3D segmentations of neuronal nuclei from confocal microscope image stacks

La Torre, Antonio; Alonso Nanclares, Lidia; Muelas Pascual, Santiago; Peña Sanchez, Jose Maria y Felipe Oroquieta, Javier de (2013). 3D segmentations of neuronal nuclei from confocal microscope image stacks. "Frontiers in Neuroanatomy", v. 7 ; pp. 1-10. ISSN 1662-5129. https://doi.org/10.3389/fnana.2013.00049.

Descripción

Título: 3D segmentations of neuronal nuclei from confocal microscope image stacks
Autor/es:
  • La Torre, Antonio
  • Alonso Nanclares, Lidia
  • Muelas Pascual, Santiago
  • Peña Sanchez, Jose Maria
  • Felipe Oroquieta, Javier de
Tipo de Documento: Artículo
Título de Revista/Publicación: Frontiers in Neuroanatomy
Fecha: Diciembre 2013
Volumen: 7
Materias:
Palabras Clave Informales: 3D reconstruction, automatic segmentation, cerebral cortex, image processing, neuron
Escuela: Centro de Tecnología Biomédica (CTB) (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario?the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

Más información

ID de Registro: 31180
Identificador DC: http://oa.upm.es/31180/
Identificador OAI: oai:oa.upm.es:31180
Identificador DOI: 10.3389/fnana.2013.00049
URL Oficial: http://journal.frontiersin.org/article/10.3389/fnana.2013.00049/abstract
Depositado por: Memoria Investigacion
Depositado el: 13 Abr 2015 19:27
Ultima Modificación: 13 Abr 2015 19:27
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM