INNOVACIONES EN MAQUINARIA: TRABAJO COLABORATIVO Y GESTIÓN EN RED

Adolfo Moya González, Belén Diezma Iglesias, Constantino Valero Ubierna, Pilar Barreiro Elorza.
LPF-TAGRALIA Departamento de Ingeniería Agroforestal, Universidad Politécnica de Madrid

Una buena perspectiva de las más destacadas novedades y mejoras incluidas en las máquinas agrícolas recientemente, puede obtenerse analizando las innovaciones reconocidas por la organización de la feria internacional de maquinaria agrícola de París (SIMA 2015) que se celebrará del 22 al 26 de febrero de este año. Este año se han otorgado dos medallas de oro, tres de plata y 18 menciones. Un jurado internacional compuesto por 21 expertos del sector agrícola fue responsable de decidir los ganadores de los premios. Adicionalmente, un grupo de expertos, entre los que se encuentran numerosos usuarios, investigadores y desarrolladores, estuvieron presentes para asesorar al jurado. Las novedades presentadas en este artículo se estructuran en tres apartados: las referentes a ergonomía y seguridad; las relativas a la mejora de rendimientos, calidad y ahorro energético; y un apartado con las novedades relativas a la automatización y robótica en el que se incluyen los aspectos relativos a comunicaciones internas y entre máquinas que habilitan las posibilidades de trabajo colaborativo mediante el intercambio de información. Por último se expone el concepto de gestión en red de máquinas, tratado en el proyecto iGreen y que sienta las bases de la gestión de maquinaria con sistemas intensivos de intercambio de información que se irán gradualmente implantando entre los profesionales del sector.

ERGONOMÍA Y SEGURIDAD

Uno de los campos más activos en la incorporación de innovaciones en la maquinaria agrícola es la seguridad y ergonomía de las máquinas. La prevención de accidentes asociados a la actividad agrícola, tanto para los operadores de las máquinas como para las personas que se encuentran fuera de la máquina se ha convertido en una prioridad. En esta misma línea también...
se incide en la ergonomía, con objeto de reducir tanto los posibles problemas musculoesqueleticos asociados a las posturas o movimientos perniciosos llevados a cabo de forma repetida, como la fatiga del operador que incrementa las probabilidades de accidente. Por último, las novedades incorporadas también se enfocan a un manejo más seguro de productos tóxicos que pudieran causar daños a los agricultores a largo plazo.

▶ ERGONOMÍA

Una de las dos medallas de oro concedidas en SIMA 2015 corresponde a la nueva cabina panorámica PANORAMIC (Figura 1), incorporada en el tractor ARION 400 de CLAAS. En su diseño se ha logrado un parabrisas continuo de 2,41 m² con un ángulo de 90 grados mediante la eliminación del travesaño superior frontal de la cabina, que sigue cumpliendo con las normas de seguridad para la prevención de daños al operador en caso de vuelco del tractor o caída de objetos sobre la cabina. El amplio campo de visión sin puntos muertos resulta especialmente útil en caso de incorporar una pala cargadora frontal ya que el operador podrá controlar la operación sin necesidad de adoptar posiciones forzadas para espalda y cuello.

Otra de las novedades reconocidas en la SIMA 2015 es un interfaz de pantalla virtual proyectada, conocido en el mundo del automóvil o la aeronáutica como HUD (en inglés “heads-up display” o VTH según su acrónimo en francés “visualización de cabeza alta”). En este caso, el sistema desarrollado por la empresa Agrotouch (Figura 2 y Figura 3) permite visualizar sobre el cristal de la cabina información procedente de la línea CAN o vídeo procedente de cámaras a bordo del tractor o apero, gracias a su proyección en el parabrisas de la cabina mediante un micro-proyector basado en LED o LASER, permitiendo con esto que el tractorista visualize información de interés sin apartar la vista del exterior.

▶ MANEJO SEGURO DE FITOSANITARIOS

Una de las tres medallas de plata concedidas en SIMA 2015 corresponde al sistema B-safe, de Berthoud (Figura 4) destinado a la carga de productos fitosanitarios en el pulverizador de una forma segura para el operador y el medio ambiente. Este sistema se puede adaptar a cualquier pulverizador nuevo y ya en operación que incorpore una tolva de precarga, permite llevar a cabo la carga de productos fitosanitarios en la cabina directamente desde sus envases y el enjague posterior de éstos sin contacto directo con el operador, de forma que se reducen los riesgos de contaminación tanto para el operador como para el entorno.

▶ SEGURIDAD EN LA OPERACIÓN DE MÁQUINAS

La seguridad en la operación de las máquinas es otro de los aspectos en los que los fabricantes de maquinaria continúan innovando. Entre estos sistemas podemos encontrar los destinados a reducir los riesgos...
para las personas en las operaciones de enganche-desenganche de aperos, los sistemas de control de la estabilidad para evitar el vuelco o los sistemas de detección de obstáculos o personas para evitar colisiones durante la operación.

Otra de las tres medallas de plata concedidas a las innovaciones más relevantes presentadas en SIMA 2015, reconoció el sistema AutoConnect de John Deere (Figura 5) para la automatización en la conexión de aperos. Este sistema opera mediante dos placas de conexión estándar, una en el tractor y otra en el apero, un tercer punto telescópico y dos cámaras situadas en el tractor. Una vez que el tractor se encuentra alineado con el apero a una distancia inferior a 10 metros, el tractorista puede activar la conexión automática, el sistema hace retroceder al tractor (AutoBackUp), y llevar a cabo el enganche y la conexión de la tdf, mangueras neumáticas, hidráulico, e ISOBUS mediante el sistema (AutoSetUp) que reconoce la posición de la placa de conexión del apero, engancha el tercer punto y éste lleva el apero hasta la conexión de las placas que asegura la total operatividad del apero.

Otra de las novedades mencionadas en SIMA 2015 es el sistema ROLL-LINK, de Rolland Remorques para facilitar la conexión segura de remolques con ejes auto pilotados por parte de un solo operador.

Entre las novedades reconocidas también se encuentra el sistema de control de la estabilidad lateral para cargadoras telescopicas TSS de Merlo (Figura 6). Este sistema añade el control lateral y longitudinal trasero a los ya existentes sistemas de control de estabilidad longitudinal delantera. Mediante la obtención de parámetros como la carga en cada rueda, la inclinación del chasis y la posición e implementos conectados al brazo telescopico con una frecuencia de 100 Hz, el sistema informa al operador de la estabilidad lateral y longitudinal de la máquina mediante un panel en la cabina, emitiendo una alarma cuando la estabilidad de la máquina se vea comprometida y/o bloqueando las maniobras que pudieran provocar el vuelco.

En cuanto a la detección de objetos, animales y personas situados en el entorno de las máquinas, otra de las novedades premiadas en SIMA 2015 es el sensor inteligente 3-D denominado 0M3 de la empresa IFM Electronic (Figura 7) que, fijado a la parte frontal o trasera del tractor o máquina, permite detectar la posición, tamaño, trayectoria y velocidad relativa de hasta 20 objetos en su campo de visión (70° x 25°) y hasta más de 35 m de distancia. El uso de este sensor supone una ayuda para el operador en la operación segura de las máquinas.
PRODUCTIVIDAD Y EFICIENCIA ENERGÉTICA

El aumento del tamaño de las máquinas como modo de mejorar su productividad, parece estar alcanzando el final de su recorrido. En este sentido, las novedades que se presentan ahora para incrementar la capacidad de trabajo, persiguen aumentar la velocidad real de avance, reducir los tiempos muertos o perfeccionar el funcionamiento de los circuitos internos de las máquinas. Por otro lado, en un escenario en el que la optimización de los inputs es clave en las explotaciones agrarias, siguen apareciendo desarrollos para mejorar la eficiencia energética de las máquinas.

