Han colaborado en la edición de estas Actas:
Ignacio Gil Crespo
Paula Fuentes González
Ana María Hernández Fenollosa

© Instituto Juan de Herrera
Depósito Legal: M-42.955-2009
Fotoimposición e impresión:
EFCA, S. A. Parque Industrial «Las Monjas»
28850 Torrejón de Ardoz (Madrid)
Sexto Congreso Nacional de Historia de la Construcción, Valencia, 21-24 octubre de 2009

Organizado por:
Universidad Politécnica de Valencia
Sociedad Española de Historia de la Construcción
Instituto Juan de Herrera
Diputación de Valencia
Colegio Territorial de Arquitectos de Valencia
Colegio Oficial de Aparejadores, Arquitectos Técnicos e Ingenieros de Edificación de Valencia

Colegio de Ingenieros de Caminos, Canales y Puertos de la Comunidad Valenciana
Consellería de Infraestructura y Transportes. Generalitat Valenciana
Consellería de Cultura y Deporte. Generalitat Valenciana
Consellería de Medio Ambiente, Agua, Urbanismo y Vivienda. Generalitat Valenciana

Empresas colaboradoras:
Catedra Bancaja Hábitat (ETSAV); CYRESFPA Arquitectónico S.L.; INTERSA - Infraestructuras Terrestres S.A.; SECOPSA - Servicios y Contratas Prieto S.A.

Presidente: Santiago Huerta
Directores: Rafael Soler Verdu y Arturo Zaragoza Catalán
Secretario: Rafael Marin Sánchez

Comité Organizador
Coordinador: Arturo Martínez Boquera
Victoria Bonet Solves
Santiago Huerta
Rafael Marin Sánchez
Amparo Tarín Martínez
Santiago Torno Esteve
Rafael Soler Verdu
Arturo Zaragoza Catalán

Comité Científico
Inmaculada Aguilar Civera
Adolfo Alonso Durá
Antonio Almagro Gorbea
Ricardo Aroca Hernández-Ros
Miguel Arenillas Parra
Joaquín Bérriche Gómez
Francisco Bueno Hernández
José Calvo López
Antonio de las Casas Gómez
Rafael Cortés Gimeno
Joa Domenech Mesquida
Manuel Durán Fuentes
Julián Esteban Chapapritá
Javier Girón Sierra
Mercedes Gómez-Ferrer Lozano
José Luis González Moreno-Navarro
Amparo Graciani García
Santiago Huerta
Julián Magro Moro
Rafael Marin Sánchez
Rosario Martínez Vázquez de Parga
Javier Muñoz Álvarez
Liliana Palau Pérez
Enrique Rabasa Díaz
Cristina Segura Grañño
Amadeo Serra Desfilis
Rafael Soler Verdú
Miguel Tain Guzmán
Fernando Vegas López-Manzanares
Fernando Vela Cossio
Luis de Villanueva Dominguez
Arturo Zaragoza Catalán
La construcción de la bóveda de crucería de Vandelvira.
Una experiencia docente

Rafael Martín Talaverano
José Carlos Palacios Gonzalo

La presente comunicación tiene como finalidad informar de una experiencia pedagógica singular, se trata de la construcción de una bóveda de crucería de doce piezas claves en la Escuela Técnica Superior de Arquitectura de Madrid. El pasado curso, el Departamento de Construcción y Tecnología Arquitectónica de la ETSAM puso en marcha una nueva asignatura llamada Taller de Construcción Gótica, en ella los alumnos han podido experimentar el realismo necesario para llevar a cabo la construcción de una bóveda de crucería de considerable complejidad, desde las monturas hasta su montaje, pasando por la construcción de cimbras, todo ello siguiendo los métodos medievales. La bóveda construida es la que aparece en el manuscrito del s. XVI atribuido a Alonso de Vandelvira Libro de las trazas e cortes de catedral.

HISTORIO

Los objetivos que con esta iniciativa se pretendían eran diversos y todos ellos, habrían de alcanzarse vinculando la teoría a la práctica. A lo largo de la materia, en la Escuela de Arquitectura de Madrid, las bóvedas góticas son objeto de estudio desde distintos puntos de vista: la historia, la construcción, los estructuras, la geometría etc., sin embargo, los conocimientos adquiridos en estas áreas jamás se acoplan con la práctica real. Esta experiencia pedagógica propone invertir los términos, redescubrir y dar un sentido a la teoría a través de la experiencia física de la construcción; veamos como se produce entonces esta amalgama de conocimientos.

Historia

En primer lugar, la construcción de la bóveda nos sitúa en un periodo histórico concreto. La bóveda de Vandelvira nos introduce el compuesto mundo del gótico tardío español de la mano de figura de primera magnitud de nuestro renacimiento. A través de él, seremos espectadores de ese periodo irrepetible de la arquitectura española, en el que la arquitectura clásica y el último gótico alcanzan el momento de máximo desarrollo en nuestro país. Los Vandelvira fueron una familia de arquitectos de la provincia de Jaén, el padre de Alonso fue el célebre Andrés de Vandelvira, uno de los gigantes del gótico español, arquitecto de la catedral de Jaén y de una importante cantidad de edificios en Úbeda y Baeza con los que el renacimiento español adquirió su peculiar e irrepetible fisonomía.

La bóveda propuesta jamás fue construida, es un modelo teórico que aparece en el libro manuscrito de Alonso de Vandelvira, sin duda alguna, uno de los libros de arquitectura más singulares de la bibliografía española de arquitectura. Una copia de este libro se encuentra actualmente en la biblioteca de la Escuela de Arquitectura de Madrid (Vandelvira 1575–1580). El mencionado manuscrito está dedicado a la cante-
ría y al arte de construir en piedra todo tipo de arcos y bóvedas. Los elementos arquitectónicos que se estudian en este libro corresponden a una arquitectura clásica, es decir, una arquitectura "a lo romano"; la única bóveda de crucería que contiene es la que se ha seleccionado para llevar a cabo su construcción.

Geometría

La construcción de la bóveda va a exigir que sus trazas geométricas sean exploradas en profundidad; éste proceso llevará a descubrir las herramientas geométricas de los maestros de cantería del siglo XVI. El abordaje de la geometría de la bóveda se va a llevar a cabo desde dos puntos de vista; el contemporáneo, mediante el uso de herramientas informáticas, y el histórico, ejecutando sus montes a tamaño natural como era práctica habitual en las obras de cantería desde la Edad Media.

Estabilidad

La construcción de la bóveda nos interroga también sobre la estabilidad de las estructuras históricas. Su puesta en obra, permite sentir físicamente cómo las cargas, en principio verticales, gracias al artificio de la construcción, van desplazándose a través de los arcos, permitiendo que las piedras queden suspendidas en el espacio; el precio a pagar son los empujes horizontales y la aparición de posibles grietas en las juntas de los arcos. Comprender las acciones que las cargas generan sobre la bóveda lleva a examinar los mecanismos con los que tradicionalmente se contrarrestaban: contrafuertes, esbozos, rellenos, etc.

La cantería medieval

Por último, la construcción de la bóveda nos sumerge en el mundo de la cantería medieval en un momento, en el siglo XVI, en que la estereotomía renacentista acaba de aparecer. Al llevar a cabo la talla de dovelas y claves se van desvelando las técnicas medievales de corte y labra mediante las cuales la geometría de los arcos y la volumetría de las piezas más complejas se trasladaban a la piedra. Estas técnicas nos introducen además en el mundo de las estructuras gremiales de la Edad Media y, en cierto modo, a participar de la unión y solidaridad profesional que se genera con el trabajo en equipo, entonces consustancial a los talleres de cantería medievales.

La construcción de la bóveda

La bóveda que muestra Vandelvira en su manuscrito, es una bóveda singular, por así decir, un prototipo (figura 1); su estudio geométrico revela una interesante sorpresa, la bóveda es esférica. Su forma no dondela permite una novedosa traza de combados en forma de ruedas concéntricas, dibujo este imposible de ejecutar en los quebrados témpanos de plementería de una bóveda gotica tradicional. La bóveda se

Figura 1

Página del manuscrito de Alonso de Vandelvira en que aparece la bóveda de crucería seleccionada para ser construida.

Las montes

El conocimiento previo del requirió un estudio geométrico con tal finalidad se llevó a cabo en tres dimensiones; se hizo una hoja de la bóveda (figura 2) trazaron las curvaturas de los témpanos de las partes fundadas, claves y jarras (figura 3). Posteriormente, al trabajar en el tercelete y al perfiles de esta superficie con que se cubrió, los tres arcos de que se trata, el tercelete y el perfil de esta superficie con que se cubrió, los tres arcos, forzaría diferentes. Como veremos, la montura afectará directamente a la construcción de los c...

Figura 2

Integración tridimensional de la bóveda con diecinueve claves; montecillo y perpiñán. Las partes interesantes ya que, que conforman con un prototipo, entonces la solución más común que los arcos se firman fuera de los límites...
La construcción de la bóveda de crucería de Vandellvira

En cierto modo, a partir de la profesión de creador de formas, Vandelvira en su materialización, por así decir, un prototipo o geométrico revela una nueva forma de la bóveda esférica. Su forma es un ovoido con dos rechazos, un diámetro, un medio rectángulo, un ángulo y un perpiñan que la estructura de las bóvedas se fundan entre sí hasta desaparecer fuera de los límites de la bóveda (Palacios, 1981).

La montañas

El tratamiento previo del prototipo de Vandelvira es un estudio geométrico detallado de su forma. Cada detalle se lleva a cabo a partir de diferentes dimensiones que en seguida revelaron la arquitectura de la bóveda (fig. 2). Posteriormente se trazaron las curvaturas de sus arcos y el completo detalle de las partes fundamentales de la bóveda: bóvedas, danzas y montañas (fig. 3). Como mencionamos anteriormente, al tratarse de una superficie esférica, los tres arcos con que se construye la bóveda, el primer, el tercero y el perpiñan, forman por la secuencia de este plano distintos por lo que los tres arcos, forzosamente tienen curvaturas diferentes. Como veremos posteriormente, esta circunstancia afectará directamente a la talla de dovelas y a la construcción de los caminos de las cimbras. A partir de los dibujos tridimensionales es posible extraer la forma exacta de cada uno de las claves y confeccionar la complejidad de cada una de estas piezas; su modelado tridimensional en CAD permitiría además la talla directa en piedra mediante máquinas de corte por control numérico.

Por último, se efectúa un estudio detallado de los arreglos de las nervaduras: las montañas. Como es sabido, las bóvedas de crucería comienzan construyéndose por lechos horizontales hasta una altura variable, esta altura viene determinada por la cota en la que los arcos que se construyen en un arriate se hacen independientes unos de otros. En la mayor parte de los casos, las montañas pueden alcanzar una altura cercana a la mitad de la altura de la bóveda. Los arriates son elementos de la mayor importancia en la estabilidad de la bóveda que, al prolongarse los lechos de piedra horizontalmente, contribuyen en gran medida a estabilizar la bóveda en los muros o pilasbras perimetrales.

Una vez estudiada la geometría se procede a la construcción de la bóveda. Las trazas geométricas de Vandelvira, reinterpretadas con herramientas informáticas, pasan ahora a dibujarse a tamaño natural; siguiendo los métodos medievales, se llevan acabo ahora las montañas de la bóveda (Figura 4). El dibujo a escala natural es absolutamente imprescindible en una época en la que el dibujo de escala era una operación en extremo arriesgada, un error en forma o curvatura de una dovela podría acarrear la talla de cientos de piezas incorrectas, para evitarlo, sobre las montañas a escala real, se tomaban las medidas de longitudes, ángulos y curvaturas con la certeza de no cometer error alguno. Al llevar a cabo las montañas se aprecia la destreza de los maestros de cantería medievales en el uso de esos instrumentos geodésicos que hoy conocemos como sistema diédrico de proyección. Durante la larga historia de la arquitectura, este sistema de proyección que relaciona el dibujo en planta de un objeto con su alzado o sección, fue desarrollándose en las logias y talleres de cantería nacidos a la sombra de las grandes catedrales. Ahora, en el siglo XVI, la metodología está completamente a punto y permite resolver complicados abatimientos de arcos así como el dibujo detallado de las piezas más complejas; como entonces, los datos necesarios para construir las diversas piezas que componen la bóveda se van a extraer de las montañas a tamaño natural.
La labra de dovelas

Para la construcción de la bóveda, en lugar de la piedra, se ha usado un bloque de escayola maciza, usando como si fuera piedra, es decir cortándola y labrándola de la misma manera. Este material, usado también en la antigüedad para construir maquetas de estereotomía, permite una facilidad y rapidez de ejecución imposible de lograr con la piedra. Con la escayola se pretendía lograr que en el período de un curso —tres horas por semana durante cuatro meses— pudiera alcanzarse el objetivo de construir la totalidad de la bóveda contando con un total de cuarenta alumnos. Se usaron placas de escayola maciza de 6 cm de espesor de las que habitualmente se emplean para la construcción de tabiques. Respetando la escala del dibujo de Vandelvira, la medida del espesor de la placa de escayola nos determinaba las dimensiones de la bóveda, un cuadrado de de 2,40 m de lado y una altura de 1,80 m.

La construcción comienza con la labra de dovelas. Para empezar, a partir de la monteja, se dibujan y confeccionan los baebles, herramienta ésta imprescindible para controlar la talla. Se trataba de unas escuadras de dos brazos no articulados, uno de ellos cortado con la curvatura del intrados del arco y el otro, recto, orientado hacia el centro geométrico del arco (figura 5). Como la bóveda tiene tres arcos diferentes, hemos de construir tres baebles: para el quillo, el tcenelete y el fajón. En la bóveda de Vandelvira, la sección de los tres arcos es diferente, y su autor explica escrupulosamente cómo revizar las secciones de los mismos para que se adapten mejor a la sección de la bóveda; sin embargo, en este caso, por simplificar, se ha decidido que la sección de los tres arcos sea idéntica, es decir que los tres arcos tendrán una...
La construcción de la bóveda de crucería de Vandelvira

Figura 4
Dibujo de las monteas, la planta y sección de la bóveda a modo natural

Figura 5
La labe de las dovelas a partir del baibel y de la plantilla de tecla. Los nervios y las plantillas pueden ser de «moldes cuadrados» o de «moldes revuendos»

la, un cuadrado de de 2,40 m, 1,80 m.

tienda con la labra de dovelas y de la monteas, se dibujan y se descina, herramienta ésta imprescindible para la talla. Se trataba de unas esferas articuladas, uno de ellos del extremo del arco y el otro el centro geométrico del mismo. En la bóveda tiene tres arcos de dos y tres; la talla, se pueden comenzar a tallar las dovelas. La escayola nos permitirá el uso del serrucho, el formón y la lupa para alcanzar con bastante rapidez la forma deseada.

Mencionamos anteriormente cómo la forma esférica de la bóveda permite a Vandelvira adorlarla con un dibujo de combados consistente en dos ruedas concéntricas. Como es sabido, este tipo de nervadura decorativa ha podido subsistir durante siglos. Al observar atentamente el dibujo de la sección de Vandelvira, se aprecia claramente cómo las secciones de estos combados se deforman adaptándose a la posición que ocupan (figura 5), de forma que, cuanto más alejados del centro, más deformada tienen su sección. Estas secciones torcidas, de «moldes revuendos» como se decía entonces, permitían recibir mejor los rellenos de la plementeria sobre los arcos.

Las claves y cruceros

Las claves y cruceros, es decir las intersecciones y encuentros entre los arcos, son sin lugar a dudas las piezas más complejas de las que componen la bóveda, y la talla de estos elementos ponía a prueba cómo ningún otro la capacidad de los maestros de cantería. Cuando se producía un crucero complicado entre varios arcos era frecuente interponer una pieza cilíndrica vertical, la clave; con esta pieza se simplificaba en gran medida el difícil encuentro entre los arcos. Sin embargo, cuando el encuentro es más sencillo, los arcos se intersectan limpiamente entre sí formando un crucero. En el dibujo de Vandelvira (figura 1), la bóveda carece de claves, es decir que todos los encuentros entre arcos se realizan por cruceros. En nuestro caso, para simplificar la construcción, se ha colocado una clave en el centro de la bóveda y en el encuentro de los torcieles. Para llevar a cabo la labra de estas piezas hemos de volver de nuevo a la monteas, la proyección horizontal de todas las claves y cruceros ha de dibujarse con precisión en el dibujo en planta de la bóveda y, a partir de aquí, sus proyecciones en la sección. A continuación, sobre la cara...
decir, del dibujo de los arcos abatidos y las claves que se situen sobre ellos. Los ángulos de acostado se determinan en relación al plano horizontal, ya sea el superior, como muestra la figura 7, o el inferior. Este ángulo se toma directamente de la montea mediante un compás de ángulos, para los antiguos usan sultarrégla. A continuación, este ángulo se trasladaba a la piedra y permitía dar el corte adecuado a las testas de cada arco. Por último, con las plantillas de testa, se daba forma a cada arco con lo que la labra de la clave había terminado. Obsérvese que, por regla general, los brazos de las claves son lo más cortos posible, lo cual permite que no sea necesario tallar sus curvaturas (Rabasa 2005, 2007) (figura 8).

Los jarjamentos

Para terminar, la bóveda requiere de la construcción de unas sólidas jarjas. Como mencionamos anteriormente, las jarjas o salmeres de la bóveda son los arquillos que la misma. Sabemos que, en una bóveda de cruzería las jarjas deben llegar hasta el punto en que los arcos que concurren en un arannque se independizan unos de otros. Esta altura puede determinarse mediante las proyecciones verticales y horizontales; cualquier plano horizontal trazado sobre la sección tiene inmediatamente una proyección en planta que permite ver si los arcos se han desgajado unos de otros, o si aún permanecen solidarios. Los arquillos de la bóveda de forma particular, es interesante, ya que el conjunto de arqueados de la bóveda. Esto sí produce más atrás, por así decirlo, de la bóveda, por lo que depende de más tarde; como de esta bóveda van a resultar para la construcción de nuevo en la montea. Sobre los planos horizontales que y, en la planta, se van dibujando resultantes en cada uno se dibujan una serie de talas las piezas que forma interior se calcula en el plano y, con la plantilla superior: una superior; posteriormente, izando una cara con la derecha los arcos, ha de tallarse para que pide cada uno uno nuevo ha de extrañarse de la dada que se van tallando cada colocando en su posición el lecho superior se aprecia por superan la mitad de la
La construcción de la bóveda de crucería de Vandervght

Figura 9
El lecho superior de las jarjas se corta con la inclinación necesaria para recibir los arcos

Figura 10
La bóveda propiamente dicha comienza cuando acaba el jarjamento

La bóveda de Vandervght tienen una particularidad interesante, ya que no forman un haz prominente, como solía ser la solución más frecuente, sino que el conjunto de arcos desaparecen en los vértices de la bóveda. Esto significa que el arranque se produce más atrás, por así decirlo, fuera de los confines de la bóveda, por lo que los nervios se van a independizar más tarde; como consecuencia, las jarjas de esta bóveda van a resultar más altas de lo normal.

Para la construcción de las jarjas recurrimos de nuevo a la montée. Sobre la sección se van dibujando los planos horizontales que se consideren oportunos y en la planta, se van dibujando las proyecciones horizontales resultantes en cada nivel. Con estas secciones se dibujan una serie de plantillas que permitirán cortar las piezas que forman cada lecho; la plantilla inferior se calza en el plano inferior del sillar elegido y, con la plantilla superior se hace lo mismo sobre la para superior; posteriormente se procede a la labra colocando una cara con la otra. Como la última jarja rodea los arcos, ha de tallarse con la inclinación necesaria que pide cada uno de ellos, dato éste que de nuevo ha de extraerse de la montée (Figura 9). A medida que se van tallando cada uno de los lechos pueden hacerse colocando en su posición correcta, al colocar el lecho superior se aprecia claramente cómo las jarjas superan la mitad de la altura de la bóveda; su

easados y las claves angulares de apuntando arco horizontal, ya se figuran 7, o el inferior de la montée. Para los antiguos, una clave angular se trazaba en el corte adecuado a las con las plantillas de o con lo que la labra debía basarse, que por razones son lo más común no sea necesario (Figura 85, 2007) (Figura 8).

de la construcción mencionamos anteriormente: la bóveda, son los que, en una bóveda recorrerán de nuevo a la montée. Sobre la sección se van dibujando los planos horizontales que se consideren oportunos y en la planta, se van dibujando las proyecciones horizontales resultantes en cada nivel. Con estas secciones se dibujan una serie de plantillas que permitirán cortar las piezas que forman cada lecho; la plantilla inferior se calza en el plano inferior del sillar elegido y, con la plantilla superior se hace lo mismo sobre la para superior; posteriormente se procede a la labra colocando una cara con la otra. Como la última jarja rodea los arcos, ha de tallarse con la inclinación necesaria que pide cada uno de ellos, dato éste que de nuevo ha de extraerse de la montée (Figura 9). A medida que se van tallando cada uno de los lechos pueden hacerse colocando en su posición correcta, al colocar el lecho superior se aprecia claramente cómo las jarjas superan la mitad de la altura de la bóveda; su

Las cimbras

Una vez que la labra va tocando a su fin llega el momento de la puesta en obra de la bóveda. Es entonces cuando, imperativamente, será necesario el concurso de la carpintería de armar para la confección de cimbras. El diseño de las cimbras requiere una cierta atención ya que debe soportar el peso de los arcos de piedra y, a la vez, debe permitir un descompromiso correcto. En una bóveda de crucería, las cimbras pueden ser más ligeras que en una bóveda clásica de cásca continuada ya que, únicamente han de soportar el peso de los arcos de piedra; pensemos que, una vez que todo la crucería está montada, ésta comienza ya a trabajar recibiendo sobre ella el peso de la plementería, por lo que la cimbra no tiene porque hacerse
carga de todo el peso de la bóveda, una ventaja más del ingenioso sistema de abovedar gótico.

Para la construcción de la cimbra se han seguido los consejos de, en el siglo XVI, preconizaba a tal efecto Rodrigo Gil de Hontañón (figura 11). Recomendaba en primer lugar la construcción de una plataforma de madera a la altura de las jarjas, sobre ella habría de dibujarse de nuevo la montura horizontal de la bóveda (Simón García 1991). En los puntos en que se situaban las claves se colocarían pie derecho con la altura adecuada para situar en su posición cada una de ellas, esta altura se extrae, una vez más, de la montura a tamaño natural de la sección de la bóveda. Entre estos pies derechos se colocan las cimbras de los arcos, atando unos con otros y estabilizando el conjunto. Habida cuenta que en la bóveda de Vandelvira, las 17 claves quedan arrimadas en el centro de la misma, los pies derechos se han situado a su vez sobre una plataforma más pequeña alzada mediante un sistema de cuñas; al extraer las cuñas, todas las claves descederán a la vez, de manera que, toda la bóveda entrará en carga al mismo tiempo. Una vez construida la cimbra podemos apreciar en su dimensión completa la enorme envergadura de estas obras de carpintería, valorando el elevadísimo coste de las mismas y la importancia de reducirla al máximo.

Con las cimbras acabadas se pueden ir colocando las dovelas y claves, es entonces cuando un nuevo problema requiere la máxima atención: las juntas. Conseguir un correcto alineamiento de las dovelas que forman un arco exige imperativamente colocarlas separadas unas de otras, de esta forma, se consigue que los errores de talla no se vayan trasladando de unas a otras. Posteriormente, la junta se colmatan con mortero líquido. En las construcciones antiguas, las juntas entre dovelas se suelen manifestar claramente.

Una vez que toda la nervadura de la bóveda ha sido colocada, podría procederse a llenar de los cascos de plementería. Por regla general la plementería de las bóvedas de crucería españolas se suele aparejar a la francesa, es decir, colocando la mano posterior en arista o, dicho de otro modo, en lechos paralelos a los ejes de la bóveda. En este caso, al ser una bóveda esférica podría hacerse en vuelta de horno, es decir, por lechos horizontales, como el propio Vandelvira aconseja. En este caso, se ha tomado la decisión de no ejecutar la plementería con objeto de que la red de nervaduras se perciba con la mayor claridad. Una vez que todas las piezas han encontrado acomodo, se pone de manifiesto la belleza de su diseño (figura 12).

Estabilidad

Queda por último proceder al descimbrado de la bóveda. Como se acababa de mencionar en el párrafo anterior, se ha desestimado llevar a cabo el relleno de las plementerías, y por tanto, al descimbrar, la estabilidad de la bóveda quedaría comprometida. La contribución de estabilidad de las bóvedas góticas ha invertido. El debate del papel que juegan es una larga trayectoria que comienza con la Guerra Mundial terminada (Torres Balbás 1945); El estudio de la bóveda como elemento estructural e independiente de la bóveda, quedó en el olvido hasta los últimos años. Los trabajos de los científicos y los arquitectos modernos han puesto en evidencia las catedrales francesas; sin embargo, a pesar de haber perdido su estabilidad, la bóveda es capaz de soportar enormes esfuerzos ocasionados por sus plementerías.

Descimbrar la bóveda de Vandelvira permite recordar estéticamente de una ocasión irrecuperable. (figura 13)

Figura 11
La cimbra se compone de una gran plataforma que recibe los pies derechos situados bajo las claves y de los camones curvos de los arcos

Figura 12
El dibujo central de la bóveda, con sus dos rueltas de combinación, es posible gracias a su forma esférica

Figura 13
La estética gráfica muestra cómo la l...
La construcción de la bóveda de crucecía de Vandelvira

La bóveda de crucecía de Vandelvira es un ejemplo de la arquitectura gótica que se encuentra en la ciudad de Vandelvira. La construcción de esta bóveda fue una de las más destacadas de su tiempo, ya que se construyó con técnicas avanzadas y materiales resistentes.

La bóveda de crucecía se caracteriza por tener un conjunto de arcos que se unen formando una estructura sólida. En este caso, la bóveda se compone de tres arcos superpuestos, lo que da una mayor estabilidad a la estructura.

La construcción de la bóveda requirió de un trabajo detallado y preciso, ya que cualquier error podría haber llevado a una falla en la estructura. Los artesanos encargados de la construcción trabajaron en un ambiente intenso y difícil, ya que la bóveda se levantó en un ambiente de viento y queimadas.

La bóveda de crucecía es un símbolo de la arquitectura gótica en su máximo esplendor. Su construcción es un testimonio de la habilidad de los artistas y arquitectos de su tiempo para crear estructuras que resistieran el tiempo y los elementos.
Descimbrado

Para el descimbrado, se procedió en primer lugar a retirar los camones de los arcos ojivios, posteriormente los de los terceletes; los formeros serían descimbrados al final del todo ya que, al faltar la plementeria, quedan completamente aislados y no colaboran en la estabilidad del conjunto. Al quedar liberados de sus cinchas, los arcos se sujetan a sí mismos, son arcos remanentes que se inician en las claves y descansan en sus apoyos. El verdadero trabajo de la bóveda todavía no ha comenzado; ese momento se producirá al quitar las cuatro cuñas que sujetan la plataforma sobre la que descansan las diécesis claves, es entonces cuando todas ellas descendrán al mismo tiempo unos milímetros y las cargas buscarán un recorrido a lo largo de los arcos. En ese preciso momento todo el conjunto comenzará a trabajar como una bóveda.

Tradicionalmente, el descimbrado de las grandes obras de la Antigüedad era objeto de actos sociales de gran relevancia. Los prelados o incluso el rey podían desplazarse al lugar para contemplar ese acontecimiento emocionante en el que las piedras, de un modo incomprensible, quedarían suspendidas en el espacio, permanecerían en el aire, gracias al sabio aparejo de las mismas por el artificio de la construcción. Como entonces, también en esta ocasión, el descimbrado de la bóveda despertó un enorme interés.

Una vez limpia por completo, la nervadura de la bóveda se nos antoja de una extraordinaria estela, y pone en evidencia la belleza del diseño de Van delvira (figura 14). Apreciamos ahora la condensación de su forma esférica reforzada por el dibujo de los dos arcos concéntricos de combados, como el polo de un globo terráqueo. Una imagen que nos sumerge por completo en el espíritu del renacimiento.

CONCLUSIONES

Ni que decir tiene que la experiencia de construir una bóveda gótica compleja está hoy día alejada por completo del horizonte pedagógico de un alumno de arquitectura; sin embargo, por las razones que acabamos de exponer, podría ser un camino interesante para que los conocimientos teóricos parciales que sobre este tema va adquiriendo a lo largo de su carrera, terminen afianzándose con la experiencia concreta. Una experiencia que, colateralmente, abre al alumno las puertas del apasionante mundo de la restauración y conservación de monumentos.

Por regla general, los alumnos, abrumados por la enorme carga teórica que soportan, se entregan con
La construcción de la bóveda de crucería de Vandellòria

843

La experiencia de construir una bóveda está hoy día alejada por la logística de un alumno de arquitectura. Sin embargo, esta experiencia ha dejado una marca indeleble en la memoria de los estudiantes y profesores. La construcción de una bóveda de crucería es un desafío que requiere un alto nivel de habilidad y precisión. En este documento, queremos compartir algunas de las experiencias y enseñanzas que se han obtenido durante el proceso de construcción de una bóveda de crucería en Vandellòria.

NOTA

El trabajo se realizó con la colaboración de los alumnos de la promoción 07-08 del Taller de Construcción Gótica:

- Abad, E.
- Albarracín, R.
- Arbilla, M.
- Ascencio, M.
- Barberá, E.
- Ballester, S.
- Calatrava, M.
- Cañadas, L.
- Chaves, G.
- Climent, J.
- Colom, A.
- Cuesta, R.
- Díaz, O.
- Galdón, C.
- García, J.
- García, C.
- Garre, J.
- Gómez, M.
- Guzmán, R.
- Hernández, S.
- Merino, M.
- Molina, M.
- Montoro, R.
- Núñez, M.
- Palacios, S.
- Martínez, F.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, D.
- Martín, B.
- Martínez, S.
- Martínez, F.
- Martínez, M.
- Martínez, R.
- Martínez, A.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.
- Martínez, J.
- Martínez, E.
- Martínez, M.