RICS COBRA 2013

The Construction, Building and Real Estate Research Conference of the Royal Institution of Chartered Surveyors

Held in New Delhi, India in association with the University of Ulster and IIT Delhi

10th-12th September 2013

© RICS 2013

Royal Institution of Chartered Surveyors
Parliament Square
London SW1P 3AD
United Kingdom

www.rics.org/research

The papers in this proceeding are intended for knowledge sharing, stimulate debate, and research findings only. This publication does not necessarily represent the views of RICS, the University of Ulster or IIT Delhi.

The RICS COBRA Conference is held annually. The aim of COBRA is to provide a platform for the dissemination of original research and new developments within the specific disciplines, sub-disciplines or field of study of:

Management of Building and Infrastructure Projects

- Cost and value management
- Building technology
- Building regulation and control
- Construction procurement and Project Delivery Systems
- Public Private Partnerships
- Contract management
- Health and safety management
- Risk management
- Project management
- Infrastructure Planning and Development
- Built Environment Modelling and Building Information Modelling

RICS Legal Research Symposium
- Property Law
- Construction Law
- Environmental Law
- Housing Law
- Planning Law
- Building Regulation & Control
- Alternative Dispute Resolution
- Professional Liability & Ethics
- Legal Education in Property & Construction
- International & Comparative Law

Real estate
- Asset, property and facility management
- Housing policy, markets, and finance
- Property investment theory and practice
- Market research, analysis and forecasting
- Urban real estate and land economics
- Financial analysis of the property market and property assets
- Global comparative analysis of property markets
- Sustainable real estate and infrastructure development
- Urban regeneration policy and practice
- Financing urban development
- Real estate risk & portfolio management
- Property valuation
- Land and Resource Management

Peer review process

All papers submitted to COBRA were subjected to a peer review refereeing process.

Referees were drawn from an expert panel, representing respected academics from the construction and building research community. The conference organisers wish to extend their appreciation to the following members of the panel for their work, which is invaluable to the success of COBRA.

Alan Abela Nottingham Trent University
Alastair Adair University of Ulster
Ajibade Aibinu University of Melbourne
Jorge Aimite University of the Western Cape
Anuar Alias University of Malaya
Sara Alsaadani Cardiff University
Matthew Bell University of Melbourne, Australia
Jim Berry University of Ulster
In addition to this, the following specialist panel of peer-review experts assessed papers for the RICS COBRA Legal Symposium:

Julie Adshead University of Salford, UK
Alison Ahearn Imperial College London, UK
Deniz Artan Ilter Istanbul Technical University, Turkey
Francine Baker KCL, UK
Jane Ball Newcastle University, UK
Luke Bennett Sheffield Hallam University
Michael Brand University of New South Wales, Australia
Penny Brooker University of Wolverhampton, UK
Sai On Cheung City University of Hong Kong
Alice Christudason National University of Singapore
Paul Chynoweth University of Salford, UK
Julie Cross University of Salford, UK
Steve Donohoe University of Plymouth, UK
Ari Ekroos University of Helsinki
Paula Gerber Monash University, Australia
Tilak Ginge Bournemouth University
Jan-Bertram Hilig Herrenknecht AG, Germany
Anthony Lavers Keating Chambers, UK
Wayne Lord Loughborough University
Tinus Maritz University of Pretoria
Jim Mason University of the West of England, UK
Tim McLernon University of Ulster, UK
Frits Meijer University of Delft
Issaka Ndekugri University of Wolverhampton, UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Pointing</td>
<td>Kingston University, UK</td>
</tr>
<tr>
<td>Yvonne Scannell</td>
<td>Trinity College Dublin, Ireland</td>
</tr>
<tr>
<td>Julian Sidoli del Ceno</td>
<td>Birmingham City University</td>
</tr>
<tr>
<td>Linda Thomas-Mobley</td>
<td>New School of Architecture & Design, USA</td>
</tr>
<tr>
<td>Karen Tweeddale</td>
<td>London South Bank University, UK</td>
</tr>
<tr>
<td>Henk Visscher</td>
<td>TU Delft, The Netherlands</td>
</tr>
<tr>
<td>Peter Ward</td>
<td>University of Newcastle, Australia</td>
</tr>
</tbody>
</table>
APPLICATION OF A BUILDING COST ESTIMATION MODEL TO THE APPRAISAL OF THE CHURCHES DAMAGED BY EARTHQUAKES IN LORCA (SPAIN)

Pedro Pina Ruiz¹, Federico García Erviti² and Gema María Ramírez Pacheco²

¹Catholic University San Antonio of Murcia, Spain. ²Polytechnic University of Madrid, Spain.

ABSTRACT

The objective of this paper is the development of a building cost estimation model whose purpose is to quickly and precisely evaluate rebuilding costs for historic heritage buildings affected by catastrophic events. Specifically, this study will be applied to the monumental buildings owned by the Catholic Church that were affected by two earthquakes on May 11, 2011 in the town of Lorca. To estimate the initial total replacement cost new, calculation model will be applied which, on the one hand, will use two-dimensional metric exterior parameters and, on the other, three-dimensional interior cubic parameters. Based on the total of the analyzed buildings, and considering damage caused by the seismic event, the final reconstruction cost for the building units ruined by the earthquakes can be estimated. The proposed calculation model can also be applied to other emergency scenarios and situations for the quick estimation of construction costs necessary for rebuilding historic heritage buildings which have been affected by catastrophic events that deteriorate or ruin their structural or constructive configuration.

Keywords: building, earthquake, cost, estimation, model.

1. HISTORY: THE EARTHQUAKES OF MAY 11, 2011

Figure 1 - Church of Santiago (Lorca)
Source: Director Plan for the Recovery of the Historic Heritage of Lorca (Murcia)
Located in the southeastern corner of the Iberian Peninsula, the town of Lorca is considered one of the most seismically active areas in Spain, due to its location on the Alhama de Murcia fault, which is considered responsible for the majority of registered seismic phenomena.

On May 11th there were two seismic movements in Lorca and several aftershocks, the first recorded at Mw 4.5 (degree of intensity VI) and the second at Mw 5.1 (degree of intensity VII).

The severe damage to structures substantially affected the housing stock in Lorca, as well as a large number of residential buildings and farming, fishing and commercial installations. The earthquake also caused enormous damage to the city’s historic heritage sites.

The restoration of the destroyed heritage sites requires the programming of specific investments, for which it is necessary to quantify the resulting damages economically. This project proposes that valuation of the damages produced by the earthquakes to the Historic Patrimony of the Catholic Church be determined through the practical application of a model for estimating reference costs. To determine its value, the building in question is considered to be composed of the three Vitruvian elements: (1) beauty (an exterior surface parameter), (2) functionality (an interior volumetric parameter) and (3) durability (the building’s surface footprint). The cost estimation model proposed here forms part of a larger model, developed in five phases of analysis of increasing complexity and level of precision (figure 2).

Figure 2 – General cost estimation model.

Source: the authors

2. FORESEEN OBJECTIVES AND HYPOTHESIS FORMULATION

The objective of this study consists of the practical application of a calculation model for the valuation of the reconstruction costs for the historic heritage of the city of Lorca and, more concretely, the churches affected by the aforementioned earthquakes. The initial valuation of the damages produced to the historic heritage of Lorca by the earthquakes in question, was estimated by the Director Plan for the Recovery of the Cultural Heritage of Lorca (Spanish Ministry of Culture) at 51,287,076.96 € (VVAA, 2011).

The econometric calculation for estimating the costs for replacing the churches with new construction is carried out using market prices, which are verified against the current database that is commonly used by the region’s real estate sector (Pina, 1989 and 2004).
The calculation process begins by obtaining the replacement construction costs for the churches, and continues, in view of the damage produced by the seismic action to each of the constructive systems, by estimating the reconstruction costs of the structural units that were damaged and/or ruined by the earthquake.

The total initial cost estimation is calculated using two-dimensional exterior metric parameters and three-dimensional interior cubic parameters. Two-dimensional parameters are considered as the surface that wraps around the facade, as well as that which corresponds to the footprint of the building on the plot of land. The three-dimensional parameters are the volumes that correspond to the functional uses of the church’s interior spaces.

The estimation of the two-dimensional and three-dimensional synthetic costs is carried out using the traditional analytical method for construction cost estimation, obtained as the sum of the measurements of all the units of work, multiplied by their unitary reconstruction costs. These analytical calculations are then used to obtain the synthetic costs per square meter (envelope) and per cubic meter (interior space).

