring (i.e., the new generation) replaces the old population (i.e., the old generation) [37]. It could also be expected that the best individual in the new population would be better than the best individual of the previous population [2]. Typically, the best individual that appeared in any generation of a run (i.e., the best-so-far individual) is designated as the result produced by genetic programming [37].
It is possible to evaluate now every individual in the new population and rank each one as done previously. This process could be repeated until a termination criterion is met. Some of the most typical termination criterion are the generation number and the fitness threshold criterion. In the generation number criterion the evolution stops when the user-specified max number of evolutions have been run. In the fitness threshold termination criterion, the evolution stops when the best fitness in the current population becomes less than the user-specified fitness threshold and the objective is set to minimize the fitness. The fitness threshold criterion also stops the evolution when the best fitness in the current population becomes greater than the user-specified fitness threshold when the objective is to maximize the fitness. Eventually the best individual in the last population could be an excellent solution to the problem (or not, depending on how the system evolved). Other termination criterion such as fitness convergence, evolution time or gene convergence can be used as well as termination criterion.

On one hand, GP has several advantages such as (a) the dynamic variability of the individuals (or possible solutions) that are developed along the way [37]; (b) absence or relatively minor role of pre processing of inputs and post processing of outputs: the inputs, intermediate results, and outputs are typically expressed directly in terms of the natural terminology of the problem domain; (c) simultaneously involves a parallel search involving exactly the number of possible individuals in the solution search space [37]. In other words, multiple potential solutions are tested in each generation, as many as different individuals exist in that generation.

On the other hand, GP presents several disadvantages such as (a) the phenomenal computing resources required before any real-world problem can be tackled [2] (b) the selection of the multiple different parameters needed before starting a genetic programming algorithm such as the initialization algorithm, the number of individuals in each generation, the probabilities of crossover, mutation, etc.; (c) the necessity of implementing an efficient fitness function; (d) the selection of the different genes that could be part of the space of solutions; (e) even the evolution of an acceptable solution cannot be taken for granted, due to the random nature of GP [2].

A brief description of a basic genetic programming algorithm is shown in Algorithm 2.

We can take a look at Algorithm 2 and notice that the algorithm starts selecting a random population of n individuals or possible solutions to the problem. With the purpose of generating this initial random population three techniques are specified, namely grow, full and ramped-half-and-half [37]. With the grow technique, an individual may be a tree of any depth up to a specified maximum, m. The full method is very similar to the grow method except the terminals are guaranteed to be a certain depth, d. To increase the variation on structure both grow and full methods can be used in creating the initial population - this technique is called ramped-half-and-half. Only a maximum depth md, is specified but the method generates a population with a good range of randomly sized and randomly structured individuals: the population is divided into $md - 1$ parts and half of each part of the population is produced by the grow method, whilst the other half is produced using the full method. The argument for the full method is always md, whilst for the grow method starts in 2 and finishes with $md - 1$ [2].
Algorithm 2 Genetic programming algorithm.

1: d=Generate random population of n individuals.
2: **while** termination criterion not met **do**
3: **for** each individual in d **do**
4: evaluate the fitness of the individual $fitness(individual)$
5: **end for**
6: **generate a new population**
7: new population=empty
8: **while** (size(new population)$<$maximum individuals) **do**
9: Select a genetic operation probabilistically (P_c=probability of crossover, P_r=probability of mutation)
10: With a P_c crossover probability select two individuals based on fitness and create two new off-springs (children).
11: With a P_r mutation probability select an individual based on fitness and mutate the individual into a new off-spring (changing a random sub-tree).
12: Insert the new generated individual or individuals into the new population
13: **end while**
14: d=new population
15: $generation = generation + 1$
16: **end while**

Once the initial random population has been created, it needs to be tested against the fitness test function (see Algorithm 2). This function answers the question of how good (or bad) is a certain individual to solve the problem. Then, a new group of individuals (new population) will be created from the individuals in the previous generation (see Algorithm 2). This new population, will be created after performing a series of genetic operations such as:

- Crossover: organisms’ sexual reproduction is the analogy for crossover. Crossover requires two parent individuals and produces two different individuals for the new population. An example is shown in Figure 2.5.

- Mutation: a complete branch or sub-tree of a possible individual mutates, what usually leads to greater solution diversification, when the population converges to a certain set of solutions due to crossover.

Other common operations such as reproduction (i.e., copying the existing individual into the next population) may be considered as well as common genetic operations in genetic programming [37] and may be part of the genetic operations performed with the individuals. Other genetic operations such as editing, permutation, encapsulation and decimation [37] were ignored in this study.

Typically, all these genetic operations are performed with a certain probability defined by the user [37]. These genetic operations will be performed with the individuals of generation n until all the individuals of the subsequent generation ($n + 1$) have been generated. This
population of off-spring (i.e., the new generation) replaces the old population (i.e., the old generation), and this process continues until the termination criterion is met.

The creation of the new generation would result in only a random search if it were not for the selection function [37] (see Algorithm 2). Each of the individuals will be mutated or combined (with a crossover operation) depending on its ability to solve the problem (fitness evaluation). Usually it is used the “Fitness-proportionate Selection“ algorithm. With this algorithm, individuals are selected depending on their ability compared to the entire population, thus the best individual of a population is likely to be selected more frequently than the worst [2]. A common fitness-proportionate selection technique is called Roulette Wheel Selection. Conceptually, each member of the population is allocated a section of an imaginary roulette wheel. Unlike a real roulette wheel the sections are different sizes, proportional to the individual’s fitness, such that the fittest individual has the biggest slice of the wheel and the weakest individual has the smallest. The wheel is then spun and the individual associated with the winning section is selected. The wheel is spun as many times as is necessary to select the full set of parents for the next generation.

There are as well, some user decisions to take into account before starting the genetic programming algorithm as (a) population size: total number of individuals per generation that will be part of the space of possible solutions to the problem; (b) maximum number of generations: the number of generations needed by the genetic programming algorithm to converge could vary depending on the problem’s complexity or even could not converge to an acceptable solution; (c) maximum depth of the individuals tree: or the maximum of concatenated operations that will undergo in the actual solutions to the problem; (d) number of attributes in the different solutions: this is the actual terminals (the different attributes that will be taken into account when generating possible solutions to the problem); (e) the operations (i.e., functions) in the individual: the arithmetic operations that will be performed,
etc. (f) the probability of each genetic operation.

2.2.4 K-means algorithm

The k-means algorithm takes the input parameter k, and partitions a set of n objects into k clusters so that the resulting intracluster similarity is high but the intercluster similarity is low. Cluster similarity is measured in regard to the mean value of the objects in a cluster, which can be viewed as the clusters centroid or center of gravity [3]. Typically, the Euclidean distance is used to measure this cluster similarity. The Euclidean distance formula is shown below (see Equation 2.5):

$$d(p, q) = d(q, p) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \ldots + (q_n - p_n)^2} = \sqrt{n \sum_{i=1}^{n} (q_i - p_i)^2}$$

A tentative k-means algorithm is shown in Algorithm 3 [3].

Algorithm 3 k-means algorithm.

1: arbitrarily choose k objects from D as the initial cluster centers;
2: repeat
3: (re)assign each object to the cluster to which the object is the most similar using the euclidean distance;
4: update the cluster means, i.e., calculate the mean value of the objects within each cluster and assign it as the new cluster center;
5: until no change in the clusters

In Figure 2.6 it is shown an example of k-means execution. The algorithm execution starts with a random selection of k objects as cluster centers (cluster centroids), and continues in successive iterations updating the cluster centroids with the averaged values of the attributes from the objects closest to the centroid (or the objects within the cluster), until no change is obtained in the cluster centroids.

![Figure 2.6: K-means execution [3].](image)
2.3 Comparison criteria

In this study, different performance criteria was used for comparing the 1RM prediction models:

- **RMSE**: “Root Mean Square Error” is one of the most used measures of success for numeric prediction [32]. It is computed basically, by taking the average of the squared differences between each computed value and its corresponding correct value, and then taking the square root:

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (y_i - y_{*i})^2}
\]

- **MAE**: “Mean absolute error” is basically, the absolute difference between each of the predictions and the actual value, divided by the total number of tuples predicted.

\[
MAE = \frac{\sum_{i=1}^{n} |y_i - y_{*i}|}{d}
\]

- **R**: or “correlation coefficient“ is often referred to as Pearson’s product-moment r or r coefficient. The value requires both a magnitude and a direction of either positive or negative. It may take on a range of values from -1 to 0 to +1, where the values are absolute and non dimensional with no units involved. A correlation coefficient of zero indicates that no association exists between the measured variables (in this case, the predicted and the actual value). The closer the r coefficient approaches +-1, regardless of the direction, the stronger is the existing association indicating a more linear relationship between the two variables.

- **R²**: or “coefficient of determination“, pronounced R squared, indicates how well data points fit a statistical model. Provides a measure of how well observed outcomes are replicated by the model, as the proportion of total variation of outcomes explained by the model [38]. The value ranges from 0 to 1, where 1 indicates that the model prediction perfectly fits the data.

A Wilcoxon rank-sum test checks for the null hypothesis that two independent distributions have the same mean. An advantage when compared to a t-test is that it does not assume that the distributions are normal, so it is more robust whenever the distributions are not Gaussian [39]. In a prediction equation, we can estimate the error of the prediction as the difference between the predicted and the actual value. Each of these errors can be aggregated in order to form a distribution (error population) for a certain prediction equation. Intuitively, if we compare two of these distributions (one per prediction equation or model), we could expect that the best model should have lower error values than the worst.

A Wilcoxon rank-sum test seems to be an appropriate test to demonstrate the different performances of two different models/alternatives as:
• All the observations from both groups (the different error populations) are independent of each other (this is, the two different model’s errors are independent).

• The responses are ordinal as the greater the number, the greater the error when it comes to predicting the dependent variable.

• Under the null hypothesis, it is expected to find symmetry between populations with respect to probability of random drawing of a larger observation. This is, if both equations predicted equally well, it is expected that randomly, the probability of having a higher error rate in one of the equations is exactly the same as finding it in the other.

• Under the alternative hypothesis, the probability of an observation from one population (error of the first model) exceeding an observation from the second population (error of the second model) is not equal to 0.5.

2.4 Evaluating the accuracy of a predictor

As we only have access to a finite set of tuples, one approach for predicting a certain model accuracy could be training the model with the overall data, and then, use the same data to test how good or bad the model fits the data. However, the problem is pretty straightforward: (a) the final model probably will overfit the training data and (b) the error rate estimation may be too optimistic. A better approach could be splitting the data into two disjoint subsets: a test and a training set (i.e., the hold-out method). However, this presents several disadvantages as well: (a) if there are few tuples, we may lack of tuples in the training set; (b) if we get an “unfortunate“ split, the error rate could be misleading as it is a single train-and-test experiment.

In practice one does not usually have the luxury of a perfect training data set. With limited data one has to consider the trade-off between having as large a training set as possible and still leaving sufficient data points to test and validate the model. However, these limitations can be overcome with a family of resampling methods at the expense of more computation: the cross validation techniques [32]. The use of such techniques to estimate accuracy increases the overall computation time, yet is useful for model selection [3].

In particular, the random sub-sampling technique performs k data splits of the data set, where each split randomly selects a fixed number of examples (i.e., tuples) (size of the subsets determined by the user) without replacement. For each data split we retrain the models with the training examples (i.e., tuples), and estimate the test examples (i.e., tuples). Random sub-sampling is a variation of the holdout method in which the holdout method is repeated k times.

An example of random sub-sampling selection is presented in Figure 2.7.\(^4\)

\(^4\)From http://research.cs.tamu.edu/prism/lectures/iss/iss_J13.pdf
Thus, the random sub-sampling method randomly splits the data set into training and test data k times. For each such split, the model is fit to the training data, and predictive accuracy is assessed using the validation (i.e., test) data. The results are then averaged over the splits. In other words, for each data split we retrain the classifier from scratch with the training examples and then estimate the errors (E_i) with the test tuples. Hence, the true error estimate is obtained as the average of the separate estimates E_i (see Equation 2.8).

$$\text{Error} = \frac{1}{k} \sum_{i=1}^{k} E_i$$

where E_i can be calculated applying the RMSE or MAE equations (see Section 2.3) with the test tuples.

With the k-fold cross-validation technique, the original data set is randomly partitioned into k equal size data splits. Of the k data splits, a single data split is retained as the test set for testing the model, and the remaining $k-1$ data splits are used as training data. The cross-validation process is then repeated k times (the folds), with each of the k data splits used exactly once as the test data. The k results from the folds can then be averaged (or otherwise combined) to produce a single estimation. The advantage of this method over random sub-sampling is that all observations are used for both training and test, and each observation is used for validation exactly once. In general k remains an unfixed parameter, and needs to be set by the user.

An example of k-fold cross-validation is presented in Figure 2.8.5

\footnote{5From \url{http://research.cs.tamu.edu/prism/lectures/iss/iss_J13.pdf}}
As in the example shown in Figure 2.8, the original data set (i.e., total number of examples) could be split in 4 different folds (each fold containing the test examples). Each fold is used in successive steps (experiments) as the test set. The validation process continues until all the splits have been used once as the test set. As with the random sub-sampling method, the true error is estimated as the average error rate (see Equation 2.9).

\[
\text{Error} = \frac{1}{k} \sum_{i=1}^{k} E_i
\]

where \(E_i\) can be calculated applying the RMSE or MAE equations (see Section 2.3) with the test tuples.

When \(k = n\) (the number of observations), the k-fold cross-validation is exactly the leave-one-out cross-validation.
Chapter 3

Problem definition

In this study, the words “variables“ and “attributes“ will be used indistinctly as if they were synonyms. However, different connotations can arise when referring them in the different sections. Thereby, the word “variable“ will be used when referring to the actual value of a subject’s characteristics, whilst the word “attribute“ will be used in the context of the KDD process and data analysis.

As discussed in Chapter 2, many different variables influence an individual’s one maximum repetition. The purpose of this study was basically the inclusion into the health and sport’s community of well-known data mining techniques, which could aid in different aspects for predicting the $1RM$ and its inherent complexity. The following tasks have been carried out and their results are presented and analyzed throughout the present dissertation:

- Finding the most influential attributes in a linear regression model when it comes to predicting the $1RM$ from the data collected (see Section 4.3).
- Grouping individuals, based on their attributes, in order to explicitly distinguish among them and their possible best matching $1RM$ prediction equations (see Section 4.2.1).
- A cross validation study of current prediction equations based on submaximal loads (see Table 4.25 in Section 4.7).
- Building a tentative model, for predicting the $1RM$ from a wide range of repetitions number by means of an artificial neural network (see Section 4.4).
- Building a possible solution for predicting the $1RM$ from the data collected, based on genetic programming (see Section 4.5).
- Presenting the relationship between the selected percentage of the $1RM$ and the number of repetitions (differences between 65% and 75% of the $1RM$) (see Section 4.8.2).
- Validating the number of repetitions performed at a certain percentage (75%) of the $1RM$ (see Section 4.8.1).
• A validation of O’Connor prediction equation [19] (see Section 4.3).

• By means of data simulation, provide insights into the expected results of one repetition maximum prediction from submaximal loads (see Section 4.9).

In different cross validation studies, only Mayhew’s et al. equation was validated (by the same author [40, 41]), as well as Epley’s [17] formula in Cummings and Finn’s study [7, 42]. Several other studies [16, 8] have validated as well the linear model designed by O’Connor et al., and concluded that it was reliable not only for predicting the 1RM in the bench press exercise, but as well for predicting the 1RM in other exercises such as arm curl.

In Section 3.1 we will take a look at the experiment design. The data gathering process is exposed in Section 3.2, whilst threats to validity of the design are presented in Section 3.3.

3.1 Design of the experiment

With the purpose of reducing measurement errors, Hopkins [43] recommends involving the individuals taking part in the 1RM assessment in some kind of adaptation sessions before the actual one repetition maximum tests are carried out, or repeating the assessment for the novices and use the results of the second assessment. However it was not possible due to lack of possibilities of counting with the facilities and availability of people in the study. Nevertheless, people participating in the tests were used to work out with free weights and were in most of the cases occasional gym users, making the reliability of the test higher than with no practitioners.

Even though in this study it was tried to set a fix movement cadence, it was not possible due to the variability of the individuals participating in the experiment, and their different training backgrounds (handball players or casual gym users). What is more, a previous session should have been needed to assess that the movement cadence was the expected. Nevertheless, the time span between the subject’s first repetition to the last one was measured with a chronometer. This could help to set a medium speed per repetition. However, this movement cadence was not always the same, as typically the first ones were performed faster than the latest ones (even with the encouragement of the experimenters to continue until exhaustion with the same movement cadence).

Subjects were all gym members in San Sebastián de los Reyes’s local gym, or members of the Handball Club San Sebastián de los Reyes. A total of 50 subjects took part in the experiment (men and women). The population was formed by 20 women (ages between 18 – 27) and 30 men (ages between 18 – 46). As it was very difficult for the experimenter to have the participation of a specific population, not many restrictions were imposed to the subjects. It was enough to practice some kind of sport habitually, having a healthy and active lifestyle, and being used to train with free weights in their resistance training routines.

The most important thing was not only good performing of the lifting technique, but the individual’s safety. This way, and as there was no possibility of having a familiarization week before the experiment took part, people with not a proper lifting technique were encouraged
to leave the test as it was detected any deficiency in the technique, or if they had any previous episode of pain or injury related to weight lifting.

All subjects had some kind of weight training protocol in their training programs, and practice flat bench press at least once a week in the last six months. Even though when designing the experiment, it was taken into account the possibility of including curl of biceps with EZ bar (single joint exercise) and bench press (multi-joint exercise), the first was omitted due to the enormous variability existing into the individuals technique, and because it was not possible to have a familiarization session prior to the $1RM$ assessment.

The form template used for the gathering the data of all the subjects participating in the experiment is presented in Section 6.5. The attributes collected in the experiment are:

- **ID**: numerical attribute. As data gathering was completely anonymous, a number was given to each of the individuals; therefore, it represents a participant in the data sheet used in this study.

- **Date/ Hour**: when the experimental session took part. All of the $1RM$ tests took part between 16:00-20:00 pm (UGT+1).

- **Place**: where the experiment session took part. It is important to emphasize that the material used was different from place to place. This way, the data were collected in two different places:
 - Claudio Rodriguez Gym: where a mens Olympic bar that is 2.2 meters long and weighs 20 kg was used. The outer ends are 50 millimetres in diameter, while the grip section is 28 millimetres in diameter, and 1.31 meters in length.\(^1\)
 - Valvanera sports center: where a single bar 2 meters long and weighting 10 kgs was used. This bar was the most suitable, as not only men but women participated in the $1RM$ assessment (even though afterwards, women were discarded from the overall data used in this study, as discussed in Section 4.2).

- **Gender**: declared gender of the subject. Even though in the gathering process some women participated in the $1RM$ assessment, data were not used finally, as selected women did not have a proper technique in the bench press action.

- **Age**: declared age of the participant.

- **Body Weight (BW)**: weight in kilograms of the subject. This measurement was always taken with the same scale for all the subjects. BW is the most common anthropometric measure used in strength prediction [44, 1].

- **Height**: height in centimeters of the subject. Height was taken always with the same tape measure, and was collected as well as in other studies [1] to show the population characteristics participating in the $1RM$ assessment.

\(^{1}\)Taken from http://en.wikipedia.org/wiki/Barbell#Men.27s_bar
• **Training protocol**: split routine or full body routine. Split routine is a type of training where specific muscle groups are trained in a single session. This way, the athlete separates their muscle groups or movement patterns on different days. In a full body routine, all muscular groups are trained together in the same workout.

• **Weekly hours dedicated to resistance training**: weekly hours dedicated to weight lifting (training) in a week (as a mean in the last month).

• **Weekly hours dedicated to other sports**: weekly hours dedicated to other sports in a week (as a mean in the last month).

• **Years of experience with weight training**: experience in resistance training. The maximum value of this attribute was set to 6 for simplicity’s sake.

• **Hours from last session**: it is recommended that at least 48 hours have elapsed, since the last training, in order to avoid the interference of muscle soreness or fatigue in the 1RM assessment [45, 46].

• **Volume**: the number of exercises, number of sets and number of repetitions per set could be used to determine an individual’s training methodology. This attribute has a great influence in an individual’s training routine, and could somehow be related to the 1RM. This way, people who trained for developing maximum strength, could be more used to heavy weights and explosive lifting than someone whose training is based on a muscular endurance training protocol. This attribute was not finally selected, as not all the subjects had a clear idea of the meaning of the attribute, had not a fixed volume of training, or were not able to fill it in correctly.

• **14 weeks of exercise**: it was assumed that after 14-week of training, the training had reduced the neural inhibition thought to limit the full expression of strength during lifting [21, 47]. This attribute could only take two different values: true or false.

• **Resting**: subjective scale on how good they rested int the previous night to the 1RM assessment. (0 no sleep at all, 10 completely rested).

• **Mood**: subjective scale on how good or bad temperament they had the day of the experiment (0 lowest, 10 greatest).

• **Creatine**: during intense exercise of short duration, the adenosine triphosphate (ATP)-phosphocreatine (PCr) system is the predominant energy supplier for muscular work [48]. When PCr becomes depleted, performance deteriorates because ATP cannot be resynthesized at the rate required [48]. It has been shown that oral Cr supplementation, in amounts substantially in excess of the normal dietary intake, can elevate the whole-muscle total Cr stores by approximately 20%, one third of which is in the form of PCr [49]. Several studies have shown that short-term Cr supplementation may enhance the athletes capacity to perform repeated muscular actions or bouts of high-intensity exercise and maintain power output as well as delay onset of muscular fatigue, in addition to
promoting faster recovery between bouts of intense exercise [50]. However, in this study it could not be analyzed the interaction of the attribute, as all the subjects declared not to intake creatine supplementation.

For each of the sets performed by all subjects in the 1RM assessment, several other attributes were collected:

- **Accumulated repetitions**: number of repetitions accumulated at the beginning of the set. As all the different sets were performed until exhaustion, a new attribute was taken into account: the total number of repetitions until exhaustion performed prior to the beginning of the next set. This record, could somehow have a negative influence, as fatigue could be correlated to the actual 1RM performed by an individual. The more repetitions performed until exhaustion by an individual, the more muscular acidosis the individual may be experiencing, what could interact with his final power output in the 1RM set.

- **Weight lifted**: weight lifted by the subject in the set. It was first adjusted to a weight that the individual could lift up around 15 times (15RM, roughly at 60% of their supposed 1RM). Weight was increased set by set until reaching their actual 1RM in up to 5 sets. Thereby, different weights will be recorded for a single individual (i.e. one different weight in each of the sets performed until reaching his actual 1RM set). Thus, a list of different values (weight lifted) is collected for each of the subjects (one per set) participating in the 1RM assessment. The number of sets performed until reaching the actual 1RM in the bench press action for this study is always lower or equal than 5.

- **Repetitions**: number of repetitions performed until exhaustion in each of the sets. Thereby, different number of repetitions will be recorded for a single individual (i.e. number of repetitions performed until exhaustion for each of the sets until reaching his actual 1RM set). Thus, a list of different values (number of repetitions) is collected for each of the subjects (one per set) participating in the 1RM assessment. The number of sets performed until reaching the actual 1RM in the bench press action for this study is always lower or equal than 5.

- **Time to exhaustion**: time elapsed between the very first moment the individual lifts the bar from the hooks, and the end of the set, when the individual leaves the bar in the hooks (with our without assistance). Thus, a list of different values (time to exhaustion) is collected for each of the subjects (one per set) participating in the 1RM assessment. The number of sets performed until reaching the actual 1RM in the bench press action for this study is always lower or equal than 5.

- **RPE at first repetition of each set**: there is a great demand for perceptual effort ratings in order to better understand man at work. Such ratings are important complements to behavioral and physiological measurements of physical performance and work capacity. This is true for both theoretical analysis and application in medicine, human factors, and sport [5]. Most scientists and practitioners in the health sciences agree that
it is important to understand subjective symptoms and how they relate to objective findings [5]. The individual’s perception of exertion during physical work is interesting in exercise prescriptions. The overall perceived exertion rating (RPE) integrates various information, including the many signals elicited from the peripheral working muscles and joints, from the central cardiovascular and respiratory functions, and from the central nervous system [5, 51]. All these signals, perceptions, and experiences are integrated into a configuration [5]: the normalized (0-10) rating of perceived exertion. In this study, it was collected the individual’s perception of exhaustion (RPE) for the first repetition in each of the different sets performed in the bench press action, using the Borg 10-category scale (see Table 3.1). Thus, a list of different values (RPE at first repetition) is collected for each of the subjects (one per set) participating in the 1RM assessment. The number of sets performed until reaching the actual 1RM in the bench press action for this study is always lower or equal than 5.

| RPE at the end of set: | the rating of perceived exertion (RPE) was recorded after each set in the assessment [12, 52, 5, 51] using the Borg 10-category scale. Thus, a list of different values (RPE at the end of the set) is collected for each of the subjects (one per set) participating in the 1RM assessment. The number of sets performed until reaching the actual 1RM in the bench press action for this study is always lower or equal than 5. |

Data tuples were organized attending to sets performed until exhaustion. Thus, an individual in the experiment would have as many tuples, as sets performed until reaching his actual 1RM. The number of sets was always lower than 5.

Different attribute types are commonly used for describing the different variables that will be used in the KDD process:
- Nominal type: the values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another.

- Ordinal type: the values of an ordinal attribute provide enough information to order objects.

- Interval type: for interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists.

- Ratio type: for ratio variables, both differences and ratios are meaningful.

The names, types and range of possible values for each of the different attributes collected in the 1RM assessment are specified in Table 3.2. The attributes weight, repetitions, RPE at the beginning and at the end of the set, time to exhaustion and accumulated repetitions were collected for all the sets performed by each of the subjects until reaching their actual 1RM.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Nominal (numeric)</td>
<td>[0 . . . 50]</td>
</tr>
<tr>
<td>Date/hour</td>
<td>Interval</td>
<td>Date value</td>
</tr>
<tr>
<td>Place</td>
<td>Nominal (binary)</td>
<td>[0, 1]</td>
</tr>
<tr>
<td>Gender</td>
<td>Nominal (binary)</td>
<td>[M, W]</td>
</tr>
<tr>
<td>Age</td>
<td>Interval (numeric)</td>
<td>[0 . . . 100]</td>
</tr>
<tr>
<td>Body Weight (kgs)</td>
<td>Interval (numeric)</td>
<td>[0 . . . 200]</td>
</tr>
<tr>
<td>Height (cms)</td>
<td>Interval (numeric)</td>
<td>[0 . . . 250]</td>
</tr>
<tr>
<td>Training protocol</td>
<td>Nominal (binary)</td>
<td>[Full Body, Split routine]</td>
</tr>
<tr>
<td>Weekly hours weight lifting</td>
<td>Interval (numeric)</td>
<td>[0 . . . 30]</td>
</tr>
<tr>
<td>Weekly hours other sports</td>
<td>Interval (numeric)</td>
<td>[0 . . . 30]</td>
</tr>
<tr>
<td>Years of experience weight training</td>
<td>Interval (numeric)</td>
<td>[0 . . . 6]</td>
</tr>
<tr>
<td>Hours from last session</td>
<td>Interval (numeric)</td>
<td>[0 . . . 400]</td>
</tr>
<tr>
<td>Volume</td>
<td>Interval (numeric)</td>
<td>[0 . . . 10000]</td>
</tr>
<tr>
<td>14 weeks of exercise</td>
<td>Nominal (binary)</td>
<td>[Yes, No]</td>
</tr>
<tr>
<td>Resting</td>
<td>Ordinal (numeric)</td>
<td>[0 . . . 10]</td>
</tr>
<tr>
<td>Mood</td>
<td>Ordinal (numeric)</td>
<td>[0 . . . 10]</td>
</tr>
<tr>
<td>Creatine</td>
<td>Nominal (numeric)</td>
<td>[0 . . . 3]</td>
</tr>
<tr>
<td>Acc. repetitions</td>
<td>Interval (numeric)</td>
<td>[0 . . . 100]</td>
</tr>
<tr>
<td>Weight lifted</td>
<td>Interval (numeric)</td>
<td>[0 . . . 200]</td>
</tr>
<tr>
<td>Repetitions</td>
<td>Interval (numeric)</td>
<td>[0 . . . 20]</td>
</tr>
<tr>
<td>Time to exhaustion</td>
<td>Interval (numeric)</td>
<td>[0 . . . 60]</td>
</tr>
<tr>
<td>RPE (first set repetition)</td>
<td>Ordinal (numeric)</td>
<td>[0 . . . 10]</td>
</tr>
<tr>
<td>RPE (last set repetition)</td>
<td>Ordinal (numeric)</td>
<td>[0 . . . 10]</td>
</tr>
</tbody>
</table>
3.2 Data collection procedure

Data collection was completely anonymous. All the subjects were assigned a number (ID) which was their identifier during the experiment. They all performed the flat bench press exercise, in groups of up to five subjects.

There was a established protocol of proceeding before the actual 1RM assessment was carried out:

1. Each subject signed a written informed consent (see Section 6.5) prior to the instructive of the technique.

2. Each subject was informed about the procedure of the test, the demands and risks associated with the study, and the freedom to ask whatever doubt they had with respect to the assessment. The normalized Borg [5] perception scale was explained, and the subjects were encouraged to use it in the 1RM assessment.

3. As in the study of Reynolds et al. [16], subjects were excluded based upon known disease or signs or symptoms of health-related problems that would interfere with their ability to complete the protocol or compromise their health. They were encouraged to abandon the test session at any time if they wanted to.

4. Firstly, a general warm up was performed (in the treadmill or static bike) for 10 minutes, in order to increase blood circulation and temperature of the involved muscle groups.

5. Secondly, a specific warm up was performed in the bench press (the barbell without any extra weight).

Several considerations were taken into account while conducting the experiment:

- The rest interval between sets was between 3 and 5 minutes. Rest periods of less than 3 minutes are likely to be too short [16, 53]. Muscle creatine phosphate recovery reveals a dual exponential curve having a fast and slow component. The fast component of creatine phosphate recovery is complete within less than 2 minutes and represents 80-90% of complete creatine phosphate recovery. Additionally the slow component may require up to 45-90 seconds after the fast component. Both components of creatine phosphate recovery are slowed with increasing acidosis [16, 53].

- National Strength and Conditioning Association (NSCA) recommendations were followed while performing the flat bench press action with free barbell weight [54].

- All the sets were performed until exhaustion.

- As in other studies [12], if a repetition was performed by a subject for more than half of the range of motion, it was taken into account as 0.5 repetitions. This observation was always done by the same instructor, and could lead to more accurate predictions when generating the 1RM estimation models. For example, if a subject performed 2
repetitions with correct technique and then, he was able to reach more than half of the range of motion in another one, 2.5 repetitions will be recorded for that set.

- Weight was increased until reaching the 1RM for all subjects in up to 5 sets. Initial weight was set around 60% of the individual’s estimated 1RM, and was increased up to 10-20% per set.

- Two spotters were standing always at both sides of the barbell to help in case the participant needed helping in the last repetition.

- All the subjects were encouraged to lower the bar until it touched their chests, and keep all the five-point body contact, otherwise, the repetition was not considered as a valid repetition.

- Subjects were encouraged to lift additional resistance to be sure the maximal muscle force was achieved. Only when it was clear from their effort that no further resistance could be added was a non-failure set accepted. The 1RM was determined to be the most resistance the subject could concentrically lift once and using proper technique through the full range of motion.

- Even though subjects performed repetitions at a volitional speed, the maximum pause allowed between each repetition was 3 seconds. All the subjects were encouraged to perform each repetition immediately after the preceding repetition [24].

- After each set, subjects provided the RPE using the Borg CR10 scale [5], for the first and the last repetition in the set.

- Verbal encouragement was provided during the testing session to ensure adequate motivation and effort[55, 56].

- If a certain subject did not lift his actual 1RM, all his data would be discarded. In other words, if the actual 1RM of the subject was not recorded, then his data could not be used to build a predictive model of the 1RM (i.e., it is needed the actual subject 1RM to train the different models).

Time intervals were measured and rounded up to the closest second available.

Different number of sets were performed by each of the subjects until reaching their actual 1RM, due to their different abilities and experience in weight lifting, the initial weight lifted in their first set, or the different weight increments between sets. Nevertheless, the load was set since the very first moment about a 60% for each of the subjects’ 1RM (roughly based on their opinions on how much weight they could lift in a maximum repetition), and increased in a 10-20% per set, until reaching their actual 1RM. If a subject couldn’t lift the weight proposed at the beginning of the set for the 1RM, then successive attempts were performed until reaching it. To date there is no standard for minimal rest interval between successive 1RM attempts [23]. Several studies have used a 2 to 3 minute rest period [57, 58]. If any of
the subjects performed more than 20 repetitions in a certain set, that set will not be counted, as it could be considered as a warm-up set, and weight will be increased immediately for the next set in a 10-20%. All sets where the number of repetitions performed by a subject is greater than 20, was considered a warm-up set. In this study a 3 to 5 minute rest period was used between sets for each of the subjects, based on their readiness to perform the next set without any symptoms of fatigue or soreness.

The tentative 1RM assessment protocol used in this study is presented in Table 3.3.

Table 3.3 Tentative 1RM assessment protocol.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Barbell flat bench press.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sets</td>
<td>Up to 5 sets.</td>
</tr>
<tr>
<td>Number of repetitions</td>
<td>Repetitions until exhaustion.</td>
</tr>
<tr>
<td>Movement cadence</td>
<td>Volitional. Maximum pause allowed 3 seconds.</td>
</tr>
<tr>
<td>Rest intervals</td>
<td>3 to 5 minutes.</td>
</tr>
</tbody>
</table>

For each of the sets performed by the different subjects participating in the 1RM assessment, several attributes were collected (see Table 3.4).

Table 3.4 Attributes collected for each set.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulated repetitions</td>
<td>The number of repetitions performed in previous sets until exhaustion.</td>
<td>[0…100]</td>
</tr>
<tr>
<td>Repetitions</td>
<td>Repetitions until exhaustion in the set.</td>
<td>[0…20]</td>
</tr>
<tr>
<td>Weight</td>
<td>Weight lifted in the set.</td>
<td>[0…200]</td>
</tr>
<tr>
<td>Time to exhaustion</td>
<td>Time until the subject performs the last repetition in the set.</td>
<td>[0…60]</td>
</tr>
<tr>
<td>RPE (first set repetition)</td>
<td>RPE</td>
<td>[0…10]</td>
</tr>
<tr>
<td>RPE (last set repetition)</td>
<td>RPE</td>
<td>[0…10]</td>
</tr>
</tbody>
</table>

3.3 Threats to validity

- Data were collected in two different locations. Both of the locations had their own bench press and bar and it was not possible to have always the same equipment. Neverthe-
less, cautions were taken for providing all the subjects in the same location the same conditions.

- Temperature, humidity and clarity conditions may vary between the different subjects’ locations.

- The population participating in the experiment was heterogeneous (different sport backgrounds such as handball, or casual gym users) and the size of the data set relatively small: after data cleaning and pre-processing (see Section 4.2), just 30 different male subjects entered in the target data set used for generating the models. Data collected from females was finally removed as stated in Section 4.2.

- All sets were performed until exhaustion. However, a rest interval of 3 to 5 minutes between sets was followed in order to allow muscular recuperation [57, 58].

- The size of the population (30) was determined to be appropriate using a priori power estimates based on the recommendation of at least 10 subjects per independent variable when conducting biomedical or physiological research involving human subjects [16]. However, some models built in this study (see Section 4.4 and Section 4.3) used more than 2 attributes, what could lead to not as reliable prediction models as expected. They were built containing in the training set fewer than 30 subjects because it was necessary to split the data into both the training and test set. These models should be considered with caution.

- Age was diverse (26.69 + 6.74 years old) among all the experimental subjects. Physical condition may vary throughout an individual’s life. Age may somehow have an influence on leisure and free time for doing sport, and may affect the individual’s $1RM$. In this study, several models were built for predicting the $1RM$ for a wide range of population.

- Repetitions number was unbalanced in the data set: all the subjects lifted their actual $1RM$, whilst few of them performed more than 14 repetitions in a set. This resulted in an unbalanced data set, where fewer data sets were found in the upper repetitions range than in the lower. Thereby, reliability in the upper range of repetitions may not be as certain as in the lower range of repetitions.

- Training routines of the subjects were very dissimilar. While most of them used to train at least 3 times a week in a gym, others just had a one day resistance training in their routines.
Chapter 4

KDD process

First, the different tools used in this study are presented in Section 4.1. Then we take a look at the data preparation in Section 4.2. Thirdly, in Section 4.2.1 the k-means algorithm is used to differentiate the population participating in the 1RM assessment attending to their training background experience and body weight. Afterwards, separate models for predicting the 1RM are created applying the different data mining analysis techniques presented (see Sections 4.3, 4.4, and 4.5; where the linear regression, multilayer perceptron neural networks and genetic programming algorithms were applied respectively). Next, in Section 4.6 we evaluate and compare these different models proposed, and compare some of the different prediction equations presented previously in literature (see Section 4.7). In Section 4.8, a post-hoc analysis is elicited from the data available in the present study, and by means of data simulation in Section 4.9, a model that seems to confirm Epley’s equation [17] is built.

4.1 Tools used

The following tools were used in this study:

- **Weka**: Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.\(^1\)

- **IBM SPSS**: IBM SPSS Statistics Base is statistical analysis software that delivers the core capabilities you need to take the analytical process from start to finish. It is easy to use and includes a broad range of procedures and techniques to help you increase revenue, outperform competitors, conduct research and make better decisions.\(^2\)

\(^1\)More info at: http://www.cs.waikato.ac.nz/ml/weka/

• **Microsoft Excel**: Microsoft Excel is a spreadsheet application developed by Microsoft for Microsoft Windows and Mac OS. It features calculation, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications. It has been a very widely applied spreadsheet for these platforms, especially since version 5 in 1993, and it has replaced Lotus 1-2-3 as the industry standard for spreadsheets. Excel forms part of Microsoft Office.³

• **Eclipse**: Eclipse is an integrated development environment (IDE). It contains a base workspace and an extensible plug-in system for customizing the environment. Written mostly in Java, Eclipse can be used to develop applications. By means of various plug-ins, Eclipse may also be used to develop applications in other programming languages: Ada, ABAP, C, C++, COBOL, Fortran, Haskell, JavaScript, Lasso, Perl, PHP, Python, R, Ruby (including Ruby on Rails framework), Scala, Clojure, Groovy, Scheme, and Erlang. It can also be used to develop packages for the software Mathematica. Development environments include the Eclipse Java development tools (JDT) for Java and Scala, Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others.⁴

• **Java**: Java is a computer programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few implementation dependencies as possible. It is intended to let application developers "write once, run anywhere" (WORA), meaning that code that runs on one platform does not need to be recompiled to run on another. Java applications are typically compiled to bytecode (class file) that can run on any Java virtual machine (JVM) regardless of computer architecture. Java is, as of 2014, one of the most popular programming languages in use, particularly for client-server web applications, with a reported 9 million developers. Java was originally developed by James Gosling at Sun Microsystems (which has since merged into Oracle Corporation) and released in 1995 as a core component of Sun Microsystems’ Java platform. The language derives much of its syntax from C and C++, but it has fewer low-level facilities than either of them.⁵

4.2 Data preprocessing

50 subjects participated in the 1RM assessment (men and women). This proportion was unbalanced (30 men and 20 women), and several differences were found among the two groups: (a) many women participating in the study had not a proper lifting technique, mainly because they were most of them handball players, and were not used to resistance training; (b) several women abandoned the assessment due to soreness or muscular fatigue, or just abandoned the assessment because they wanted to. Hence only men were included in the target data; otherwise the data would have been very unbalanced referring to gender (10 total valid women

⁴More info at: https://www.eclipse.org/
⁵More info at: https://www.java.com/es/
vs. 30 total valid men), what could lead to inconsistent results or models. In some studies [24], there were no differences between trained and untrained in the number of repetitions performed in free weight back squat using various percentages of 1RM. However, differences were found between trained and untrained women, and it was attributed to the fact that women habitually performed muscular endurance-type training [59]. As data was unbalanced referring to gender and that could arise into possible implications to the different models built, these tuples were removed from the final data set.

Thereby in this study the target data set will be comprised of 97 tuples (representing each of them a set until exhaustion of a certain subject). A total of 30 men subjects were into the target data set. These subjects reached to their actual 1RM in a different number of sets (all the sets were performed until exhaustion). Each of these sets represents a tuple in the target data set, and each of the subjects reached to their actual 1RM in fewer than 5 sets. Thereby, the maximum number of tuples per subject in the target data used in this study was 5.

Data was unbalanced attending to repetitions performed in the different sets (there were 30 tuples for the actual 1RM and the number of tuples decreased as the number of repetitions increased). This happened because of the experiment design: three to five sets to exhaustion had to be performed by each of the subjects until reaching their actual 1RM. This way, some individuals performed in the first set more repetitions than others, whilst some of them reached to their actual 1RM in fewer sets than others. This lead to an unbalanced data set, where all the subjects had a measurement of their actual 1RM and several other measurements at different repetitions to fatigue.

From the actual data collected, the following variables were removed: (a) creatine: no participant declared to have creatine supplementation; (b) volume: some subjects had not a certain idea of the different variables asked in the attribute (the number of repetitions, or the number of sets varied depending on the day, or they had not a specific training routine), what lead to different values, missing values or inconsistent values; (c) gender: as all the subjects were men, this attribute was discarded; (d) date/hour: it was not considered the date or hour as a valid attribute when trying to predict an individual’s one repetition maximum, as certainly no correlation was identified between the hour when the assessment took part and the actual 1RM of the subjects.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm.)</td>
<td>177.97</td>
<td>7.806</td>
</tr>
<tr>
<td>Body Weight (kg.)</td>
<td>80.84</td>
<td>11.72</td>
</tr>
<tr>
<td>Resistance training per week (hours)</td>
<td>4.05</td>
<td>2.29</td>
</tr>
<tr>
<td>Other activities per week (hours)</td>
<td>3.92</td>
<td>3.79</td>
</tr>
<tr>
<td>1RM (kg.)</td>
<td>81.35</td>
<td>17.647</td>
</tr>
<tr>
<td>Age*</td>
<td>26.69</td>
<td>6.74</td>
</tr>
</tbody>
</table>
CHAPTER 4. KDD PROCESS

Table 4.2 Population attributes normality test.

<table>
<thead>
<tr>
<th>Tests of normality</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Height</td>
<td>0.136</td>
<td>30</td>
</tr>
<tr>
<td>Body weight</td>
<td>0.094</td>
<td>30</td>
</tr>
<tr>
<td>Resistance training per week</td>
<td>0.143</td>
<td>30</td>
</tr>
<tr>
<td>Other activities per week</td>
<td>0.195</td>
<td>30</td>
</tr>
<tr>
<td>1RM</td>
<td>0.115</td>
<td>30</td>
</tr>
<tr>
<td>Age*</td>
<td>0.230</td>
<td>29</td>
</tr>
</tbody>
</table>

The subject’s \((n = 30)\) characteristics with their mean and standard deviations are presented in Table 4.1.

A normality test was conducted, in order to assess if the different variables followed a normal distribution. As shown in Table 4.2, all attributes but “weekly hours dedicated to other sports“ (Other activities per week) and age followed a normal distribution. This could be due to the population participating in the experiment: handball players used to practice more hours a week their sport than resistance training; whilst population age was very heterogeneous due to the different individuals participating in the experiment.

Figure 4.1 shows the different attributes histograms of the population participating in the 1RM assessment. Body weight, height, weekly hours dedicated to weight lifting (“resistance training per week“ in Figure 4.1), weekly hours dedicated to other sports (“other activities per week“ in Figure 4.1), age and the actual 1RM of the population, are presented with their respective normal distribution line (if the attribute follows the normal distribution) in Figure 4.1.

Weekly hours of resistance training was normally distributed around a mean of 4 hours a week (what seems to indicate that the actual population was formed by casual gym users), whilst weekly hours of other sports, seems not to be normally distributed (as expected, due to the existing variability among the participant’s training routines). As the population was very heterogeneous, it did not seem to follow a normal distribution (most hand-ball players used to train with weights fewer hours a week than people who were used to go to the gym, and the opposite for gym members). 1RM for the bench press action follows a normal distribution, centered in 81.35 kilograms, for the different subjects in the assessment (see Figure 4.1), whilst age did not follow the normal distribution (26.69 ± 6.74 years old) as population was very heterogeneous (1 missing value in the data gathered, see Figure 4.1).

A plot of the different data variables collected and used in the study to generate the different 1RM prediction models from submaximal loads (weight and repetitions) is shown in Figure 4.2. The whole dataset was used to plot the histograms shown in Figure 4.2, as each of the different tuples represent a subject’s set of the bench press action until exhaustion. It
Figure 4.1: Distribution of the population attributes.
is important, to emphasize, that weight and repetitions are those variables used in prediction equations based on submaximal loads for the 1RM, and are those of paramount importance for the models built in this Chapter.

In Figure 4.2a, we can take a look at weight distribution in the different sets performed by the subjects participating in the 1RM assessment, plotted with the normal distribution line. It is noteworthy that this distribution was formed by the different weights used by all the participants in the different sets performed until exhaustion. Thereby, around 18 of the participants lifted 60kgs (barbell with two discs of 20 kilograms) whilst 16 of them lifted 80 kilograms in different sets to exhaustion.

In Figure 4.2b, we can observe how a different number of repetitions was performed in the different sets for each of the subjects participating in the 1RM assessment. As discussed in Section 3.3, all subjects performed their actual 1RM, whilst none of them performed 12 repetitions (see Figure 4.2b). Most of the data gathered in the assessment was in the range of 1 to 11 repetitions (see Figure 4.2b). Thus, in those sets where the number of repetitions until exhaustion is greater than 10, the reliability of the proposed 1RM prediction models could be lower than desired.

A test of normality was conducted, in order to determine weight’s adequacy to fit a normal distribution as expected (like 1RM). Shapiro-Wilk’s test [60] seems to indicate that weight is following a normal distribution (see Table 4.3).

<table>
<thead>
<tr>
<th>Test of normality</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Weight</td>
<td>0.124</td>
<td>97</td>
</tr>
</tbody>
</table>

Table 4.3 Weight normality test.
When it comes to the repetitions to exhaustion performed by all the subjects in the different sets (referred as Repetitions in Figure 4.2), we can see that all the participants performed their actual 1RM. A maximum of 5 sets until reaching their actual 1RM were performed by each of the subjects, and a different number of repetitions was achieved in each of them. Two different subjects that reached to their actual 1RM in the fifth set, might had performed a different number of repetitions for each set. This number of repetitions was the highest possible while lifting the different weights plotted in Figure 4.2.

When trying to predict the 1RM, the attribute “repetitions” to exhaustion was very unbalanced. This way, the models generated in the present study could be more reliable in the range from 1 to 10 repetitions, as long as there were not many tuples in the upper range of repetitions (10-20 repetitions).

A complete list of linear correlations between the 1RM and some of the variables specified in the section so far (weekly hours of resistance training, weekly hours dedicated to other activities, height and body weight), split routine or full routine, and years of training, is shown in Table 4.4.

Table 4.4 Correlations with 1RM.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance t.(week)</td>
<td>0.681**</td>
<td>*0.01 level</td>
</tr>
<tr>
<td>Other a.(week)</td>
<td>-0.018</td>
<td>*0.05 level</td>
</tr>
<tr>
<td>Height</td>
<td>-0.220</td>
<td>*0.01 level</td>
</tr>
<tr>
<td>Body Weight</td>
<td>-0.239</td>
<td>*0.01 level</td>
</tr>
<tr>
<td>Split r.</td>
<td>0.252</td>
<td>*0.05 level</td>
</tr>
<tr>
<td>Full r.</td>
<td>-0.171</td>
<td>*0.05 level</td>
</tr>
<tr>
<td>Years exp.</td>
<td>0.419*</td>
<td>*0.05 level</td>
</tr>
</tbody>
</table>

The results shown in Table 4.4, seem to indicate that years of training, is better correlated than body weight to the actual 1RM in an heterogeneous population. This seems to agree with the results found for predicting the one repetition maximum in high-school power lifters [28]. Maybe when there is a great difference in the physical conditioning between subjects, body weight is not as important as body composition (free fat mass or body circumferences) for predicting the 1RM.

The data collected seems to follow a normal distribution attending to the one repetition maximum, body weight, height and weight lifted by the participants. This seems to validate the data collected as the distribution is the expected; with the exception of repetition number, age and weekly hours dedicated to other sports by the participants. These irregularities, could have an impact in the validity of the models generated in the study, and are treated as threats to validity in Section 3.3.

