Reconocimiento de gestos basado en acelerómetros

Fernández Sánchez, Eduardo (2014). Reconocimiento de gestos basado en acelerómetros. Tesis (Master), E.T.S.I. y Sistemas de Telecomunicación (UPM).

Descripción

Título: Reconocimiento de gestos basado en acelerómetros
Autor/es:
  • Fernández Sánchez, Eduardo
Director/es:
  • Hernández Perdomo, Wilmar
Tipo de Documento: Tesis (Master)
Título del máster: Ingeniería de Sistemas y Servicios para la Sociedad de la Información
Fecha: 17 Julio 2014
Materias:
Escuela: E.T.S.I. y Sistemas de Telecomunicación (UPM)
Departamento: Ingeniería de Circuitos y Sistemas [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

En los últimos años, ha crecido de forma significativa el interés por la utilización de dispositivos capaces de reconocer gestos humanos. En este trabajo, se pretenden reconocer gestos manuales colocando sensores en la mano de una persona. El reconocimiento de gestos manuales puede ser implementado para diversos usos y bajo diversas plataformas: juegos (Wii), control de brazos robóticos, etc. Como primer paso, se realizará un estudio de las actuales técnicas de reconocimiento de gestos que utilizan acelerómetros como sensor de medida. En un segundo paso, se estudiará como los acelerómetros pueden utilizarse para intentar reconocer los gestos que puedan realizar una persona (mover el brazo hacia un lado, girar la mano, dibujar un cuadrado, etc.) y los problemas que de su utilización puedan derivarse. Se ha utilizado una IMU (Inertial Measurement Unit) como sensor de medida. Está compuesta por tres acelerómetros y tres giróscopos (MTi-300 de Xsens). Con las medidas que proporcionan estos sensores se realiza el cálculo de la posición y orientación de la mano, representando esta última en función de los ángulos de Euler. Un aspecto importante a destacar será el efecto de la gravedad en las medidas de las aceleraciones. A través de diversos cálculos y mediante la ayuda de los giróscopos se podrá corregir dicho efecto. Por último, se desarrollará un sistema que identifique la posición y orientación de la mano como gestos reconocidos utilizando lógica difusa. Tanto para la adquisición de las muestras, como para los cálculos de posicionamiento, se ha desarrollado un código con el programa Matlab. También, con este mismo software, se ha implementado un sistema de lógica difusa con la que se realizará el reconocimiento de los gestos, utilizando la herramienta FIS Editor. Las pruebas realizadas han consistido en la ejecución de nueve gestos por diferentes personas teniendo una tasa de reconocimiento comprendida entre el 90 % y 100 % dependiendo del gesto a identificar. ABSTRACT In recent years, it has grown significantly interest in the use of devices capable of recognizing human gestures. In this work, we aim to recognize hand gestures placing sensors on the hand of a person. The recognition of hand gestures can be implemented for different applications on different platforms: games (Wii), control of robotic arms ... As a first step, a study of current gesture recognition techniques that use accelerometers and sensor measurement is performed. In a second step, we study how accelerometers can be used to try to recognize the gestures that can make a person (moving the arm to the side, rotate the hand, draw a square, etc...) And the problems of its use can be derived. We used an IMU (Inertial Measurement Unit) as a measuring sensor. It comprises three accelerometers and three gyroscopes (Xsens MTI-300). The measures provided by these sensors to calculate the position and orientation of the hand are made, with the latter depending on the Euler angles. An important aspect to note is the effect of gravity on the measurements of the accelerations. Through various calculations and with the help of the gyroscopes can correct this effect. Finally, a system that identifies the position and orientation of the hand as recognized gestures developed using fuzzy logic. Both the acquisition of samples to calculate position, a code was developed with Matlab program. Also, with the same software, has implemented a fuzzy logic system to be held with the recognition of gestures using the FIS Editor. Tests have involved the execution of nine gestures by different people having a recognition rate between 90% and 100% depending on the gesture to identify.

Más información

ID de Registro: 32402
Identificador DC: http://oa.upm.es/32402/
Identificador OAI: oai:oa.upm.es:32402
Depositado por: Biblioteca Universitaria Campus Sur
Depositado el: 18 Oct 2014 22:31
Ultima Modificación: 31 Jul 2015 07:25
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM