Effects of traffic loads on reinforced concrete railroad culverts

Hermanns, Lutz Karl Heinz; Fernández Martínez, Javier; Alarcón Álvarez, Enrique y Fraile de Lerma, Alberto (2013). Effects of traffic loads on reinforced concrete railroad culverts. En: "11th International Conference on Vibration Problems", 09/09/2013-12/09/2013, Lisboa (Portugal).

Descripción

Título: Effects of traffic loads on reinforced concrete railroad culverts
Autor/es:
  • Hermanns, Lutz Karl Heinz
  • Fernández Martínez, Javier
  • Alarcón Álvarez, Enrique
  • Fraile de Lerma, Alberto
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 11th International Conference on Vibration Problems
Fechas del Evento: 09/09/2013-12/09/2013
Lugar del Evento: Lisboa (Portugal)
Título del Libro: 11th International Conference on Vibration Problems
Fecha: 2013
Materias:
Palabras Clave Informales: Culvert, High-speed rail system, Soil-structure interaction, Moving loads, Finite Element Method
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Mecánica Estructural y Construcciones Industriales [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

In the context of the present conference paper culverts are defined as an opening or conduit passing through an embankment usually for the purpose of conveying water or providing safe pedestrian and animal crossings under rail infrastructure. The clear opening of culverts may reach values of up to 12m however, values around 3m are encountered much more frequently. Depending on the topography, the number of culverts is about 10 times that of bridges. In spite of this, their dynamic behavior has received far less attention than that of bridges. The fundamental frequency of culverts is considerably higher than that of bridges even in the case of short span bridges. As the operational speed of modern high-speed passenger rail systems rises, higher frequencies are excited and thus more energy is encountered in frequency bands where the fundamental frequency of box culverts is located. Many research efforts have been spent on the subject of ballast instability due to bridge resonance, since it was first observed when high-speed trains were introduced to the Paris/Lyon rail line. To prevent this phenomenon from occurring, design codes establish a limit value for the vertical deck acceleration. Obviously one needs some sort of numerical model in order to estimate this acceleration level and at that point things get quite complicated. Not only acceleration but also displacement values are of interest e.g. to estimate the impact factor. According to design manuals the structural design should consider the depth of cover, trench width and condition, bedding type, backfill material, and compaction. The same applies to the numerical model however, the question is: What type of model is appropriate for this job? A 3D model including the embankment and an important part of the soil underneath the culvert is computationally very expensive and hard to justify taking into account the associated costs. Consequently, there is a clear need for simplified models and design rules in order to achieve reasonable costs. This paper will describe the results obtained from a 2D finite element model which has been calibrated by means of a 3D model and experimental data obtained at culverts that belong to the high-speed railway line that links the two towns of Segovia and Valladolid in Spain

Más información

ID de Registro: 30790
Identificador DC: http://oa.upm.es/30790/
Identificador OAI: oai:oa.upm.es:30790
URL Oficial: http://www.icoev.org/index.php/icovp-2013
Depositado por: Biblioteca ETSI Industriales
Depositado el: 03 Sep 2014 10:48
Ultima Modificación: 22 Abr 2016 01:03
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM