Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function

Javier Cubas *, Santiago Pindado and Carlos de Manuel

Instituto Universitario de Microgravedad "Ignacio Da Riva" (IDR/UPM), Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio (ETSIAE), Universidad Politécnica de Madrid, E-Mail: j.cubas@upm.es; santiago.pindado@upm.es; c.manuelnavio@upm.es

* Author to whom correspondence should be addressed; E-Mail: j.cubas@upm.es;
Tel.: +34-91-336-6353; Fax: +34-91-336-6363.

Received: 15 January 2014 / Accepted: 24 February 2014 / Published: 14 March 2014

Abstract: Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze the performance (i.e., the I-V curve) of a commercial solar panel at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer's datasheet.

Keywords: photovoltaic energy; equivalent circuit; parameters; Lambert W-function; analytical.
1. Introduction

Today, the increasing use of renewable energy sources is not only a fact, but it also represents a great concern of modern society, as the effects of global warming are more and more evident and have spread to almost every corner of planet Earth. Some of these renewable energy sources such as wind energy [1] or both solar photovoltaic [2] and solar thermal [3], had an enormous development in the recent decades.

Focusing on the solar photovoltaic energy current users, there is not a clear and defined user profile, those users ranging from the industrial sector, represented by big power plants, to the private sector represented by citizens who invest in solar panels systems to save costs in terms of electricity consumption. Also, the space sector demands photovoltaic technology, and although it is not as massive as the aforementioned ones, it should be said that it leads the technological advances related to solar cells.

Despite the wide diversity between users, there is a common need among them: to have a better understanding of their photovoltaic systems in order to get the best efficiency from them in terms of costs and revenue. On the other hand, photovoltaic energy is highly dependent on the environmental conditions (temperature, irradiation...) and that complicates its optimization, making the modeling of the panel a necessary tool. The modeling of solar panels is traditionally achieved through numerical fitting to extensive experimental results. However, this is not affordable for small users and it is not practical when a decision among different commercial solar panels/systems has to be made and only the information included in the manufacturers’ datasheets is available. Analytical methods represent a solution for this problem, as they are simpler and only require a small amount of data (frequently included in the datasheet) to model the solar panel behavior.

In the present work an analytical methodology to model the behavior (output current, I, and output voltage, V) of a photovoltaic device (cell or solar panel) is presented. It is based on the use of an equivalent circuit, which is an extended and accurate way to model solar panels. The present work is part of a larger research related to the UPMSat-2 satellite mission. In previous studies some analytical methods for parameter calculation were successfully developed, the aim now being to simplify the equations (with more sophisticated mathematical tools such as the Lambert function [4,5]), and show how these algorithms can be used in a practical application: to modeling a commercial solar panel at different levels of irradiation and temperature. This is a necessity for a correct power optimization or to include the solar panel in bigger electrical simulations (e.g. MPPT models), but with current methods it is not possible to do it with a small amount of information, and in a way accurate and simple at the same time. This method aims to solve this problem and enhance analysis capabilities to any user of solar energy.

2. Methods

As it is well known, ideal solar cells behave like a current source connected in parallel with a diode [6–8]. This ideal model is completed with resistors to represent the losses and sometimes with additional diodes that takes into account other phenomena [9,10]. The most popular circuit equivalent to a solar cell/panel is shown in Figure 1, it includes a current source, one diode and two resistors: one
in series and one in parallel [11–18]. Each element included in the equivalent circuit implies one parameter that has to be determined (two in the case of the diode whose behavior is represented by the Shockley equation [19]). Therefore, five parameters need to be calculated when using this method [20–32]. The current-voltage curve of a solar cell or panel, hereinafter the I-V curve (see Figure 2), is quite well reproduced by this simple equivalent circuit. Three points of the I-V curve are also indicated in this Figure 2: short circuit, maximum power, and open circuit points. These representative points are, together with their variation as a function of the temperature, the normal information included in manufacturers’ datasheets.

\[I = I_{pv} - I_0 \left[\exp \left(\frac{V + I R}{a V_T} \right) - 1 \right] - \frac{V + I R_I}{R_{sh}}, \]

(1)

Figure 1. Equivalent circuit of a solar panel.

Figure 2. I-V curve of a solar panel. The three characteristic points (short circuit, maximum power, and open circuit points) are indicated on the curve.

The circuit model formed by one diode and two resistors (Figure 1) is defined by the following expression [15]:
where \(I_{pv} \) is the photocurrent delivered by the constant current source; \(I_0 \) is the reverse saturation current corresponding to the diode; \(R_s \) is the series resistor that takes into account losses in cell solder bonds, interconnection, junction box, etc; \(R_{sh} \) is the shunt resistor that takes into account the current leakage through the high conductivity shunts across the p-n junction; and \(a \) is the ideality factor that takes into account the deviation of the diodes from the Shockley diffusion theory. \(V_T \) is not an unknown parameter; it is the thermal voltage of the diode and depends on the charge of the electron, \(q \), the Boltzmann constant, \(k \); the number of cells in series, \(n \); and the temperature, \(T \):

\[
V_T = n \frac{kT}{q}.
\]

As said, the parameters of the equivalent circuit are adjusted to fit the behavior of the equivalent circuit to the solar cell/panel testing results. This adjustment can be done numerically [14,15,33–38] or analytically [8,38–41]; based on the data resulting from \(I-V \) curves experimentally measured, or based only on the data available from the manufacturers’ datasheets.

2.1. Parameter Calculation

In this paper only manufacturer’s data is considered to be available for parameter calculation. Commercial datasheets only include information about the three characteristic points of the \(I-V \) curve for different temperatures, from this three points it is possible to extract four boundary conditions. As these conditions are not enough to determine the five parameters of the equivalent circuit, in absence of more information, some authors propose to estimate the parameter \(a \), in order to reduce the number of parameters to four [42]. This parameter is the preferred to be estimated because its value is bound to a small range, it usually is in the bracket [1, 1.5] for a single junction solar cell [18,42,43]. Applying the four boundary conditions to the equivalent circuit Equation (1) it is possible to obtain the following equations [20,44]:

- Short circuit equation:
 \[
 I_{sc} = I_{pv} - I_0 \left[\exp \left(\frac{I_s R_s}{aV_T} \right) - 1 \right] - \frac{I_{ac} R_s}{R_{sh}}
 \]

- Open circuit equation:
 \[
 0 = I_{pv} - I_0 \left[\exp \left(\frac{V_{ac}}{aV_T} \right) - 1 \right] - \frac{V_{ac}}{R_{sh}}
 \]

- Maximum power point circuit equation:
 \[
 I_{mp} = I_{pv} - I_0 \left[\exp \left(\frac{V_{mp} + I_{mp} R_s}{aV_T} \right) - 1 \right] - \frac{V_{mp} + I_{mp} R_s}{R_{sh}}
 \]

- Zero derivative for the power at maximum power point circuit equation:
With some minor and justified simplifications (that is, taking into account order of magnitude of the different terms in the equations), the above equations can be simplified to the following [20]:

- **Equation for** R_s:
 \[
 aV_rV_{mp} \left(2I_{mp} - I_{sc}\right) \left(V_{mp} - I_{mp}R_s\right) - aV_r\left(V_{mp}I_{sc} - V_{oc}\right) = \exp\left(\frac{V_{mp} + I_{mp}R_s - V_{oc}}{aV_r}\right) \tag{7}
 \]

- **Equation for** R_{sh}:
 \[
 R_{sh} = \frac{\left(V_{mp} - I_{mp}R_s\right)\left(V_{mp} - R_s\left(I_{sc} - I_{mp}\right) - aV_r\right)}{\left(V_{mp} - I_{mp}R_s\right)\left(I_{sc} - I_{mp}\right) - aV_RI_{mp}} \tag{8}
 \]

- **Equation for** I_0:
 \[
 I_0 = \frac{\left(R_{sh} + R_s\right)I_{sc} - V_{oc}}{R_{sh}\exp\left(\frac{V_{oc}}{aV_R}\right)} \tag{9}
 \]

- **Equation for** I_{pv}:
 \[
 I_{pv} = \frac{R_{sh} + R_s}{R_{sh}}I_{sc} \tag{10}
 \]

By estimating parameter a, and solving the previous system, it is possible to determine the values of the equivalent circuit parameters simply and straight forward. However, although the mathematical system is decoupled, Equation (7) is still implicit for R_s. This equation is not difficult to solve with numerical calculation programs (e.g. Matlab or Maple). Nevertheless, it is possible to transform it into an explicit equation using the Lambert W-function [45]. The Lambert W-function, $W(z)$, is defined as:

\[
W(z)e^{W(z)} = z \tag{11}
\]

where z is any complex number. This function is not injective; in the real variable x the relation W is defined only for $x \geq -1/e$ and is double valued in the bracket $[-1/e, 0]$, the two branches of the function being expressed as $W_0(x)$ for $W(x) \geq -1$ and $W_{-1}(x)$ for $W(x) \leq -1$ in the aforementioned bracket. The general strategy to apply the Lambert W-function in solving exponential equations is to use the following equivalence:

\[
X = Ye^Y \iff Y = W(X) \tag{12}
\]

Going back to the equivalent circuit equations, Equation (7) can be rewritten as follows:
Using the mathematical equivalence from expression (12), Equation (13) turns into:

\[
\left(\frac{I_{mp}R_s - V_{mp}}{aV_T} + \frac{V_{mp}I_{sc} - V_{oc}I_{mp}}{V_{mp}I_{sc} + V_{oc}(I_{mp} - I_{sc})} \right) \exp \left(\frac{-2V_{mp} - V_{oc}}{aV_T} + \frac{V_{mp}I_{sc} - V_{oc}I_{mp}}{V_{mp}I_{sc} + V_{oc}(I_{mp} - I_{sc})} \right) = 0.
\] (14)

where \(W_{-1} \) is the negative branch of the Lambert W-function (as the left part of Equation (14) is lower than -1 for typical cells and solar panels). And then, an explicit expression for \(R_s \) is obtained:

\[
R_s = A \left(W_{-1} \left(B \exp(C) \right) - (D + C) \right),
\] (15)

where:

\[
A = \frac{aV_T}{I_{mp}}
\]

\[
B = -\frac{V_{mp} \left(2I_{mp} - I_{sc} \right)}{V_{mp}I_{sc} + V_{oc}(I_{mp} - I_{sc})}
\]

\[
C = -\frac{2V_{mp} - V_{oc}}{aV_T} + \frac{V_{mp}I_{sc} - V_{oc}I_{mp}}{V_{mp}I_{sc} + V_{oc}(I_{mp} - I_{sc})}
\]

\[
D = \frac{V_{mp} - V_{oc}}{aV_T}
\] (16)

In recent years, the Lambert W-function has become a common mathematical tool in solar cell/panel equivalent circuit extraction parameters, as it is quite useful for solving exponential equations like the expression of the I-V curve. Commonly, the mathematical relation (12) is directly applied to Equation (1) in order to obtain explicit equations for the solar cell/panel output current or voltage. This method is helpful for the determination of equivalent circuit parameters through numerical methods, that is, when testing data is available and a curve fitting is performed [22]. However, it is not convenient to use the Lambert W-function to transform Equation (1) if the aim is to solve the problem analytically, because it is not possible to obtain a decoupled system of equations [46]. In this particular case, the approach used is different, it consists in using the Lambert W-function as the last step of the procedure; clearing \(R_s \) from the remaining implicit equation after obtaining
explicit equations for the other parameters. Then, a fully decoupled set of explicit equations for the equivalent circuit parameters can be obtained.

2.2. Parameter Dependence on Environmental Conditions

Environmental conditions, such as temperature or irradiation variations, modify the behavior of photovoltaic devices, that is, the I-V curve. Therefore, those variations affect the boundary conditions of the equations and, accordingly, the value of the equivalent circuit parameters.

When temperature raises, the current increases and the voltage decreases, and as a result, the maximum power point of the I-V curve also decreases. These variations are approximately linear with temperature, and most solar panel manufacturers include the rate of variation of the characteristic I-V curve points in the datasheets, either as absolute increase or as percent variation. In the second case the variations with temperature T of current and voltage levels at open circuit, maximum power, and short circuit points can be expressed as:

$$\begin{align*}
V_{oc,T} &= V_{oc,T_{r}} \left(1 + \frac{\beta V_{oc}(T - T_{r})}{100}\right) \\
V_{mp,T} &= V_{mp,T_{r}} \left(1 + \frac{\beta V_{mp}(T - T_{r})}{100}\right) \\
I_{sc,T} &= I_{sc,T_{r}} \left(1 + \frac{\alpha I_{sc}(T - T_{r})}{100}\right), \\
I_{mp,T} &= I_{mp,T_{r}} \left(1 + \frac{\alpha I_{mp}(T - T_{r})}{100}\right)
\end{align*}$$

(17)

where T_{r} is the reference temperature; βV_{oc} and βV_{mp} are respectively the percentage variation of the open circuit and maximum power point voltages when the temperature increases one degree; finally, αI_{sc} and αI_{mp} are the percentage variation of the short circuit and maximum power point currents when the temperature increases one degree. Some manufacturers include the percentage variation of the maximum power with temperature, γ, instead of specific variations for current and voltage at that point. If αI_{mp} or βV_{mp} (one of them) is missing, then the variation of the boundary condition can be calculated using the parameter γ and the remaining condition, for example: I_{mp} value in terms of γ and βV_{mp} is:

$$\begin{align*}
P_{mp,T} &= I_{mp,T} V_{mp,T} = P_{mp,T_{r}} \left(1 + \frac{\gamma(T - T_{r})}{100}\right) \\
I_{mp,T} &= I_{mp,T_{r}} \frac{100 + \gamma(T - T_{r})}{100 + \beta V_{mp}(T - T_{r})}.
\end{align*}$$

(18)
On the other hand, if both αI_{mp} and βV_{mp} are not included in the manufacturer’s datasheet and only the parameter γ is provided, it can be assumed that $\beta V_{mp} \approx \beta V_{oc}$ before using expressions (18).

With these relations it is possible to directly relate the equivalent circuit parameters and the rate of variations with T [21,42]. Nevertheless, a different approximation is used in the present work: the equivalent circuit parameters are calculated for different temperatures with expression (17), using the values of the characteristic points at those temperatures. Then, the variation of the parameters as a function of temperature T is empirically determined based on these results. This procedure is very accurate, as the calculated equivalent circuits directly meet the manufacturers’ data.

Any information regarding the dependence of the solar cell/panel on irradiation levels is commonly not included in manufacturers’ datasheets, as this dependence is well known and easy to be determined. The shape of the I-V curve is essentially invariant with intensity in ranges around one solar constant, temperature affects I_{sc} linearly and V_{oc} exponentially, whereas R_s remains not affected for temperature variations [47]. Those conditions lead to the following expression [42]:

$$I_{pv,G} = I_{pv,Gr} \frac{G}{G_r},$$

(19)

where G is the irradiance on the cell/solar panel, $I_{pv,G}$ is the photocurrent delivered by the current source of the equivalent circuit, and G_r and $I_{pv,Gr}$ are the reference values. When data about irradiation dependence is available, it is generally shown as experimental I-V curves, in this case it would be possible to extract information about the characteristic points graphically, and therefore define the dependence on irradiation with a similar procedure to the one followed in case of temperature variations.

3. Results and Discussion

In this Section, the equivalent circuits of two commercial solar panels (MSP290AS-36.EU and MSMD290AS-36 by München Solarenergie GmbH), are calculated as an example of application of the above method. For that calculation only data provided by the manufacturer is used [48,49], see Table 1. The objective is to obtain an equivalent circuit that reproduces the solar panel behavior for any irradiation and temperature levels. The procedure is therefore as follows:

- Estimate the value of the parameter a. In this method this parameter is considered as a constant, independent of the temperature and the irradiation. In this case the chosen value is $a = 1.1$.
- Calculate V_t for the panel at that temperature level with Equation (2).
- Determine the boundary conditions at that temperature and irradiation level using manufacturer’s data and Equation (17) and/or (18).
- Calculate R_s with Equation (15).
- Calculate R_{sh} with Equation (8).
- Calculate I_0 with Equation (9).
- Calculate I_{pv} with Equation (10).
Table 1. Characteristic points of MSP290AS-36.EU and MSMD290AS-36 solar panels (München Solarenergie GmbH), included in the manufacturer datasheets [48,49] at STC (1000W/m² irradiance, 25°C cell temperature, AM1.5g spectrum according to EN 60904-3).

<table>
<thead>
<tr>
<th>MSP290AS-36.EU (multicrystalline)</th>
<th>MSMD290AS-36.EU (monocrystalline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>72</td>
</tr>
<tr>
<td>T_r (°C)</td>
<td>25</td>
</tr>
<tr>
<td>P_{mp} (W)</td>
<td>290</td>
</tr>
<tr>
<td>γ (%/°C)</td>
<td>-0.45</td>
</tr>
<tr>
<td>I_{mp} (A)</td>
<td>7.82</td>
</tr>
<tr>
<td>αI_{mp} (%/°C)</td>
<td>-</td>
</tr>
<tr>
<td>V_{mp} (V)</td>
<td>37.08</td>
</tr>
<tr>
<td>βV_{mp} (%/°C)</td>
<td>-0.35</td>
</tr>
<tr>
<td>I_{sc} (A)</td>
<td>8.37</td>
</tr>
<tr>
<td>αI_{sc} (%/°C)</td>
<td>+0.04</td>
</tr>
<tr>
<td>V_{oc} (V)</td>
<td>44.32</td>
</tr>
<tr>
<td>βV_{oc} (mV/°C)</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

The values of circuit parameters obtained at AM1.5g (1000W/m²) and $T_r = 25^\circ$C, are included in Table 2.

Table 2. Parameters of MSP290AS-36.EU and MSMD290AS-36.EU (München Solarenergie GmbH) solar panels equivalent circuits at STC (1000W/m² irradiance, 25°C cell temperature, AM1.5g spectrum).

<table>
<thead>
<tr>
<th>MSP290AS-36.EU (multicrystalline)</th>
<th>MSMD290AS-36.EU (monocrystalline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.10</td>
</tr>
<tr>
<td>I_{pv} (A)</td>
<td>8.37</td>
</tr>
<tr>
<td>I_0 (A)</td>
<td>2.86×10^{-9}</td>
</tr>
<tr>
<td>R_s (Ω)</td>
<td>0.162</td>
</tr>
<tr>
<td>R_{sh} (Ω)</td>
<td>331</td>
</tr>
</tbody>
</table>

In order to spread the use of the equivalent circuit to any temperatures inside the range 15°C to 85°C (this bracket includes most of the operational temperatures; it should be taken also into account that the temperature of the panel is higher than the ambient temperature during operation), the process is repeated for temperatures in that range. Parameter values, showing their variation with temperature, are shown in Figure 3. In the figure it can be observed how parameter R_s turns negative for high temperatures (the value of parameter R_{sh} could also turn negative under some conditions). Obviously, these solutions are mathematically valid but they are not physically possible. Possible solutions from the physics point of view only exist for certain values of the parameter a. For some panels it is difficult to find physically valid solutions (regarding resistor parameters R_s and R_{sh}) at any temperature and with constant a. This is because a, in reality, is not completely independent from temperature. In those cases it could be included a variation law with temperature for a, or alternatively just choose values of
parameter \(a \) that result into a valid solution for the most of the interval of temperatures of interest, as in this case.

Figure 3. (a) Calculated \(R_s(T) \) and polynomial regression. (b) Calculated \(R_{sh}(T) \) and polynomial regression. (c) Calculated \(I_{pv}(T) \) and polynomial regression. (d) Calculated \(I_0(T) \) and polynomial regression.

Numerical expressions for the circuit parameters as a function of the temperature, \(T \), are then derived from this results using polynomial approximation with the least squares method:

- For MSP290AS-36.EU:

 \[
 I_{pv}(T) = 8.37 \cdot 10^{-3} \Delta T - 3.38 \cdot 10^{-6} \Delta T^2 - 7.58 \cdot 10^{-8} \Delta T^3, \\
 R_s(T) = 1.62 \cdot 10^{-1} - 3.21 \cdot 10^{-3} \Delta T + 7.05 \cdot 10^{-7} \Delta T^2 - 3.01 \cdot 10^{-8} \Delta T^3, \\
 R_{sh}(T) = 1/(3.03 \cdot 10^{-3} + 2.65 \cdot 10^{-4} \Delta T + 1.50 \cdot 10^{-6} \Delta T^2 + 1.56 \cdot 10^{-8} \Delta T^3), \\
 I_0(T) = \exp(-1.97 \cdot 10^1 + 1.44 \cdot 10^{-1} \Delta T - 4.80 \cdot 10^{-4} \Delta T^2 + 1.15 \cdot 10^{-6} \Delta T^3).
 \]

- For MSMD290AS-36.EU:
\[I_{pv}(T) = 8.24 + 3.49 \cdot 10^{-3} \Delta T - 1.68 \cdot 10^{-6} \Delta T^2 - 2.41 \cdot 10^{-8} \Delta T^3, \]
\[R_s(T) = 1.30 \cdot 10^{-1} - 1.97 \cdot 10^{-3} \Delta T + 2.53 \cdot 10^{-6} \Delta T^2 - 1.07 \cdot 10^{-8} \Delta T^3, \]
\[R_{sh}(T) = 1/(3.18 \cdot 10^{-3} + 2.33 \cdot 10^{-4} \Delta T + 1.27 \cdot 10^{-6} \Delta T^2 + 1.33 \cdot 10^{-8} \Delta T^3), \]
\[I_o(T) = \exp(-1.98 \cdot 10^1 + 1.41 \cdot 10^{-1} \Delta T - 4.69 \cdot 10^{-4} \Delta T^2 + 1.13 \cdot 10^{-6} \Delta T^3). \]

The irradiation variation only affects the parameter \(I_{pv} \) and can be described with equation (19), including this variation the following equations can be then derived for the five parameters of the equivalent circuit:

- For MSP290AS-36.EU:
 \[I_{pv}(T, G) = \left(8.37 + 3.62 \cdot 10^{-3} \Delta T - 3.38 \cdot 10^{-6} \Delta T^2 - 7.58 \cdot 10^{-8} \Delta T^3\right) \frac{G}{G_r}, \]
 \[R_s(T) = 1.62 \cdot 10^{-1} - 3.21 \cdot 10^{-3} \Delta T + 7.05 \cdot 10^{-7} \Delta T^2 - 3.01 \cdot 10^{-8} \Delta T^3, \]
 \[R_{sh}(T) = 1/(3.03 \cdot 10^{-3} + 2.65 \cdot 10^{-4} \Delta T + 1.50 \cdot 10^{-6} \Delta T^2 + 1.56 \cdot 10^{-8} \Delta T^3), \]
 \[I_o(T) = \exp(-1.97 \cdot 10^1 + 1.44 \cdot 10^{-1} \Delta T - 4.80 \cdot 10^{-4} \Delta T^2 + 1.15 \cdot 10^{-6} \Delta T^3). \]

- For MSMD290AS-36.EU:
 \[I_{pv}(T, G) = \left(8.24 + 3.49 \cdot 10^{-3} \Delta T - 1.68 \cdot 10^{-6} \Delta T^2 - 2.41 \cdot 10^{-8} \Delta T^3\right) \frac{G}{G_r}, \]
 \[R_s(T) = 1.30 \cdot 10^{-1} - 1.97 \cdot 10^{-3} \Delta T + 2.53 \cdot 10^{-6} \Delta T^2 - 1.07 \cdot 10^{-8} \Delta T^3, \]
 \[R_{sh}(T) = 1/(3.18 \cdot 10^{-3} + 2.33 \cdot 10^{-4} \Delta T + 1.27 \cdot 10^{-6} \Delta T^2 + 1.33 \cdot 10^{-8} \Delta T^3), \]
 \[I_o(T) = \exp(-1.98 \cdot 10^1 + 1.41 \cdot 10^{-1} \Delta T - 4.69 \cdot 10^{-4} \Delta T^2 + 1.13 \cdot 10^{-6} \Delta T^3). \]

4. Experimental Section

In this Section the behavior of the calculated equivalents circuits is analyzed. The aim is to check if the calculated circuit models reproduce the experimental data of the solar panels included in the manufacturer’s datasheet. In order to produce results, the equivalent circuits of the solar panels have been modeled using a SPICE (Simulation Program with Integrated Circuit Emphasis) software: LTSpice. Obviously, the mentioned circuits are characterized by the parameters already calculated in Section 3, see Figures 4 and 5. Several simulations have been performed at different temperature and irradiation levels, calculating the \(I-V \) curve in each case. The results thereof are included in Figures 6 to 9.

![Figure 4. Equivalent circuit of MSP290AS-36.EU (polycrystalline).](image-url)
Figure 5. Equivalent circuit of MSMD290AS-36.EU (monocrystalline).

Figure 6. I-V curves of panel MSP290AS-36.EU simulated with LTSpice calculation of the equivalent circuits for different irradiation levels, from 200W/m² to 1000W/m², at 25°C.

Figure 7. Power curves of panel MSP290AS-36.EU simulated with LTSpice calculation of the equivalent circuits for different temperature levels, from 15°C to 70°C, with 1000W/m² irradiation level.
Figure 8. I-V curves of panel MSMD290AS-36.EU simulated with LTSpice calculation of the equivalent circuits for different irradiation levels, from 200W/m² to 1000W/m², at 25°C.

Figure 9. Power curves of panel MSMD290AS-36.EU simulated with LTSpice calculation of the equivalent circuits for different temperature levels, from 15°C to 70°C, with 1000W/m² irradiation level.
The results of the simulations performed reproduce with high accuracy the experimental results for the characteristic points, regarding the temperature variations, included in the datasheet, see Figure 10.

Figure 10. (a) Experimental and simulated variation of I_{sc} with T. (b) Experimental and simulated variation of V_{oc} with T. (c) Experimental and simulated variation of P_{mp} with T. (d) Experimental and simulated variation of V_{mp} with T.

5. Conclusions

In the present work a simple but accurate method to simulate the performances of a photovoltaic device for different working conditions is presented. The method is based in the analytical determination of the parameters of an equivalent circuit. Using the presented methodology it is possible to construct a realistic model of a solar panel that reproduces the experimental data provided by the manufacturer in the datasheet, including variations at different temperatures and irradiations. The method is explicit, non-iterative and straightforward; no iterations or initial values for the parameters are needed. Only data typically included in manufacturers’ datasheets are required. There are several possible applications for this method. From the authors’ point of view, its simplicity and accuracy would make it interesting for end users with little calculation and testing resources. Also, the procedure described in the present work seems to be very appropriate for analysis that imply profuse calculations of equivalent circuits or for determination of initial values for numerical methods. Finally, an interesting application of this method is to construct realistic models of solar panels that can be used in simulations of MPPT algorithms.
Acknowledgments

The present work is part of the research framework associated to the design and construction of the UPMSat-2 satellite at the IDR/UPM Institute (Instituto de Universitario Microgravedad “Ignacio Da Riva”) of the Polytechnic University of Madrid (Universidad Politécnica de Madrid). Authors are indebted to the support from all the staff of the IDR/UPM Institute. Authors are truly grateful to Anna María Ballester for her kind help in improving the style of the text.

Conflicts of Interest

The authors declare no conflict of interest.

References and Notes

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).