The predimensioning model proposed can also be applied to purposes other than the economic evaluation of the damage caused by an earthquake: for example, calculation of the structural restoration and rehabilitation costs of constructive systems, or the construction of new buildings.

Lastly, the basic aim of the model is to attain deviations between the estimate and final real costs of less than 10%, the maximum permitted by Spanish law (García, 2011).

3. APPLIED METHODOLOGY

The methodology developed for the practical application of the described cost estimation model has been structured in the following way.

First, an analysis was carried out of the scientific publications and technical articles published with regards to the damages caused by the seismic event to Lorca’s historic heritage.

The affected churches represent 46% of the total number of existing churches in Lorca’s historic district (11 damaged churches out of a total of 24 existing ones).

The next phase consisted of acquiring the technical data on the earthquake and its evaluation, which was done using the aforementioned Director Plan of the Spanish Ministry of Culture (Figure 4). The economic evaluation of the reconstruction of damages to the structures and building systems of the churches caused by the earthquakes was undertaken using data published by the responsible for the corresponding works (De la Hoz, 2012).
The replacement and reconstruction costs were obtained on a representative sample of six churches that represent 55% of the total of 11 churches that were affected by the earthquake. These costs were acquired using the product of the measurements of the units of work times the respective unitary prices, taken from the statistical data used by the construction sector in that region (Pina, 1989); the figures were updated in 2012, thereby resulting in values in accordance with real market costs. This procedure makes it possible to obtain the cost of the superficial and volumetric parameters of the work as a whole.

Finally, the described analytical procedure also makes it possible to determine the reconstruction costs, defining the part of the structure affected by the earthquake, and estimating the percentage of its total that this represents. The previously calculated percentage is then applied to the total cost for complete reconstruction of the Church.

4. DATA ANALYSIS, DISCUSSION AND SUMMARY OF RESULTS

The practical application of the cost estimation model used here was carried out on the Church of Santiago, of which 37.42% of the entire building was affected by the earthquakes.

Table 1 reflects the approved investments for the reconstruction works on the churches affected by the earthquakes, indicating that the reconstruction costs for the Church of Santiago reached the amount of 2,144,068 Euros.
Table 1: Approved budget for reconstructing churches in Lorca (Spain)
Source: de la Hoz, Juan de Dios (2012) and the authors

Table 2 depicts the estimated replacement construction costs for the analyzed churches, with the Church of Santiago represented by a total cost of 6,107,232 €, and by unitary costs of 4,801 €/m² and 398 €/m³. The table also reflects the reconstruction costs for damages, equivalent to 37.42% of the construction costs for a replacement structure. The estimation error for the Church of Santiago is 6.59%, with an average deviation of 8.67% from the sample.

Table 3 displays, in summary, the preliminary calculation of the replacement construction costs for the Church of Santiago and the analytical estimation of the percentage of the structure that had been damaged.

Multiplying all the measurements (x, y, z) of the work elements by their market prices provides the estimate per chapter and the total costs of new work: 6,107,232 euros. The percentile calculation of the work to be carried out is made by summing the right hand column corresponding to the percentages representing each of the items with respect to the total work to be carried out. In this case, the sum of the percentages is 37.42%, which, given that the total estimate is 6,107,232 euros represents 2,285,326 euros.
Table 3: Excel of analytical calculations / Church of Santiago (Lorca)
Source: the authors

Table 4 contains the total replacement cost estimate, calculated from three elements (1) exterior surface envelope, (2) interior constructed volume and (3) footprint area of the building on the plot of land.

(I) CALCULATION A NEW CONSTRUCTION COSTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>OUTER (outer dimensional metric parameter)</th>
<th>INTERIOR (inner dimensional cubic parameter)</th>
<th>BUILT (building footprint dimensional parameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>4.135 m² x 287 €/m² = 1.186,745 €</td>
<td>15.357 M³ x 295 €/M³ = 4.530,315 €</td>
<td>1.085 m² x 367 €/m² = 389,195 €</td>
</tr>
</tbody>
</table>

COST OF BUILDING FROM NEW= 6,115,255 €

(II) CALCULATION RATIO OF CHAPTERS OF WORK

<table>
<thead>
<tr>
<th>Description</th>
<th>% Percentage constructive system</th>
<th>% Percentage chapter</th>
<th>% Percentage construction system</th>
<th>% Percentage chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>SURFACE WRAP (fine work outside)</td>
<td>19%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cover</td>
<td>3%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>facade</td>
<td>16%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>INTERIOR VOLUME (supporting structural work)</td>
<td>74%</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical structure</td>
<td>35%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal structure</td>
<td>9%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facilities</td>
<td>4%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partitions</td>
<td>3%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coatings</td>
<td>23%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>BUILT FOOTPRINT (recessed work area)</td>
<td>7%</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundation</td>
<td>7%</td>
<td>100%</td>
<td>37%</td>
</tr>
</tbody>
</table>

SUM TOTAL PERCENTAGES = 100% 37%

(III) PREDIMENSIONING COST OF RECONSTRUCTION (Pcr) CHURCH OF SANTIAGO (Lorca)

Pcr = % x damage condition of total new construction = 37/100 x 6,115,255 euros = 2,262,644 Euros

% Deviation percentage "error" = € 2,262,644 / € 2,144,068 (Table 1: excluding VAT) = 1.0553 = 5.53%

Table 4: COST A NEW (level 3 Pcr.5n model). Percentages% new / rebuilt work. Reconstruction cost predimensioning Church of Santiago (Lorca).
Source: the authors
Additionally, the table includes the forecasted percentage of each of the sections under the three aforementioned headings, with the goal of assigning them the percentages of respective damages. Finally, to fix the cost estimate for the church’s reconstruction, it is sufficient to calculate 37% of the total estimate for replacement construction, which is to say

\[0.37 \times 6,115,255 \, \text{€} = 2,262,644 \, \text{€}\], which represents a 5.53% deviation with respect to the approved investment, which is 2,144,068 € (Table 1).

Discussion of data and results

As a consequence of the development of the cost estimation model applied to the Church of Santiago, we have obtained the following results, in which the deviation percentages are reflected over the real costs specified in the Director Plan:

1/First rough approximation calculation (Table 2) = 2,285,326 € (6.59%)
2/Estimated reconstruction cost calculation (Table 4) = 2,262,644 € (5.53%)

This is verification of the fact that as advancements are made in calculation levels, the accuracy of the estimated value of the approved investment increases.

The precision of the model could be improved by using detailed measurements of the parts that make up the outer envelope of the cover/ façade and of the volumes dedicated to different uses inside the building.

The deviations involved in predimensioning the costs could also be reduced by classifying the churches into six types on the basis of the construction quality (Pina, 1991) and historical importance:

Type 1: elementary/simple (mean height, 10 metres)
Type 2: basic/normal (mean height, 11.50 metres)
Type 3: average/ good (mean height, 12.50 metres)
Type 4: very good/superior (mean height, 14.00 metres)
Type 5: singular/excellent (mean height, 16 metres)
Type 6: extraordinary/exceptional (mean height, more than 18 metres)

In this way it would be possible to widen the sample of the churches analysed (55%) to include all eleven (100%) affected by the earthquake, thus improving the precision of the estimated costs
5. CONCLUSION

The validity of the cost estimation model applied to the valuation of the damage produced in Lorca’s churches by the earthquakes that occurred on May 11th, 2011 has been proven. The average deviation of the cost approximations is less than the 10% that is commonly accepted by current Spanish legislation. This precision reflects the great interest and potential applications of the model for use as a tool by professionals in the construction industry.

The application of the model is notably agile and fast, without relying on a deep understanding of the properties to be valued. A highly reliable reconstruction cost for the churches is obtained using the measurement of three basic construction concepts combined with a damage estimation percentage, making it possible to determine with an elevated level of precision the investments necessary for restoration of the destroyed historic patrimony.

The characteristics of this model also allow it to be applied to other scenarios and emergency situations, making it ideal for the quick estimation of reconstruction costs for all types of properties affected by the earthquake and other similar catastrophic occurrences.

Other possible applications of the model would include estimating the costs of rehabilitating historical monuments and residential buildings, repairing “sick” constructions, and building new constructions for private and public use.

Lastly, the following lines are proposed for improving the present research:

- Classification of churches into six types based on their construction quality and historical importance.
- Creation of a global data base according to the sample analysed in this work in order to minimize deviations in costs estimates, thus improving the model’s precision.
- Developing the research into levels.4 and .5 of the model, detailing the surface measurements (m2) and interior volumes (M3).

REFERENCES