4.2.1 Grouping the participants by means of clustering techniques.

As a result of the heterogeneous population participating in the 1RM assessment carried out in this study, a way of grouping them could aid when the objective is not just describing them, but showing the core characteristics of the different groups. This way, a multi-dimensional map of subjects attributes, could be simplified into a two dimensional map,
where the distance between subjects is the key measurement for grouping them into different clusters.

At first, an attempt was done in order to capture the different variables that could make certain populations best suited for being used with a certain equation for predicting their actual $1RM$ from submaximal loads. This way, it was started a process of k-means, in order to create groups with low intra-cluster variability. Given D, a data set of n objects (in this case the 30 different individuals), and k (in this case 4), the number of clusters to build, a partitioning algorithm organizes the objects into k partitions ($k \leq n$), where each partition represents a cluster. The clusters are formed to optimize an objective partitioning criterion, such as dissimilarity function based on distance. The dissimilarity function used in this study was the Euclidean distance (see Equation 2.5), so that the objects within a cluster are “similar”, whereas the objects of different clusters are “dissimilar“ in terms of the data set attributes [3].

The attributes (with a short description and data type) used to create the different groups shown in Table 4.6 are displayed in Table 4.5.

Table 4.5 Attributes used in the k-means algorithm.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td>Interval (numeric)</td>
<td>Subject’s body weight (kg)</td>
</tr>
<tr>
<td>Resistance training (week)</td>
<td>Interval (numeric)</td>
<td>Subject’s time dedicated to resistance training (hours)</td>
</tr>
<tr>
<td>Other activities (week)</td>
<td>Interval (numeric)</td>
<td>Subject’s time dedicated to other activities (hours)</td>
</tr>
<tr>
<td>Years of training</td>
<td>Interval (numeric)</td>
<td>Subject’s experience in resistance training (years)</td>
</tr>
<tr>
<td>$1RM$</td>
<td>Interval (numeric)</td>
<td>Actual one repetition maximum of the subject (kg)</td>
</tr>
</tbody>
</table>

All the attributes were normalized to the range $[0, 1]$. This normalization was considered necessary as otherwise, some attributes like weight could have a great impact in the euclidean distance, whilst others such as resistance training hours or years of training could not be as influential (because they have lower values). In other words, this previous normalization step helps the k-means algorithm to calculate the dissimilarity distance (Euclidean distance) between subjects without biasing the results towards any high-valued attribute.

The main objective behind the division of the subjects participating in the $1RM$ assessment into groups was to make evident the differences among them regarding their backgrounds or training experience, in order elicit or show similarities and dissimilarities hidden in the data gathered. The number of clusters was determined empirically after iterating on various possible values. The tested values were between 2 and 4. It was needed a way of differentiating between the subjects’ training backgrounds and the different levels of experience with weight lifting. Thus, a good division may have two or three groups (handball and gym enthusiasts,
and average subjects that practice both sports in a recreational way) and a fourth group, were
beginners and people with limited time for practicing sports would be included. A balance
between the number of clusters and the number of subjects in each cluster is needed. Clusters
with fewer than 5 subjects were considered inappropriate, as some kind of generalization or
representativeness purpose was desired when creating these groups. Finally the value of 4 was
selected as representative for the number of clusters, what resulted in four clearly differentiated
groups (see Tables 4.6 and 4.7).

Table 4.6 K-means clustering. Cluster centroids.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Cluster centroids</th>
<th>Cluster number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full data (30)</td>
<td>0(12) 1(8) 2(5) 3(5)</td>
</tr>
<tr>
<td>Body weight</td>
<td>0.5256 0.5388 0.4099 0.434 0.7706</td>
<td></td>
</tr>
<tr>
<td>Resistance training (week)</td>
<td>0.405 0.375 0.3875 0.77 0.14</td>
<td></td>
</tr>
<tr>
<td>Other activities (week)</td>
<td>0.2798 0.1696 0.5982 0.1 0.2143</td>
<td></td>
</tr>
<tr>
<td>Years of training</td>
<td>0.5357 0.7738 0.3214 0.7143 0.1286</td>
<td></td>
</tr>
<tr>
<td>1RM</td>
<td>81.3333 84.9167 79.3125 99.3 58</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.7 Clustered individuals ($n = 30, k = 4$).

<table>
<thead>
<tr>
<th>Clustered individuals</th>
<th>Cluster number</th>
<th>Number of individuals</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12</td>
<td>(40%)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>(27%)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>(17%)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>(17%)</td>
</tr>
</tbody>
</table>

In Tables 4.6 and 4.7, we can observe:

- Cluster 0: consisted of 12 subjects who spend the average time practicing resistance
 training, and did practice any kind of sports as well, in a recreational way.

- Cluster 1: comprised basically by handball players in the study. As it is shown in the k-
 means result, they dedicate most of their time to other sports (like handball or jogging)
 and less time to resistance training (just one or two hours a week).

- Cluster 2: consists basically of people who practiced resistance training more often than
 the mean, and rarely practiced other sports. They were the ones who got higher values
 at the $1RM$ assessment, possibly due to their experience in weight lifting and better
 anaerobic conditioning.
• Cluster 3: formed by people with the highest body weight and that were able to dedicate fewer hours to practicing sports or weight lifting in the gym. They were as well beginners (their experience with resistance training was limited) and had lower values of the $1RM$. This seems to indicate, that body weight, probably is not related with the $1RM$ when the population is very heterogeneous.

Even though 4 groups were created (the number of groups was determined in a “trial and error“ fashion), it was shown no relationship between the clusters found by the k-means algorithm, and the predicting equations that best suited each of the subjects in the cluster (different formulas may suit different repetitions number when predicting the $1RM$ for a certain subject; maybe when predicting in a certain range of repetitions from submaximal loads, it is not just the subject’s characteristics, but also the number of repetitions performed until exhaustion what determines the suitability of a certain prediction equation). This will be proposed as a future line of research 6.4, as not enough data was collected to undertake such an ambitious project.

As presented in Table 4.6, k-means could be a great method for dividing population into clusters that were best suited for the different predicting formulas. This way, the members included in the cluster number 2, could use certain formulas more suited to people whose training routine is principally based of weight lifting, whilst the subjects in cluster 3 could use a formula set specifically designed for untrained people or beginners. This generalization or way of grouping subjects could be done as well taking into account prediction formulas for different exercises (not only for the bench press action). Not only a clustering algorithm could help, but as well a SOM (self adapting maps) could shed light on the different prediction equations applicability (the closest two different population or exercise characteristics are, the more reliable a certain or group of prediction formulas could be for both groups).

Clustering techniques and self organizing maps, are a sensible approach to make a 2 dimensional projection of the different population characteristics (or even exercise characteristics), in order to tackle the inherent complexity of the relationships among them. This way, it could ease the path in finding the most proper prediction formulas for each of the maps/projection groups. These groups can be created, not only for the sake of simplicity, but for mapping different prediction equations with populations’ characteristics. Using some kind of clustering technique, as the one presented in this Section, could lead to a better description of the different subjects participating in the study, and can elicit unknown patterns and relationships between the subjects’ characteristics, unknown at first glance or hidden in the data. Maybe, and having in mind the benefits of these techniques, sports and health professionals could be encouraged to include clustering methods in their experiments, in order to describe in a straightforward way the main characteristics of the different populations used in their studies.

4.3 Linear regression models

The main objective behind the creation of the linear regression model was the searching of the different attributes that could have somehow any kind of statistically significant influence
(p < 0.05) in the 1RM prediction. Following, the creation of several linear models with the forward selection method (see Table 4.8), with all the attributes but the ones removed from the initial data set (see Section 4.2) was performed.

Table 4.8 Linear regression models built.

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R^2</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.838</td>
<td>0.703</td>
<td>9.202</td>
</tr>
<tr>
<td>2</td>
<td>0.982</td>
<td>0.965</td>
<td>3.162</td>
</tr>
<tr>
<td>3</td>
<td>0.985</td>
<td>0.970</td>
<td>2.978</td>
</tr>
<tr>
<td>4</td>
<td>0.986</td>
<td>0.971</td>
<td>2.911</td>
</tr>
<tr>
<td>5</td>
<td>0.986</td>
<td>0.973</td>
<td>2.843</td>
</tr>
</tbody>
</table>

*Predictors: (Constant), Weight

*Predictors: (Constant), Weight, Repetitions

*Predictors: (Constant), Weight, Repetitions, Resistance t.

*Predictors: (Constant), Weight, Repetitions, Resistance t., O. activities

*Predictors: (Constant), Weight, Repetitions, Resistance t., O. activities, Time exhaustion

The confidence factor was set to 0.05 and 5 different models appeared until the execution ended. It is noticeable, how weight, and repetitions, were the two first attributes that had a statistical significance in the model, and that with a confidence factor of 0.05, all the attributes chosen in a linear step forward selection model at the end of the execution were weight, repetitions, hours of weighting in a week, other physical activities and time to exhaustion.

Even though resistance training hours, other activities and time to exhaustion seem to have a statistically significant influence in the prediction of the 1RM, no practical implications seem to arise (as only with repetitions and weight, the model is able to explain 96% of the variability of the dependent variable [8, 17, 18, 19, 20, 21, 22]). However, R^2 was set to 0.973 when the predictors were all the significant variables. It is important to notice as well, that time to exhaustion had some kind of influence in the response variable: this is, movement cadence has an effect on the actual 1RM.

Two models from Table 4.8 deserve mentioning (see Equations 4.1 and 4.2):

$$1RM = -7.089 + 1.077w + 1.859r$$

(4.1)

$$1RM = -7.864 + 1.033w + 1.499r + 0.566rt + 0.210oa + 0.155te$$

(4.2)

where w, r, rt, oa and te mean weight, repetitions, weekly mean hours of resistance training, weekly mean hours of other activities, and time to exhaustion respectively.
With respect to formula 4.1, with only 2 attributes, we can see a clear tendency in the result: the 1RM is roughly dependent on twice the number of repetitions performed, and one time the weight lifted. This finding seems to correlate with the results obtained with the genetic programming algorithm later presented in Section 4.5, as this individual solution, was one of the most suited individuals in many executions of the algorithm.

Related to equation 4.2 it is clear that somehow, the more training hours a week were dedicated to resistance training, the more weight could be lifted in a 1RM assessment. This may be related to better lifting technique [7], anaerobic conditioning or better neural adaptation to weight stress [4]. Somehow, time to exhaustion had some influence in the prediction of the 1RM: having constant the other variables (repetitions, weight, resistance training hours and other activities hours), the more time to exhaustion, the higher the 1RM was. It is remarkable as well, how the Borg scales (in the first repetition, and at the end of the set), had no significance in the final model.

Years of experience in weight training, and an approximate mean of weekly hours dedicated to resistance training (based on their opinions on how much they trained as a weekly mean during the last month), were collected from each of the individuals participating in the 1RM assessment. Due to the enormous variability in the individuals’ characteristics (age, training routines, or even experience in resistance training), it was not possible to get a solid conclusion about the influence of all the different variables in the prediction models.

Even though not only weight and repetitions were used in Equation 4.2, the first model (Equation 4.1) seemed to outperform Equation 4.2, when the random sub-sampling validation technique was applied to the data set. This could be due to possible outliers in the data, or the enormous variability between the different subjects participating in the study.

4.3.1 Interaction between weight and repetitions

Considering only the attributes weight and repetitions for predicting the 1RM, and in order to reproduce O’Connor et al. equation, a third attribute was created: the interaction between weight and repetitions \(\text{“weight*repetitions”} \). By means of a linear regression model with forward selection, and after selecting the data tuples where number of repetitions is greater or equal than two, three tentative models (confidence factor set to 0.05) were created. The different models with different performance criteria, are presented in Table 4.9.
Table 4.9 Linear models with interaction between repetitions and weight.

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

aPredictors: (Constant), Weight
bPredictors: (Constant), Weight, RW
cPredictors: (Constant), Weight, RW, Repetitions

In the second model generated, where the predictors were weight and the interaction between weight and repetitions (RW), the model obtained seems to confirm O’Connor et al. equation [19] (see Table 4.10). This finding, somehow might confirm that the data collection procedure and the experiment design proposed in this study was valid.

Table 4.10 Coefficients in interaction between weight and repetitions.

<table>
<thead>
<tr>
<th>Coefficients*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>RW</td>
</tr>
</tbody>
</table>

*Dependent variable:RM

Within a 95% the lower bound of the mean of RW is 0.025, whilst the multiplier of weight seems close to the value of one, what seems to agree with O’Connor et al. equation [19]. In other studies [23], the O’Connor et al. equation was assessed as a reliable equation for predicting the $1RM$ for bench press and arm curl actions. This may validate the results presented in [23].

4.4 Multilayer perceptron neural network

One repetition maximum prediction is a complex task, with many interrelated factors affecting the performance of the practitioner, and many of these interrelationships are not fully understood. Hence, a multilayer perceptron with the backpropagation learning algorithm seems to be a valid approach for predicting the $1RM$ because:
• It seems the "natural" model for predicting the one repetition maximum (muscular neuronal activation, neural coordination and elasticity seem to be the really important variables in weight lifting). Examinations of the human’s central nervous system inspired the concept of neural networks. ⁶ "Neural Networks" derives from the fact that they were first developed as models for the human brain and could somehow mimic the behavior of the neural connections existing in humans [61]. Strength is the product of both the ability of the nervous system to activate high threshold motor units, and the amount of muscle mass available to contract [62]. To date, most of the available evidence regarding neural modification consequent to strength training has been derived from surface electrode electromyography. This technique enables investigators to quantify changes in the electrical (i.e., neural) activation of skeletal muscle as a result of strength training. Elevations in maximal force production are accompanied by increased electromyographic activity of the muscle while maximally contracting. It has been postulated that the augmented electromyographic activity is the result of greater central drive form higher neural centers [62]. Other neural adaptations elicited by resistance training include decreased co-contraction of antagonists and expansion in the dimensions of the neuromuscular junction, indicating greater content of presynaptic neurotransmitter and postsynaptic receptors. Greater synchronicity in the discharge of motor units after strength training has also been detected [63, 64].

• Variables relationship influencing the one repetition maximum seems not to be fully understood [7]. In addition to repetitions number, other factors may affect the maximum amount of weight an individual can lift. Age, gender, ethnicity, limb lengths and circumferences, body mass, muscle mass, training routine, the rate of contractions and the time distribution between concentric, eccentric and recovery phases of a contraction cycle could all possible influence the load able to be lifted for a specific number of repetitions [16]. In this study age, gender, training routine and body mass were added to the neural networks built in a trial-and-error fashion. None of these variables seemed to be a good predictor of the actual 1RM, and the models obtained performed statistically equal (\(p < 0.05 \)) than those using just repetitions until exhaustion and weight lifted in the set.

• When the number of repetitions is lower than 10, linear models correlation seems quite high for predicting the 1RM from submaximal loads. However, when the number of repetitions is greater than 10, most of these models seem to over/under estimate. A non-linear approach when repetitions are between 10-15 repetitions seems to perform better than the linear [21, 22]. Bryzcki [8] as well argues that there is a distinct relationship between anaerobic endurance and strength. Goes on to state that this relationship is not quite linear beyond ten repetitions. [23]. Furthermore, regression analysis of mean data revealed a nonlinear decrease in load with increasing repetition number (chest press action; linear \(S_{yx} = 2.6kgs \), nonlinear \(S_{yx} = 0.2kgs \)) [16]. Data reveals that no more than 10 repetitions should be used in linear equations to estimate 1RM for the CP

⁶From http://en.wikipedia.org/wiki/Artificial_neural_network
action [16]. The accuracy of prediction in linear equations decreases at higher repetitions [21, 22]. Given the limited research of 1RM strength prediction for a variety of weight lifting exercises, and the absence of guidelines for using linear vs. nonlinear equations for 1RM strength prediction, additional research of 1RM prediction is needed. Furthermore, because of the limited number of independent variables used in classical 1RM regression equations, it is possible that additional variables could improve the accuracy of 1RM strength prediction [16].

The MLP models that will be presented in this study present a series of particularities in both the architecture and the learning algorithm phases:

- Input layers: before entering the actual data into the MLP, a normalization process was computed, in order to minimize the effect of “predominant“ attributes with higher values like weight ($73.582 + 17.95kgs$) among others like repetitions ($5.572 + 5.296$), when updating the weights of the net. The formula used in this study for computing the normalization is presented in Equation 4.3

$$y = \frac{x - (\text{max} + \text{min})/2}{(\text{max} - \text{min})/2}$$ (4.3)

where max, min and x are the maximum value of the attribute, the minimum value of the attribute, and the actual value of the attribute to be normalized respectively. Using Equation 4.3, the new range of the attributes normalized will be between 1 and -1. This normalization was used because it comes implemented by default with the WEKA software7 and showed good results in this study.

- Weights input-hidden layer: the initial value of these weights was completely random.

- Hidden layers: One and two layers architectures were used for predicting the 1RM. One layer architecture seemed to outperform the two layer architectures for predicting the 1RM from submaximal loads.

- The activation function used in this study was the sigmoid activation function: sigmoid $y(v) = 1/(1 + e^{-v})$. This was used because it is one of the most common activation functions used in neural networks [61], showed good results in this study and comes implemented by default with the MultiLayerPerceptron algorithm in the WEKA datamining software package. Thereby, the hidden nodes in this network were all sigmoid. The output nodes become unthresholded linear units where the output value is the averaged sum of all the input nodes.

- Weights hidden-output layer: the initial value of these weights was set to random.

- Output layer: comprised by just a single neuron that outputs the predicted one repetition maximum for the individual.

7From http://www.cs.waikato.ac.nz/ml/weka/
The performance of neural networks depends on the architecture of the network and their parameter settings. Determining the architecture of a network (size, structure or connectivity) affects the performance criteria, such as the learning speed, accuracy of learning, noise resistance and generalization ability. There is no clearly defined theory which allows for the calculation of the ideal parameter settings and as a rule even slight parameter changes can cause major variations in the behavior of almost all networks [34].

All the different architectures used were obtained in a trial-and-error fashion, varying the number of hidden neurons in a single layer between two and four, the number of epochs between five hundred and two thousand, and learning \((0.2, 0.1, 0.05)\) and momentum rates \((0.1, 0.05, 0.01)\) with different values.

Firstly, an attempt was done in order to create a neural network with some of the 1RM related variables gathered in this study. These variables were age, body mass or body weight and training routine. They were included with different other predictors such as repetitions and weight, and those significant predictors in the linear regression model presented in Section 4.3 ("resistance training hours", "other activities hours" and time to exhaustion). However, the variables age, body mass and training routine were finally discarded following the Occam’s razor principle, as they did not increase the neural network performance and only complicated the model.

Then, different neural network architectures were tested, varying from one hidden layer to two hidden layers, and from two predictors (repetitions and weight), to five predictors (repetitions, weight, "resistance training hours", "other activities hours" and time to exhaustion). All these different predictors were included, as they were those significant in the linear regression model, and could improve somehow the 1RM prediction from submaximal loads. Recall that all these variables were normalized between -1 and 1 before entering into the input layer in order to avoid biasing the weights update towards any variable.

Finally, two different multilayer perceptron models were built. Specifically, the different attributes used for generating both models are detailed in Table 4.11. Different decisions were taken into account when building these two different neural networks (compared in Section 4.6): (a) total connectivity; (b) learning rate equal to 0.1; (c) training epochs set to 500; (d) one hidden layer with three hidden neurons; (e) momentum rate set to 0.01.

The settings of the learning rate and momentum control the way in which the error is used to correct the weights in the neural network for each training case [32]. When the learning rate was set to values close to 1, an unstable behavior was shown and the average error varied widely. The higher the momentum, the larger the percentage of previous errors that is applied to the weight adjustment in each training case [32].

This way, two alternative models were designed: one containing just repetitions and weight as variables, and a second model, with the five different significant predictors found in the step forward regression model: repetitions, weight, "resistance training hours", "other activities hours" and time to exhaustion.

Applying the hold-out method to the data set, we can see that were slight performance differences among the different neural networks built (see Table 4.11). When predicting the 33% of the data set the different performance criteria \(R = 0.981, MAE = 2.56, RMSE = 3.732\) with the five attributes presented in Table 4.11, and \(R = 0.978, MAE = 2.72, RMSE = 4.006\)
Table 4.11 Attributes used in the multilayer perceptron models built.

* Used in model 1.
** Used in model 2.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>Interval (numeric)</td>
<td>Weight lifted in a repetition by the subject (kg)</td>
</tr>
<tr>
<td>Repetitions</td>
<td>Interval (numeric)</td>
<td>Number of repetitions until exhaustion performed in a set (reps)</td>
</tr>
<tr>
<td>Other activities (week)</td>
<td>Interval (numeric)</td>
<td>Subject’s time dedicated to other activities (hours)</td>
</tr>
<tr>
<td>Resistance training (week)</td>
<td>Interval (numeric)</td>
<td>Subject’s time dedicated to resistance training (hours)</td>
</tr>
<tr>
<td>Time to exhaustion</td>
<td>Interval (numeric)</td>
<td>Time to exhaustion in the different sets (seconds)</td>
</tr>
</tbody>
</table>

with weight and repetitions) showed similar results.

It was needed a way of comparing their performance for predicting the $1RM$. As data size was relatively small (97 tuples), and gathering more data was really difficult due to the lack of participants, it was needed a way of testing these models created, without affecting the quality of these models. Maybe, when predicting the 33% of the data set, an unfortunate split could bias the error rates of the models.

Thus, the random sub-sampling, the k-cross-fold and the leave-one-out validation techniques (see Section 2.4) were applied in order to determine the models’ accuracy.

Remember that in the target data set we have 97 tuples. Each of these tuples represents a set until exhaustion for a certain subject in the bench press action. For creating the different test and training sets, we had to consider not the tuples, but the subjects as the unit of division. Otherwise, the training set could contain tuples of each of the subjects in the study ($n = 30$) and could bias the models prediction, as the relationship between the different variables influencing the subject $1RM$ performance would be included in the training set. Thus, when splitting the data into training and test set, we will use the subject as the unit of division. When a certain subject is selected as part of the training or test set, all his tuples will be included in this set.

In other studies [35] and with the objective of increasing the models accuracy, only those test sets that had the dependent variable value between the minimum and maximum range in the training set were predicted. Even though it is a sensible approach and may lead to better prediction results, this restriction could affect the reliability of the models built. In other words, if a new tuple with a higher or lower $1RM$ value appears and needs to be estimated, then the prediction power of our model could not be as good as expected. Thus, this approach was discarded in this study, and all the data tuples in the test set were predicted from the built models.
A total of 5 different subjects were chosen randomly as the test set using the random sub-sampling validation method. This number was determined empirically, and was considered a sensible number of subjects as choosing a higher value could lead to not reliable models for predicting the $1RM$ (very few subjects in the training set), and a lower value to over-fitting the test set (poor generalization power of the models). Remember that when a subject was chosen as part of the test set, all its tuples were included in the test set.

A clear disadvantage of the random sub-sampling method is that some tuples may never be selected in the test set, whereas others may be selected more than once. Consequently, random sub-sampling was used 40 times, and 5 different random subjects (with their respective set tuples) would enter into the test set in each of these forty combinations. The number 40 was determined empirically, as a different number of combinations was attempted until reaching a point were almost in all executions of the program, all the data tuples were at least once in a test set.

In order to reduce the variability of the performance criteria (i.e., MAE and RMSE) due to the natural randomness of the random sub-sampling selection criterion, a total of 20 executions were conducted. This number of executions was determined empirically, as a higher number resulted in more CPU time consumption and the availability of computing resources was limited.

In Table 4.12 we can see the MAE and RMSE of the two MLP networks built.

<table>
<thead>
<tr>
<th></th>
<th>MAE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP 2 variables</td>
<td>2.117</td>
<td>2.858</td>
</tr>
<tr>
<td>MLP 5 variables</td>
<td>2.231</td>
<td>2.837</td>
</tr>
</tbody>
</table>

The k-cross-fold validation was used in order to assess the $1RM$ MLP models accuracy as well. The number k was set to 6. This number allowed the division of the 30 subjects in the target data into 6 different folders, containing each folder exactly 5 subjects. This was done with the purpose of including exactly the same number of subjects in the test set as with the random sub-sampling partitioning method. Previously to the creation of these folds, a data set randomization (i.e., randomization based on the subject ID) was performed in order to increase the possible combinations of subjects in the different folders. This 6-cross-fold validation process was used 20 times, and the results obtained are presented in Table 4.13.

<table>
<thead>
<tr>
<th></th>
<th>MAE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP 2 variables</td>
<td>2.142</td>
<td>2.892</td>
</tr>
<tr>
<td>MLP 5 variables</td>
<td>2.238</td>
<td>2.851</td>
</tr>
</tbody>
</table>
The results of the MLP models seem pretty similar attending to the MAE and RMSE with both the 6-cross-fold and the random-subsampling validation methods (see Table 4.13 and Table 4.12 respectively).

Using the the leave-one-out validation method, we can show not only the MAE and RMSE for both MLP models (see Table 4.14), but generate two different error populations with their predictions. These two error populations could help us to know if there is any significant difference in the prediction accuracy between the two MLP models built. Thus, we can train both models using the leave-one-out validation approach (29 subjects in the training set and 1 subject in the test set), and compute the error of both MLP models for predicting each tuple in the test set. In other words, all the tuples of a certain subject were used as the test set, and both MLP models were built with the tuples of the other 29 subjects. The error for each tuple was computed as the absolute difference between the actual and the estimated 1RM. This process was repeated until all the tuples 1RM were predicted, and two different error populations appeared (one per MLP model).

| Table 4.14 RMSE and MAE with the the leave-one-out validation method (MLP). |
|-----------------|-----------------|
| MAE | RMSE |
| MLP 2 variables | 2.417 | 2.748 |
| MLP 5 variables | 2.369 | 2.668 |

Then a Wilcoxon rank-sum test could be performed between the error populations resulting with both MLP models.

Thereby, the null and the alternative hypothesis for the comparison between the two MLP networks built were \(n = 97 \):

\[
H_0: \text{There is no difference in the error population between the first and the second multilayer perceptron network model as both predict with the same error rate the one repetition maximum from 1 repetition up to 19 repetitions with the available data.}
\]

\[
H_1: \text{There are differences in the error population between the first and the second multilayer perceptron network model as both predict with different error rates the one repetition maximum between from 1 repetition up to 19 repetitions with the available data.}
\]

The error descriptives are presented in Table 4.15, while in Table 4.16 is shown the Wilcoxon rank-sum test (also called the U Mann-Whitney test) for both error populations (recall that the error is computed as the difference between the expected 1RM value and the actual 1RM value).
Looking at Table 4.16, we can not reject the null hypothesis, what seems to indicate, that we can not state that there is a statistical difference between both models ($Z = -0.283, p = 0.777$). Even though the second MLP has better results than the first one (as shown in Table 4.15), these differences do not seem significant ($p > 0.05$).

Even though correlations are quite high ($R > 0.98$) and MAE and $RMSE$ are both low, the generated predictions by means of the different neural networks seem pretty similar, and no significant differences were found between the models ($p > 0.05$). This seems to indicate, that all the different variables influencing the $1RM$ are somehow intrinsically included in the number of repetitions and weight lifted until exhaustion. This seems to agree with the results obtained in other $1RM$ assessments [16]: “these findings indicate that each of these variables is either unrelated to $1RM$ strength (e.g., training volume) or is so interrelated to strength (gender and all anthropometric variables) that the $5RM$ data sufficiently accounts for its contribution to the explanation of between-subject variance in $1RM$ strength”.

Thereby, only weight and repetitions will be used in the multilayer perceptron network, when comparing its performance to the other proposed solutions in Section 4.6.

4.5 Genetic programming model

A sensible way of obtaining a $1RM$ prediction equation by means of genetic programming, is starting with a random set of individuals or prediction equations that may solve the problem
and reproduce them generation upon generation until a suitable individual appears.

Good individuals, that are good predictors of the $1RM$ would rank high in the fitness test, whilst individuals that are worse predictors would rank lower. Recall that all these different individuals (formed by genes contained in a tree-like structure) are potential $1RM$ prediction equations. Intuitively, if two individuals are somewhat effective in solving the $1RM$ prediction, then some of their parts probably have some merit. By recombining randomly chosen parts of somewhat effective individuals, we may produce new individuals that are even fitter in solving the $1RM$ prediction [37]. Generation upon generation, these individuals will reproduce and eventually a suitable solution will emerge in the last generation of the algorithm.

In this study, each of the individuals is tested against the $RMSE$ (i.e., the fitness function is the RMSE), to check how appropriate it is as a possible solution to the $1RM$ prediction. Thus an individual could be better suited than other for predicting the $1RM$ (the lower RMSE value, the better the solution), resulting in a higher probability of selection for the genetic operations performed in each generation.

For building all the different genetic models proposed in this Section, the implementation of Yan Levasseur of the GP algorithm was used 8. It is an open source project and uses the GNU General Public License. It is developed in JAVA and can be integrated into WEKA. The GP algorithm is based on Koza and Banzhaf et al. contributions to genetic programming [37, 65, 66].

The following parameters in the genetic programming algorithm were used to obtain all the models presented in this Section:

- **Termination criterion**: the maximum generation number was set to 20 (chosen empirically). A lower number lead to no-convergence of the individuals and no suitable solutions appeared with the execution of the genetic programming algorithm. A greater number of generations resulted in more CPU time consumption and was discarded due to the limited processing power available. Furthermore, time consumption of this algorithm was clearly superior to the linear regression or the MLP with the backpropagation learning algorithms.

- **Population size**: 1000 individuals will make the initial population, and will evolve over the following generations. There will always be a fixed number of 1000 individuals in each of the generations. After the reproduction process takes place, this population of off-spring (i.e., the new generation) replaces the old population (i.e., the old generation). This number was chosen empirically and was not increased due to the limited processing power available for computing the results.

- **No normalization or standardization was done to the data**: as it was only included repetitions and weight, no special preprocessing was necessary to fit the data into a prediction formula.

- **Maximum depth of the individual’s tree**: 5 (chosen empirically). This number was selected based on the complexity of the formula desired. More than five operations in

depth, led to no convergence, or too complex structures to be suited for an “easy to understand” formula.

- Different attributes used as terminals in the possible individuals: 2 (in our case, repetitions and weight will be enough for predicting the $1RM$ from submaximal loads). Different attributes were tested as possible terminals based on the results from the linear regression model significance tests (see Section 4.3). However no convergence of the population was observed, or the results were not as accurate as those obtained using just repetitions and weight.

- Functions used:
 - $+, -, *, /$: the four basic arithmetic operators. They perform an arithmetic operation between two operands. These operators were included as possible functions as they were used at least once in some of the equations proposed in literature so far for predicting the $1RM$ (see Table 2.1).
 - Pow: a number powered to another. This operator was chosen, in order to allow the different individuals to mimic Lombardi’s formula [20] (i.e. $pow(2, 6) = 2^6$).
 - Exp: Euler’s number to the power of a certain number. It is the base of the natural logarithm. It was chosen due to the necessity of modeling non-linear behaviors in sets of more than 10 repetitions, like in Mayhew [21] or Wathen [22] prediction equations (i.e. $Exp(3) = e^3$).
 - Log: natural logarithm of a number. It is the inverse operation of euler’s number (i.e. $Log(e)=1$, where e is the Eulers number).

- Cross-over operation: 90% (900 individuals) of the new population will be due to a crossover operation between the ancestors. This number was selected empirically, and was the number by default in the tool. The probability of the operation (proportion), number of parents and number of children created were:
 - Proportion: 0.9
 - Number of parents:2
 - Number of children:2

- Mutation operation: mutates a whole randomly selected sub-tree from an individual. The probability of performing this operation was set to 7%. This way, 70 individuals will mutate in each generation. This operation must be aware of binary operation nodes or single operation nodes. The probability of the operation (proportion), number of parents and number of children created were:
 - Proportion: 0.07
 - Number of parents: 1
 - Number of children: 1
• New individual operation: creates new random individuals in a generation. It is commonly used to increase genes variability (i.e. genes diversity) when the generations have evolved mainly from ancestors. In each generation, 30 new random individuals were created. The probability of the operation (proportion) was:
 – Proportion: 0.03

First, the five significant variables in the linear regression model (see Table 4.8) were included as possible terminals in the genetic programming algorithm. However, this lead to low precision solutions, or even non-convergence after 20 generations of the genetic programming algorithm execution. After executing the algorithm more than 20 times with the hold-out method (66% training set, %33 test test), and observing misleading results, time to exhaustion, resistance training hours and other activities hours were discarded from the subsequent models.

The following models were built having into the training set a 66% of the tuples of the overall dataset (validated with the 33% of the data set in the test set), and using just repetitions and weight as predictors (attributes):

\[
\text{Equation 4.4} \quad 1RM = 2r + w \\
\text{Equation 4.5} \quad 1RM = w + r + \log((r \times w) - 192.605) \\
\text{Equation 4.6} \quad 1RM = w + r + \log(w) \log(r)^{0.83}
\]

Equation 4.4 was one of the most usual individuals in the final generations (the individual with the lowest \(\text{RMSE}\)). This seems to agree with the results obtained by means of the linear regression model (see Section 4.3). Even though it was a suitable solution, it had the form of a linear equation, what could lead to discouraging predictions of the one repetition maximum from submaximal loads, when the number of repetitions is greater than 10.

In Equations 4.5 and 4.6, an individual with the interaction between repetitions and weight seems the best suited solution to the problem. Equation 4.5 seems to outperform equations 4.4 and 4.6, and appears to confirm as a good predictor the attribute created showing the interaction between weight and repetitions in O’Connor et al. [22] and Epley’s [17] equations.

Table 4.17 1RM prediction by means of genetic programming.

All the models refer to the equations presented previously.

<table>
<thead>
<tr>
<th>Model</th>
<th>(R)</th>
<th>(\text{MAE})</th>
<th>(\text{RMSE})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 4.4</td>
<td>0.970</td>
<td>3.7727</td>
<td>5.543</td>
</tr>
<tr>
<td>Equation 4.5</td>
<td>0.985</td>
<td>2.608</td>
<td>3.421</td>
</tr>
<tr>
<td>Equation 4.6</td>
<td>0.970</td>
<td>3.7727</td>
<td>5.543</td>
</tr>
</tbody>
</table>
Genetic programming seems a sensible approach when the solution to a certain problem is complex. However, convergence is not guaranteed and many parameters need to be adjusted in order to generate a proper solution. Thereby, adding more attributes to the space of possible solutions, could lead to misleading results and serious caution should be considered when adjusting the parameters mentioned in Section 2.2.3.

Increasing the number of individuals tested against the $1RM$ prediction in each of the generations, adding different attributes as terminals, varying proportions of the different reproduction functions or testing new fitness functions, could give better solutions to the $1RM$ prediction than those presented in this Section. However, it is proposed as future work, as greater computing power is needed in order to achieve suitable solutions in such a huge solution space.

4.6 Comparison between the different models

As discussed previously, three different approaches were taken into account in this study to model the $1RM$ prediction from submaximal loads:

- **Multilayer Perceptron Network (MLP):** Up to the author’s knowledge, multilayer perceptron networks were never used before for predicting the $1RM$ from submaximal loads. They are capable of modeling non-linear relationships between the different variables affecting the prediction of the $1RM$ and have been used extensively in a wide range of applications with impressive results. In the mathematical theory of neural networks, the universal approximation theorem states that a feed-forward network with a single hidden layer containing a finite number of neurons, can approximate continuous functions on compact subsets of \mathbb{R}^n [50, 36]. The theorem thus states that simple neural networks can represent a wide variety of interesting functions when given appropriate parameters.

- **Linear Regression (LR):** One of the most used models when it comes to predict an individual’s one repetition maximum. These models are only applicable when the range of repetitions performed until exhaustion in a certain set is between 1 and 10. Otherwise, they may present over or under estimation problems.

- **Genetic Programming:** Up to the author’s knowledge, genetic programming was never used for predicting the $1RM$ from submaximal loads. It is an evolutionary algorithm inspired by biological evolution, which evolves to predict the $1RM$ from the attributes gathered.

Recall that in the target data set the total number of subjects was 30, and the total number of tuples was 97. Each of these tuples represent a set until exhaustion of the bench press action for the different subjects. Each of the subjects had a total number of up to 5 tuples (the same number of tuples as sets until exhaustion performed until reaching their actual $1\bar{R}M$). The
number of tuples for each of the subjects is not fixed, as some of them reached their actual \(1RM\) in fewer sets than others.

In this Section, we only considered the predictor variables weight and repetitions for building the different models. This was due to the limited size of the target data set and because there was a high risk of non-convergence of the genetic programming algorithm if more than 2 attributes were added to the space of solutions. Otherwise the genetic programming algorithm performance could be highly affected by the decision of including more than 2 predictors and may lead to misleading results. Furthermore, a minimum of ten subjects is recommended for each predictor used when conducting biomedical or physiological research involving human subjects (see Section 3.3).

In Section 4.6.1, we can observe how the previously built models (in Sections 4.3, 4.4 and 4.5) performed when predicting the one repetition maximum, attending to both the performance criteria (MAE and RMSE) and the non-parametric tests used to compare their error population.

4.6.1 Comparison between the different models generated

We will take into account several constraints when comparing the different models proposed in this Section: (a) linear equations seem to be suitable when the range of repetitions performed until exhaustion is lower than ten; this way, when comparing the different models built with the linear solutions, we are restricted by this range of applicability;(b) solution convergence in the genetic programming algorithm was generally reached including just repetitions and weight in the input variables; otherwise the genetic algorithm solution could not have converged; (c) all the models for predicting the one repetition maximum from submaximal loads in this Section use as predictors only weight and repetitions.

Four different models were built and compared in this Section:

- **MLP**: the multilayer perceptron network was trained with the two variables used in literature when predicting the \(1RM\) from submaximal loads: repetitions and weight. The MLP used the same learning and architecture parameters presented in Section 4.4.

- **Linear regression**: with only repetitions and weight as separate variables in the equation. The formula will have the form:

\[
1RM = aw + br + c
\]

where \(a, b, c\) are constants, \(w\) and \(r\), weight and repetitions respectively.

- **Linear regression (interaction)**: repetitions, weight and the multiplication of weight and repetitions. The formula, will emulate that proposed by Epley [17] or O’Connor et al. [19], and will have the form:

\[
1RM = aw + br + cwr + d
\]

where \(a, b, c\) and \(d\) are constants, \(w\) and \(r\), weight and repetitions respectively.
• Genetic programming: using, as in the previous models, weight and repetitions as the input attributes. The Genetic programming model used the same parameters than those presented in Section 4.5.

With the restriction of having such a small data set, it was needed a way of comparing all these models without affecting the quality of the models built. Thus, the random sub-sampling, the k-cross-fold and the leave-one-out validation methods were used to compare the performance of the different models.

First, the MAE and RMSE applying the random sub-sampling validation method for the different models proposed in this study was conducted. As presented previously in Section 4.4, 40 combinations of training sets were obtained (attending to the subject ID). This process was repeated 20 times and the results are presented in Table 4.18. These results are computed taking into account only those tuples where the repetitions number was a value between 1 and 10. In other words, tuples with a number of repetitions greater than ten were not taken into account when comparing the performance of the different models proposed in this Section.

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>2.327</td>
<td>1.743</td>
</tr>
<tr>
<td>Linear regression</td>
<td>2.569</td>
<td>1.990</td>
</tr>
<tr>
<td>Linear regression (interaction)</td>
<td>2.117</td>
<td>1.499</td>
</tr>
<tr>
<td>Genetic programming</td>
<td>2.723</td>
<td>2.094</td>
</tr>
</tbody>
</table>

Then, a total of 20 rounds of 6-cross-fold validation were executed for the models proposed, and the results are shown in Table 4.19. In each of the 6-cross-fold validation rounds, a prior randomization of the tuples (attending to subject ID) was carried out. These results are computed taking into account only those tuples where the repetitions number was a value between 1 and 10.

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>2.315</td>
<td>1.735</td>
</tr>
<tr>
<td>Linear regression</td>
<td>2.510</td>
<td>1.955</td>
</tr>
<tr>
<td>Linear regression (interaction)</td>
<td>2.073</td>
<td>1.470</td>
</tr>
<tr>
<td>Genetic programming</td>
<td>2.643</td>
<td>2.054</td>
</tr>
</tbody>
</table>

MAE and RMSE with both validation techniques (random sub-sampling and 6-cross-fold respectively) seem pretty similar for the same model. However, using the 6-cross-fold-validation (see Table 4.19) seems to give better results than using the random sub-sampling approach (see Table 4.18) for all the models proposed.
All the equations predict with some error. Nevertheless, as shown in Table 4.19 and Table 4.18 the Linear regression (interaction) model seems to outperform the MLP, Linear regression and Genetic programming model in the range between 1 and 10 repetitions using only weight and repetitions as 1RM predictors. The MLP seems to outperform both the Linear regression and the Genetic programming models with both random-subsampling and 6-cross-fold validation techniques. It seems that the MLP has greater accuracy with unseen data than both the Linear regression and the Genetic programming model.

Using the leave-one-out validation approach used in Section 4.4, the results of the MAE and RMSE are presented in Table 4.20. These results are computed taking into account only those tuples where the repetitions number was a value between 1 and 10.

With the leave-one-out validation approach (see Table 4.20), the Linear regression model seems to outperform the MLP and the Genetic Programming. These results should be taken with caution.

A plot with the different models for predicted 1RM created in the last execution is shown in Figure 4.3 (weight in the vertical axis, tuple id in the horizontal axis). Figure 4.3 shows the actual 1RM, and the prediction of the 1RM using the leave-one-out validation method for the multilayer perceptron network, the Linear Regression model with the interaction between weight and repetitions, the Linear regression and the Genetic programming model (1RM, MLP, Linear regression (interaction), Linear regression and Genetic programming respectively).

Even though the MLP (multilayer perceptron network) seems to outperform the genetic programming algorithm (Genetic programming), using the leave-one-out method, the linear regression of two variables (Linear regression) seems to outperform the MLP. The most accurate model for predicting the 1RM in the range between 1 and 10 repetitions seems to be the Linear regression (interaction) model. Further study was needed to checkout for the coefficients that make this model so accurate for predicting the 1RM from submaximal loads (see Section 4.3).

It is surprising how, in the range of repetitions between one and ten, these models seem to be so precise. Nevertheless, the further we move from ten repetitions until exhaustion, the apparent linearity of the prediction disappears (as shown in Figure 4.4 in Section 4.8.1), what could make the linear regression models to lose prediction precision.

In order to compare the accuracy of both the Linear regression and MLP models, a Wilcoxon rank-sum test was conducted (see 4.22). The steps for generating the error population were the same as the ones presented in Section 4.4.

Table 4.20 RMSE and MAE with the leave one out validation method.

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>2.364</td>
<td>2.114</td>
</tr>
<tr>
<td>Linear regression</td>
<td>2.148</td>
<td>1.902</td>
</tr>
<tr>
<td>Linear regression (interaction)</td>
<td>1.744</td>
<td>1.467</td>
</tr>
<tr>
<td>Genetic programming</td>
<td>2.546</td>
<td>2.218</td>
</tr>
</tbody>
</table>
This way, the null and the alternative hypothesis were ($n = 76$):

H_0: There is no difference in the error population between the linear and the multilayer perceptron network model as both predict with the same error rate the one repetition maximum between 1 and 10 repetitions using repetitions and weight as independent variables.

H_1: There are differences in the error population between the multilayer perceptron network and the linear model when it comes to predicting the one repetition maximum between 1 and 10 repetitions using repetitions and weight as independent variables.

Error descriptives are shown in Table 4.21.

Table 4.21 Error descriptives for the MLP and Linear regression models ($n = 76$).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std.Deviation</th>
<th>Median</th>
<th>95% conf. Lower Bound (mean)</th>
<th>95% conf. Upper Bound (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>2.063</td>
<td>1.611</td>
<td>1.696</td>
<td>1.695</td>
<td>2.431</td>
</tr>
<tr>
<td>Linear regression</td>
<td>1.969</td>
<td>1.819</td>
<td>1.430</td>
<td>1.554</td>
<td>2.385</td>
</tr>
</tbody>
</table>
A Wilcoxon sum-rank test showed (see Table 4.22) that there was not a statistically significant difference in the error when trying to predict the one repetition maximum from submaximal loads (using as variables weight and repetitions) for the models MLP and Linear regression model between 1 and 10 repetitions ($Z = -0.687, p = 0.492$). This way, both alternatives seem pretty similar for predicting the one repetition maximum (chest press action, from 1 to 10 repetitions until exhaustion) in an heterogeneous population.

A comparison between the Linear regression (interaction) model (with the interaction between repetition number and weight, reproducing O’Connor et al. formula [19]) and the MLP is presented in Table 4.23.

Table 4.23 Error descriptives for the MLP and Linear regression (interaction) models ($n = 76$).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std.Deviation</th>
<th>Median</th>
<th>95% Lower Bound(mean)</th>
<th>95% Upper bound(mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>2.063</td>
<td>1.611</td>
<td>1.696</td>
<td>1.695</td>
<td>2.432</td>
</tr>
<tr>
<td>Linear regression (interaction)</td>
<td>1.481</td>
<td>1.651</td>
<td>0.847</td>
<td>1.104</td>
<td>1.858</td>
</tr>
</tbody>
</table>

Proceeding in an identical way, it will be carried out the same comparison between these different models (multilayer perceptron and linear model with interaction between weight and repetitions). The results are presented in Table 4.24 ($n = 76$):

Table 4.24 U Mann Whitney test.

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>-3.228</td>
</tr>
<tr>
<td>Asymp. Sig.(2-tailed)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

A Wilcoxon rank-sum test showed (see Table 4.22) that there was a statistically significant difference in the error when trying to predict the one repetition maximum from submaximal...
loads (using as variables weight and repetitions) for the models MLP and the Linear regression (interaction) model in the range between 1 and 10 repetitions ($Z = -3.228, p = 0.001$). This indicates, that between one and ten repetitions, the Linear regression model with interaction between weight and repetitions, predicts better the $1RM$ (chest press action, from 1 to 10 repetitions until exhaustion) in an heterogeneous population than the neural network approach (MLP). This model seems pretty similar to the one proposed by O’Connor et al. [19] and may validate his results.

The results presented in this Section should be taken with caution as the data set was very unbalanced attending to repetitions number. Only 76 tuples were considered valid for the comparisons presented in this Section (those tuples containing repetitions between 1 and 10), and 30 of them contained 1 repetition as the number of repetitions performed until exhaustion in a set for the bench press action (the actual subject’s $1RM$). In a balanced data set, where all repetitions numbers have exactly the same number of tuples, the results may vary and the models proposed could perform differently. This is proposed as future work.

Furthermore, these results should not be considered valid for other exercises than the bench press action with free-weight barbell. Different prediction equations may apply to different exercises, and this is proposed as a possible future line of research.

4.7 Comparison between the different literature equations

For all the data tuples contained in the target data ($n = 97$), a predicted $1RM$ value was computed for each of the proposed literature $1RM$ prediction equations [8, 17, 18, 19, 20, 21, 22] used in this study. In Table 4.25, it is shown some performance criteria values (R, RMSE and MAE) for these equations.

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryzcki</td>
<td>7.613</td>
<td>3.846</td>
<td>0.936</td>
</tr>
<tr>
<td>Epley</td>
<td>4.411</td>
<td>3.354</td>
<td>0.987</td>
</tr>
<tr>
<td>Lander</td>
<td>7.493</td>
<td>4.161</td>
<td>0.945</td>
</tr>
<tr>
<td>O’Connor</td>
<td>2.957</td>
<td>2.360</td>
<td>0.986</td>
</tr>
<tr>
<td>Lombardi</td>
<td>4.073</td>
<td>2.699</td>
<td>0.973</td>
</tr>
<tr>
<td>Mayhew</td>
<td>5.988</td>
<td>5.269</td>
<td>0.981</td>
</tr>
<tr>
<td>Wathen</td>
<td>4.427</td>
<td>2.928</td>
<td>0.982</td>
</tr>
</tbody>
</table>

Their applicability for predicting the one repetition maximum is reasonable. However, the models for predicting the one repetition maximum from submaximal loads that showed to have
higher error rates were Bryzcki [8] and Lander’s [18] equations. O’Connor et al. equation [19], clearly outperformed the rest of the equations with the highest coefficient of correlation, and lowest RMSE and MAE. Between those with a non-linear behavior, Lombardi [20] showed the lowest MAE, whilst Mayhew [21] and Wathen [22] presented higher coefficients of correlation. However, these results should be taken with caution, as the applicability of each of these 1RM prediction equations is restricted to a certain number of repetitions, and the comparison among them is not straightforward. Nevertheless, for recreational use, it is noteworthy the differences found between the predicted value of the equation, and the actual value of the 1RM (reported errors of up to 25kgs in over-estimation). Prediction equations should be used with caution and, when in doubt, prescription of exercise intensity should be expressed as a number of repetitions.

4.8 Post-hoc analysis

In this section it is discussed the differences found among repetitions number at a certain % of the 1RM (Section 4.8.1) and at different percentages (Section 4.8.2). Finally, the relationship between RPE and the number of repetitions is discussed in Section 4.8.3.

4.8.1 Number of repetitions at a certain percentage of 1RM

A scatter-plot (showing repetitions vs. %1RM), with the whole data set collected in the 1RM assessment carried out in this study is shown in Figure 4.4.

![Figure 4.4: Repetitions performed until exhaustion vs. %1RM.](image)

In Figure 4.4 is remarkable the non-linearity of the number of repetitions compared to
the percentage of the one repetition maximum. This seems to indicate that when trying to estimate one repetition maximum from submaximal loads, and the number of repetitions is greater than 10, it is needed another approach, different from those linear equations proposed in literature [8, 17, 18, 19].

Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity. No differences in number of repetitions performed at a given exercise intensity were noted between trained and untrained individuals (except during bench press at 90% 1RM). Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity [62]. No significant differences ($p > 0.05$) were found for any percent 1RM for the bench press and the leg press between trained and untrained subjects [24]. It seems to agree with Arazi and Asadi [12], who noted that there were no significant differences ($p > 0.05$) between the trained and untrained groups (except at 85 and 95% of 1RM in the arm curl).

Everything seems to indicate, that no matter how the individual training background was, at the same selected percentage of the 1RM, it will perform the same number of repetitions.

By means of a hypothesis contrast, we will try to assess if as stated by Arazi and Asadi [12], the mean number of repetitions performed by the population in flat bench press is 14 at the 75% of their actual 1RM.

This way, the two hypotheses formulated (null hypothesis and alternative hypothesis) were as follows:

$$H_0: \text{The mean of repetitions for flat bench press at 75\% of 1RM is 14 repetitions.}$$

$$H_1: \text{The mean of repetitions for flat bench press at 75\% of 1RM is different than 14 repetitions.}$$

All data tuples selected for applying the hypothesis contrast were those where the intensity applied was around the 75% of the 1RM of the subject. All the subjects with accumulated repetitions were removed from the data used (this is, this was their first set until exhaustion in the 1RM assessment). This way, from a total of nine subjects who performed a set at the 75% of their actual 1RM, only five performed this set as their first set until exhaustion. A one-sample t-test ($n = 5$) was run to determine whether the number of repetitions at 75% of the 1RM was equal to fourteen or not. Repetition number, as well as percentage, were normally distributed ($p > 0.05$), as assessed by Shapiro-Wilk’s test [60] (see Table 4.27 and Table 4.26).

| Table 4.26 Descriptives of percentage and repetitions ($n = 5$). |
|--------------------|----------------|--------------------|----------------|----------------|----------------|
| | Mean | 95% Lower Bound(mean)| 95% Upper bound(mean)| Std.Deviation | Median |
| Repetitions | 13 | 11.48 | 14.52 | 1.225 | 13 |
| % 1RM | 0.757 | 0.728 | 0.786 | 0.023 | 0.757 |

66
Table 4.27 Test of normality: repetitions and percentage.

<table>
<thead>
<tr>
<th>Tests of normality</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Repetitions</td>
<td>0.300</td>
<td>5</td>
</tr>
<tr>
<td>%1RM</td>
<td>0.214</td>
<td>5</td>
</tr>
</tbody>
</table>

There is not enough evidence to reject the null hypothesis \((p > 0.05) \) (mean of repetitions at 75% 1RM is equal to fourteen), by means of a one sample t-student test \((t(4) = -1.826, p = 0.142) \). Thus, we cannot state that the number of repetitions in the chest press action at 75% of the 1RM is different than fourteen. This seems to agree with the results presented by Arazi and Asadi [24].

Then, a one sample t-test was carried out with the tuples discarded in the prior hypothesis contrast (those where the subjects had performed at least one set until exhaustion previously). These subjects performed a mean of 10.6 repetitions until exhaustion (mean=+standard deviation; 10.6+−2.19). A one sample t-test showed statistically significant differences between the mean of repetitions performed until exhaustion \((t(4) = -3.4, p = 0.026) \) and the supposed mean of repetitions at the 75% of the 1RM: 14. This may suggest that performance decreases with increasing acidosis [16, 53].

4.8.2 Comparing repetitions until exhaustion at 70%-75% of 1RM

Two groups were considered in order to analyze the different number of repetitions that could be achieved at different exercise intensities. Duplicated subject IDs were removed from the target data used to apply hypothesis contrast (independent samples), and all the subjects that entered in the target data were those whose accumulated repetitions (this is, previous sets performed until exhaustion) were zero. This could help when validating the results obtained, as it was the first attempt of the subjects to perform a set until exhaustion.

Two groups were created. The group’s repetitions statistics (i.e., number of repetitions performed until exhaustion) and percentage of the 1RM applied in the set are presented in Table 4.28 and 4.29, respectively.
Table 4.28 Repetitions in the different groups (70-75% 1RM).

<table>
<thead>
<tr>
<th>Group (RM)</th>
<th>N</th>
<th>Mean</th>
<th>95% Lower bound(mean)</th>
<th>95% Upper bound(mean)</th>
<th>Std.Deviation</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% RM</td>
<td>6</td>
<td>15.25</td>
<td>13.38</td>
<td>17.12</td>
<td>1.782</td>
<td>15</td>
</tr>
<tr>
<td>75% RM</td>
<td>5</td>
<td>13</td>
<td>11.479</td>
<td>14.521</td>
<td>1.224</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 4.29 %1RM in the different groups.

<table>
<thead>
<tr>
<th>Group (RM)</th>
<th>N</th>
<th>Mean</th>
<th>95% Lower bound(mean)</th>
<th>95% Upper bound(mean)</th>
<th>Std.Deviation</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% RM</td>
<td>6</td>
<td>0.705</td>
<td>0.694</td>
<td>0.717</td>
<td>0.011</td>
<td>0.706</td>
</tr>
<tr>
<td>75% RM</td>
<td>5</td>
<td>0.757</td>
<td>0.728</td>
<td>0.786</td>
<td>0.023</td>
<td>0.756</td>
</tr>
</tbody>
</table>

A hypothesis contrast was applied, in order to determine if there were significant differences in the number of repetitions performed between 70% and 75% of the 1RM. This way, an independent t-student test (normality of populations checked by a Shapiro-Wilk’s test [60], p > 0.05) was performed, with the following hypothesis:

\[H_0: \text{There is no difference in the number of repetitions performed by individuals between 70% and 75% of their actual 1RM.} \]

\[H_1: \text{There is any difference in the number of repetitions performed by individuals between 70% and 75% of their actual 1RM.} \]

This study found that number of repetitions until exhaustion, performed at lower intensities, is statistically significant greater than at higher intensities (\(t(9) = 2.383, p = 0.041\)). Thus, we can reject the null hypothesis, and conclude that there is a statistically significant difference between the repetitions that could be performed at 70% and 75% of the 1RM. However, this finding is certainly not surprising since a fundamental principle of resistance exercise is that there is an inverse relationship between intensity and volume [24].

4.8.3 RPE and repetitions until exhaustion

As stated in other studies [24], “few correlations were observed that were meaningful to the understanding of the interrelationship between RPE and the number of repetitions
performed. This was most likely due to the performance of a single set per exercise and the use of exercise to failure as the end point. However, since many competitive and recreational strength-training programs utilize exercise to failure, such data do raise serious equations as to the utility of RPE to monitor differences in effort between sets performed to failure at different percentages of $1RM$. If exercise goes to failure, the exertion of subjects is similar within any intensity level, and that RPE may not be an effective tool to reflect the intensity of the loading in such an exercise prescription.

In this study, we collected two measurements of RPE in each of the sets: the RPE in the first (at the beginning of the set) and the last repetition (at the end of the set). A Kruskall-Wallis one-way analysis of variance by ranks, was used for testing whether RPE at the end of the set were originated from the same distribution in the different $1RM$ intensity groups created. The Kruskall-Wallis test, is used for comparing more than two samples that are independent, or not related. Since it is a non-parametric method, the Kruskall-Wallis test does not assume a normal distribution of the residuals. When the Kruskal-Wallis test leads to significant results, then at least one of the samples (here the RPE distributions of the groups applying different intensity levels) is different from the other samples.

Three different groups were created based on their % of the $1RM$. This way, the three groups $1RM$ percentage and RPE are presented in Table 4.30 and Table 4.31 respectively.

Table 4.30 Descriptives of the $\%1RM$ in the three groups created.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>95% Lower bound(mean)</th>
<th>95% Upper bound(mean)</th>
<th>Std.Deviation</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>(75%RM)</td>
<td>7</td>
<td>0.756</td>
<td>0.739</td>
<td>0.7728</td>
<td>0.018</td>
<td>0.756</td>
</tr>
<tr>
<td>(80%RM)</td>
<td>9</td>
<td>0.807</td>
<td>0.797</td>
<td>0.8180</td>
<td>0.0134</td>
<td>0.806</td>
</tr>
<tr>
<td>(90%RM)</td>
<td>4</td>
<td>0.907</td>
<td>0.8792</td>
<td>0.93511</td>
<td>0.017</td>
<td>0.911</td>
</tr>
</tbody>
</table>

Table 4.31 Descriptives of the RPE at the end of the set in the three groups created.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Mean</th>
<th>95% Lower bound(mean)</th>
<th>95% Upper bound(mean)</th>
<th>Std.Deviation</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>(75%RM)</td>
<td>7</td>
<td>9.29</td>
<td>8.83</td>
<td>9.74</td>
<td>0.488</td>
<td>9</td>
</tr>
<tr>
<td>(80%RM)</td>
<td>9</td>
<td>8.44</td>
<td>7.67</td>
<td>9.22</td>
<td>1.014</td>
<td>8</td>
</tr>
<tr>
<td>(90%RM)</td>
<td>4</td>
<td>9.5</td>
<td>7.91</td>
<td>11.09</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>
In Figure 4.5, we can observe a box-plot of the RPE at the end of the set (grouped by variable “Group”, as defined in Tables 4.30 and 4.31).

![Figure 4.5: Box plot: RPE at the end of the set.](image)

The null and alternative hypotheses used in this section, were the following:

\[H_0: \text{There is no difference between the RPE at the end of the set among the different intensity levels.} \]

\[H_1: \text{There is any difference between the RPE at the end of the set among the different intensity levels.} \]

There is not a statistically significant difference between the RPE at the end of the set between the different intensities (%1RM) \(H(2) = 4.663, p = 0.097 \) when all sets are performed until exhaustion. This seems to agree with the results presented in other studies [24].

Even though RPE at the end of the set was not statistically different between the different groups, RPE in the first repetition seems to correlate quite well with the number of repetitions performed until exhaustion \(R = -0.812, n = 97, p < 0.01 \). This seems to indicate that somehow, RPE at one repetition could be a good predictor for repetitions until exhaustion. In Figure 4.6, it is plotted the relationship between RPE at one repetition, and the the selected percentage of the one repetition maximum.
Figure 4.6: Repetitions performed until exhaustion vs. %1RM.

Figure 4.6 suggests that RPE in the first repetition of the set, when used correctly, can be a suitable predictor of exercise intensity (the percentage of the one repetition maximum), and may help when it comes to predicting the 1RM in a heterogeneous population. The inclusion of the RPE in the first repetition as a predictor in 1RM prediction equations is proposed as further work.

4.9 Data simulation

Due to the enormous variability between the different 1RM prediction equations proposed and analyzed so far in the study [8, 17, 18, 19, 20, 21, 22], data simulation was used in order to emulate subjects performing a set until exhaustion in the chest press action. This way, and iterating though different weights and repetitions, all the equations were used in their reported valid range of repetitions to generate an estimated value of the 1RM. Thus, all the proposed equations [8, 17, 18, 19, 20, 21, 22] were used in the range from 2 to 10 repetitions; Lombardi [20], Mayhew [21] and Wathan [22] for 11 repetitions; and finally Mayhew [21] and Wathan [22] equations were used in the range of 11 up to 15 repetitions [16].

Weight was increased in 5 kilograms for all the different repetitions for each of the formulas (varying from 50 to 100). The repetitions range varied from 2 up to 15 repetitions. Proceeding
in such a way, we obtained all the different \(1RM \) values that will be used to create a linear regression model by means of data simulation.

In Figure 4.7 we can see a plot of the repetitions (x axis) and percentage of the \(1RM \) (y axis) of the data generated applying data simulation.

![Graph showing repetitions vs. \%1RM](image)

Figure 4.7: Repetitions performed until exhaustion vs. \%1RM.

Certainly, the data plotted in Figure 4.7, seems to agree with that obtained in the present study (see Figure 4.4), where a non-linear behavior seems to appear when the number of repetitions is greater than a certain repetition threshold.

Emulating O’Connor’s et al. [19] and Epley’s [17] equation, a third variable representing the interaction between weight and repetitions (RW in Table 4.32) was considered in the model. A linear regression model was obtained applying the forward selection method used previously in Section 4.3.
Table 4.32 Coefficients of the 1RM prediction equation by means of data simulation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unstandardized coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>95.0% Confidence interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std.Error</td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>(Constant)</td>
<td>0</td>
<td>0.408</td>
<td>1.000</td>
<td>-0.802</td>
</tr>
<tr>
<td>Weight</td>
<td>0.998</td>
<td>0.006</td>
<td>168.026</td>
<td>0.000</td>
</tr>
<tr>
<td>RW</td>
<td>0.031</td>
<td>0.000</td>
<td>99.981</td>
<td>0.000</td>
</tr>
</tbody>
</table>

*Dependent variable:RM

Thus, the linear regression prediction equation of the 1RM from simulated data obtained in Table 4.32 has the form:

(4.9) \[1RM = 0.998W + 0.031RW \]

where \(W \) is the weight lifted and \(RW \) is the interaction between repetitions and weight lifted in the set. Surprisingly, the resulting prediction equation 4.9 seems to confirm Epley’s [17] prediction equation.
Chapter 5

Conclusions

Based on the athletes’ objectives, different percentages of the $1RM$ are applied in order to achieve maximal performance. Many $1RM$ prediction formulas have been proposed in literature, whilst few of them have been cross-validated in other studies. In many cases, population is unknown, or its applicability to different exercises is more than questionable (multi joint vs. single joint exercises). Many other investigations have focused on generating a very specific prediction formula for a restricted population or exercise. More effort is needed, as there is a demanding necessity from beginners and casual resistance training practitioners of a one repetition maximum prediction formula based on their characteristics.

Multilayer perceptron networks, genetic algorithms and clustering techniques, could help in defining a framework, where all the different prediction equations and subject, exercise or external characteristics could be mapped. There is a huge demand, not only by clients, but as well by coaches and sports enthusiasts, to ease the path between the academic and the real world, when it comes to generating periodized and/or specific training routines from the subject’s objectives.

O’Connor et al. prediction equation seems to agree with that obtained in the present study, as it seems to be the best prediction equation for a heterogeneous population in the chest press action. By means of genetic programming, a new variable, resulting from the interaction of weight and repetitions emerged as a sensible predictor in the different equations. The multilayer perceptron network, seems a suitable approach when it comes to the one repetition maximum prediction. However, its real potential is still unknown in the area, and is proposed as a sensible approach for estimating the one repetition maximum, when the number of repetitions is greater than ten.

Years of experience and weekly hours of resistance training, seems more correlated to the actual $1RM$ in the bench press action for an heterogeneous population, than body weight. It seems, that different variables are better predictors than others, depending on the population characteristics. More research is needed in this area, and more predictors could be added to the prediction formulas, in order to increase their performance, based on the subjects characteristics. RPE at the end of the set, seems not to be a good predictor of the percentage of the one repetition maximum, as there were not found any statistical significance ($p < 0.05$)
between the different RPE from the subjects at 75%, 80% and 90% of their actual 1RM.

Subjects performed statistically ($p < 0.05$) more repetitions at 70% than at 75% of their 1RM. This is not surprising; the more repetitions can be performed until exhaustion the lower the intensity level is. The number of repetitions performed at 75% of the 1RM ($n = 5$) in the chest press action is fourteen. When the subjects have performed previous sets until exhaustion, the number of repetitions at the same 1RM percentage seems to lower, and fourteen repetitions seems not to be the number of repetitions that can be performed until exhaustion ($p < 0.05$).

A non-linear relationship seems to appear between the number of repetitions and the percentage of the 1RM. This seems to indicate that, as the number of repetitions increases, a non-linear approximation for predicting the 1RM is needed. For modeling these non-linear behaviors, a multilayer perceptron network is proposed as a rational approach.

1RM prediction formulas from submaximal loads should be used with caution, as they may over-estimate in a great percentage the proposed load for a certain exercise intensity prescription. The linear regression equation proposed in this study seems to agree with that proposed by O’Connor et al., whilst by means of data simulation, the data revealed a behavior, that was reasonably well estimated by Epley’s formula.
Chapter 6

Future research

In this section, it is presented a set of possible approximations when trying to tackle the inherent complexity of 1RM prediction by means of well known data mining analysis techniques. A genetic algorithm will be proposed (see Section 6.1) for mapping the different equations proposed in literature to different best matching subject and/or exercise characteristics (years of experience, body weight, movement cadence, multi joint or single joint action etc.). A multilayer perceptron neural network seems a “natural” approach for modeling the non-linear behavior of the 1RM prediction when the number of repetitions is high (see Section 6.2), whilst SOM (see Section 6.3) and k-means clustering (see Section 6.4) are valuable modeling techniques for grouping the different subjects/exercises characteristics, and creating a framework of similarities/dissimilarities not only between subjects, but as well between the different exercises, in order to match them with reliable one repetition maximum prediction equations.

6.1 Genetic algorithm

A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection. This heuristic is used to generate useful solutions to optimization and search problems.

Genetic algorithms are a family of computational models inspired by evolution. These algorithms encode a potential solution to a specific problem on a simple chromosome-like data structure, and apply recombination operators to these structures in such a way as to preserve critical information. Genetic algorithms are often viewed as function optimizers, although the range of problems to which genetic algorithms have been applied is quite broad [67].

As there are a lot of different variables influencing the 1RM prediction for the different population segments, and the relationships among them is not yet known, it is needed a way of “ordering” all this information and directing the space of possible solutions towards a best suited equation or neural network prediction of the one repetition maximum based on the individual’s and/or exercise’s characteristics.
In this section, it will be proposed a genetic algorithm as a sensible approach to solve the issue of connecting the exercise characteristics, the subject’s attributes, and the prediction equation for the 1RM. The main aim is the evolution of different individuals (i.e., chromosomes) that will best fit the prediction formulas proposed by the different authors in literature. Furthermore, this approach could help in discovering the characteristics of the subjects who participated in the different 1RM prediction equations and the population remains still unknown [16].

A previous study of the different variables influencing the one repetition maximum prediction is needed. When all these different variables are considered, a phase of data gathering should be followed. In this section it will be shown a sensible way of proceeding when it comes to evolving a population of different individuals, to achieve a common set of variables that influence a certain 1RM prediction formula.

Example: Let’s imagine five different variables are used in the experiment: repetitions to fatigue, body weight, length of the arm, circumference of the chest, and one repetition maximum. All these variables (in this case, all of them scale variables), can be transformed into ordinal or nominal variables (i.e. body weight could be transformed to low (BW < 70kgs), medium (70kgs < BW < 90kgs), or high (BW < 90kgs). These differences can be coded with two consecutive bits in an array (01, 10, 11, respectively). The absence of body weight as a key variable in the sequence generated before, could be coded with two consecutive zeros (00). It can be repeated the same scheme for all the different variables contained in the group of variables chosen. Let’s have in mind, that more than three subdivisions can be selected for the different variables, and the genome sequence could be as long as desired.

Logical operations between each of the different variables (AND, OR) can be coded, as well as the boolean expressions (YES, NO) with a certain sequence (i.e. 0 and 1 respectively). At the end of the sequence (genome), the class is coded (the best suited formula for a certain subject, based on the difference between the predicted value and the actual 1RM). This is then, the tuple’s class in the dataset. This way a possible chromosome could be coded and the representation could look like the following:

Example: Chromosome: 10010101000110001 8 Possible chromosome meaning: ((BW=high) OR ((repetitions to fatigue=low) AND (circumference of the chest=Medium)) = class=8

Thereby, a set of variables and logical operations are key in the previous chromosome for the individual: body weight high, repetitions to fatigue low and circumference of the chest medium, with AND/OR operations between these variables.

\[
\text{sensitivity} = \frac{TP}{TP + FN}
\]

\[
\text{specificity} = \frac{TN}{TN + FP}
\]

where
It is needed a way of measuring how “good or bad“ is each of these chromosomes. Hence, a fitness function is needed to measure their performance as possible problem solutions. Sensitivity (see Equation 6.1) measures the proportion of actual positives which are correctly identified as such, whilst specificity (see Equation 6.2) measures the proportion of negatives which are correctly identified as such. Intuitively, a perfect predictor would be describe as 100% sensitive and 100% specific. Thereby, a plausible fitness function could be defined as that which maximizes the product of both equations. The maximum value for this product is equal to one.

True positives, true negatives, false positives and false negatives (TP, TN, FP, and FN respectively) are obtained from the database containing all the different individuals characteristics with their best matching 1RM prediction equation. Recall that this database contains all the different individual’s characteristics, with the prediction equation that has a the lowest error rate (attending to RMSE or MAE) when predicting the 1RM for that subject.

Thus, with a coded chromosome like the following:

Example: ((BW=high) OR ((repetitions to fatigue=low) AND (circumference of the chest=Medium))) => class=8;
we will select all the subjects in the database with those characteristics that match the class (TP and FN), those that do not match the class (TN and FP) and evaluate the chromosomes performance by means of the fitness function based on 6.1 and 6.2.

These chromosomes will reproduce in further generations, and hopefully the best individuals in the last generation will be selected as the best-suited for the different formulas. These chromosomes will have encoded the set of key variables that best describes a type of subject participating in the 1RM assessment for a certain prediction equation. Hence, applying genetic algorithms we might be able to find the hidden characteristics of the different population participating in the 1RM prediction studies and elicit a common framework of influential variables that best represents them.

6.2 Multilayer perceptron networks

Not all the variables are meaningful for all the subjects when it comes to predicting the 1RM. There are not only different anthropometric variables that have influence in a subject performance for a certain exercise, but other variables like movement cadence, type of exercise (multi-joint vs single-joint exercises) or even emotional state that somehow influence an individual’s performance and the 1RM prediction. Different neural networks, with different architectures and input nodes, could help in predicting the 1RM for different population segments.
CHAPTER 6. FUTURE RESEARCH

As relationships between variables present even today unknown interactions, several other variables could be added to the existing prediction formulas based on submaximal loads, fixed load or anthropometrics, such as time to failure, resting intervals between sets, range of motion (distance) or even medium speed (considering an uniform cadence of movement). The effect of the usage of supplements such as creatine, the subject’s emotional state, or even with external interfaces such as by means of an accelerometer in the bar, could lead to a better prediction of the 1RM with a neural network approach.

Not only for regression, but as well for classification, a neural network could be used in order to distribute the population based on the individual’s characteristic into a best suited neural network/one repetition maximum prediction formula. As neural networks are universal approximators and work in an impressive way when it comes to modeling non-linear relationships between variables and when the interaction between the different variables is not well-known, they could be helpful to shed light on the 1RM prediction when the number of repetitions is high, and the different energetic systems take part into the exercise action.

As neural networks train from samples, an individualized neural network could be trained for each individual trying to predict its actual 1RM. Maybe, after all the efforts in trying to generalize a model for 1RM prediction, it is not possible to create a single model best suited for an individual, and its adequacy is based on a combination of factors (experience in weight lifting, motivation, psychological or physical conditions, resting intervals or even external factors such as the presence of observers in the assessment [68]) what determines the best suited formula for a certain individual at a certain time. Neural networks have been applied though a enormous spectrum of fields, and application of multilayer perceptron networks to sports science could bring incredible new discoveries in the area.

6.2.1 Bootstrap and bagging techniques

Bagging is a general strategy for improving classifier and predictor accuracy. Is an example of an ensemble method, or a method that uses a combination of models. It combines a series of \(k \) learned models (classifiers of predictors), \(M_1, M_2, \ldots, M_k \), with the aim of creating an improved composite model, \(M^* \) [3].

Given a data set, \(D \), of \(d \) tuples, bagging works as follows: for iteration \(i (i = 1, 2, \ldots, k) \) a training set, \(D_i \), of \(d \) tuples is sampled with replacement from the original set of tuples, \(D \). Each training set is a bootstrap sample. Note that the term bagging stands for bootstrap aggregation and recall that bootstrap samples the given training tuples uniformly with replacement (i.e., each time a tuple is selected, it is equally likely to be selected again and included in the training set) [3]. Because sampling with replacement is used, some of the original tuples of \(D \) may not be included in \(D_i \), whereas other may occur more than once. A classifier model, \(M_i \), is learned for each training set, \(D_i \). To classify an unknown tuple, \(X \), each classifier \(M_i \), returns its class prediction which counts as one vote. To the bagged classifier, \(M^* \), counts the votes and assigns the class with the most votes to \(X \). Bagging can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple [3], and use it for predicting effectively the 1RM.
The bagged classifier often has significantly greater accuracy than a single classifier derived from D, the original training data. It will not be considerably worse and is more robust to the effects of noisy data. The increased accuracy occurs because \(M^* \) reduces the variance of the different classifiers. For prediction, it was theoretically proven that a bagged predictor will always have improved accuracy over a single predictor derived from D [3].

In the present study, bagging could not be used as a different number of tuples were obtained for each of the subjects (data set has to be always of a fixed size \(d \)). However, this problem could be tackled if for each individual exactly the same number of tuples is obtained (different sets at a certain percentage of the subject’s 1RM). This is proposed as a future line of research.

6.3 Neural network: SOM

The Self-Organizing Map (SOM) defines an ordered mapping, a kind of projection from a set of given data items onto a regular, usually two-dimensional grid. A model \(m_i \) is associated with each grid node. These models are computed by the SOM algorithm. A data item will be mapped into the node which is most similar to the data item, e.g., has the smallest distance from the data item in some metric [69] such as the Euclidean distance.

When the data items are computed by the SOM algorithm, they are more similar at the nearby nodes than between nodes located farther away from each other on the grid. In this way the set of the models can be regarded to constitute a similarity graph, and structured ‘skeleton’ of the distribution of the given data items [69]. It is an unsupervised artificial neural network algorithm, a compromise between biological modeling and statistical data processing. All input patterns are shown to all the neurons simultaneously, and the neuron with the largest response is chosen to be the representative of that pattern (competitive learning). This way, different populations (attending to their anthropometric variables, experience in training or different sport backgrounds) could be grouped in nearby groups, which potentially could apply the same prediction formulas for the prediction of their actual 1RM, whilst other groups differing in those characteristics, could be best suited to applying different 1RM prediction formulas.

This algorithm gives a big advantage over the k-means algorithm, as you do not have to provide the algorithm the exact number of clusters or groups that you want to create, and may elicit a whole set of new groups that were not predictable at all at first sight.

Usage of a classification algorithm (or even SOM), to detect the best matching formula for predicting the 1RM based on anthropometric characteristics, action characteristics or individual’s background, is proposed as a future line of research.

6.4 Clustering with k-means
As the data gathered in a 1RM assessment could be very heterogeneous, clustering could be a good technique in order to separate the different subjects participating into groups, and maybe, this could ease the path to applying different prediction formulas of the 1RM to different population based on their characteristics. These characteristics could be the ones used when applying the k-means algorithm in this study (those that seemed to correlate quite well with the 1RM such as years of experience in weight training), or several others (i.e., anthropometric variables such as body weight in trained individuals, action movement cadence or the percentage of the range of motion applied in the exercise). The main objective of this could be the acquisition of certain “easy to measure“ variables that best suited for the different subjects when it comes to predicting their actual 1RM in the bench press action.

Due to the lack of data in each of the groups (in the group with more subjects, there were just twelve of them), in this study it could not be elicited if there was any kind of significant connection between the subjects in each of the groups, and the predicting formulas that most suited all the subjects in a certain cluster. Nevertheless, it is proposed as a future line of research, in order to tackle the inherent problem of the usage of a certain predicting formulas for certain population members as stated in [21] (knowing exactly the cluster where the subjects belong to, maybe a certain set of formulas will be best suited for them).

Furthermore, the application of the k-means algorithm could help researchers in the creation of not just a single prediction equation for the overall population, but for a specific prediction equation in certain interesting clusters.
Appendix

6.5 Appendix A
PLACE

DATE/HOUR

AGE

GENDER: M W

HEIGHT

WEIGHT

WEIGHT TRAINING/WEEK

OTHER SPORTS/WEEK

HOURS FROM LAST SESSION

14 WEEKS OF EXERCISE:

TRAINING PROTOCOL

(series*repetitions*exercises)

TRAINING EXPERIENCE YEARS

TRAINING METHOD. (**)(0 divided routine; 1 full body)

RESTING

MOOD

CREATINE(*) (*): never had

1: load phase

2: estabilization phase

<table>
<thead>
<tr>
<th>Rest Interval</th>
<th>Acumulated reps.</th>
<th>Reps.</th>
<th>Weight</th>
<th>Time to exhaustion</th>
<th>BORG/1rep</th>
<th>BORG end of serie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Finalidad y explicación de la prueba**

Realizarás dos ejercicios: press de banca y curl de bíceps con barra EZ, con el objetivo de realizar una medición de tu 1RM o repetición máxima. La intensidad de los ejercicios comenzará en un nivel bajo, y se irá incrementando dependiendo de tu estado físico. Se puede parar el test en cualquier momento, debido a posibles signos de fatiga o cambios en tu ritmo cardíaco, presión arterial o distintos síntomas que puedas experimentar. Es importante señalar que se puede parar el test en cualquier momento que desees, debido a sensaciones de fatiga, o cualquier otra molestia que te suceda durante la ejecución de la prueba. La recolección de datos, se hará de forma completamente anónima.

2. **Riesgos del participante y posibilidad de molestias**

Existe la posibilidad de que ciertos cambios ocurran durante la prueba. Estos, incluyen los de presión sanguínea anormal, mareos, ritmo cardíaco irregular, rápido o lento; y en raras ocasiones, ataques al corazón, derrames cerebrales o incluso muerte. Todo esfuerzo se hará para minimizar estos riesgos, mediante la evaluación previa de la información recogida, y por la observación atenta y meticulosa durante la prueba. El equipamiento de emergencia estará disponible para actuar en caso de que algunas de estas situaciones inusuales puedan suceder.

3. **Responsabilidades del participante**

La información que posees acerca de tu estado de salud o experiencias previas de síntomas relacionados con la salud cardíaca (por ejemplo, dificultad de respiración con actividades de bajo nivel; dolor; presión; tirantez; pesadez en el pecho, cuello, mandíbula, espalda y/o brazos) con esfuerzo físico puede afectar la seguridad de tu prueba. Debes reportar tan tempranamente como sea posible estas circunstancias, y algún otro sentimiento inusual relacionado con el esfuerzo realizado durante la prueba. Eres consciente de ello, y de tu historial médico, así como de los síntomas que pueden ocurrir durante la prueba.

4. **Beneficios esperados**

Los resultados obtenidos de esta prueba, ayudarán a generalizar un modelo extrapolable a distintas poblaciones, y ayudarán a realizar una prescripción deportiva sistemática por los organismos que empleen dicha herramienta.

5. **Ruegos o consultas**

Cualquier pregunta acerca del procedimiento usado en la prueba o los resultados de tus pruebas es más que bienvenido. Si tienes alguna preocupación, duda, o ruego, no dudes en hacérmelo notar, para obtener mayores explicaciones.

6. **Libertad de consentimiento**

Doy mi consentimiento voluntario para participar en la prueba de la estimación de 1RM. Mi permiso es completamente voluntario. Entiendo que soy completamente libre de parar en cualquier momento que desee la prueba, bajo mi criterio personal.

He leído este formulario, entiendo el procedimiento de prueba que realizaré y los riesgos que ello conlleva. Sabiendo estos riesgos, y habiendo tenido la oportunidad de realizar preguntas, que han sido contestadas para mi satisfacción plena, consiento participar en la prueba.

Fecha: ________________________ Firma del participante: ________________________
Fecha: ________________________ Firma del testigo: ________________________
Fecha: ________________________ Firma del organizador: ________________________
Bibliography

at different intensities in untrained women.” *Brazilian Journal of Biomotricity*, vol. 5, no. 2, 2011.