John Deere: Sembradora monogranada de alta velocidad *ExactEmerge*™ *Seed Drill*

Los altos niveles de precisión en la colocación de las semillas alcanzados con los cuerpos de siembra *ExactEmerge*™ (Figura 8), incluso a 16 km/h, han merecido una de las medallas de oro de SIMA. Bajo la premisa de evitar la caída libre de la semilla a través del tubo y hasta el fondo del surco, *John Deere* introduce una cinta de cepillo que sustituye al tubo de caída y que permite la fijación de las semillas entre sus cerdas en su trayectoria hacia el fondo del surco, donde se deposita desde una altura mínima y con una velocidad horizontal nula, minimizando la probabilidad de que las semillas rueden o reboten. El accionamiento del plato dosificador y de la cinta de cada cuerpo se realiza mediante dos motores eléctricos independientes que pueden ser alimentados desde un generador externo acoplado a la toma de fuerza del tractor. El accionamiento eléctrico en cada una de las líneas de siembra puede desactivarse automática o manualmente, del mismo modo que se puede variar la densidad de siembra línea a línea. El sensor para el conteo de semillas incorporado en cada cinta de descarga, aporta información disponible en cabina a través de la consola *SeedStar* (distancia de siembra, densidad de siembra, superficie sembrada...). Los parámetros de siembra pueden ser transferidos en tiempo real vía Wireless Data Transfer y almacenados en *MyJohnDeere.com*, para aportar al usuario mapas precisos de la calidad de siembra, la velocidad de trabajo y otros.
parámetros de trabajo.

- **Kverneland Group**: Rotoempacadora-encintadora *FastBale*

Con el modelo *FastBale* (Figura 9), *Vicon* presenta una máquina capaz de empacar y encintar en continuo, lo que se conoce como proceso “non-stop”. La máquina incorpora una precámara y una cámara de presión montadas en serie y compartiendo parte de los rodillos. La precámara conforma la paca hasta que alcanza los dos tercios de su diámetro y la densidad preestablecida, momento en el cual la paca y el flujo de entrada se transfieren a la segunda cámara de presión, donde continúa su formación hasta alcanzar un diámetro de 1,25 m. Una vez que finaliza la conformación de la paca el flujo retorna a la precámara, mientras que la paca ya conformada se envuelve en red y es transferida a la unidad de encintado. Esta transferencia se realiza simplemente por gravedad al incorporar en la envolventora un bastidor que le permite descender para recibir la paca. Tras el encintado, mediante un sistema de dos satélites paralelos al suelo, se produce la eyeción de la paca. Consiguiendo así que la empacadora no se detenga en ninguno de los pasos del proceso. La unidad de encintado puede desactivarse y emplear la máquina en cadenas de benificación.

- **Claas**: Nuevo mecanismo de corte *Vario*

El nuevo diseño del mecanismo de corte *Vario* (Figura 10) disponible para las cosechadoras *TUCANO* y *LEXION* con anchos de corte de 9,30 y 7,7 m, permite realizar desde la cabina la adaptación necesaria para optimizar el cabezal para la recolección de colza o cereal. La modificación de la longitud de la tabla de la barra de forma continua persigue optimizar la longitud de la paja para conseguir el flujo máximo en la cosechadora. La longitud de la tabla tiene un recorrido de 700 mm, pudiendo retraerse 100 mm para cultivos bajos y extenderse 600 mm para el cultivo de la colza. Las placas de colza, que anteriormente se debían insertar manualmente, ahora se integran en la mesa del nuevo mecanismo de corte *Vario*.

- **Horsch**: Pulverizador hidráulico *Leeb GS*

El pulverizador incorpora el sistema *BoomControl Pro* (Figura 11) para la estabilización y guiado de los brazos, cuyo aspecto innovador es que asocia un bastidor pivotante con un sistema de control activo de su posición. El nivel de estabilización de los brazos del pulverizador permite trazar a poca altura sobre el cultivo, con una distancia entre boquillas de 25 cm. Otro sistema destacable de la máquina es el *Continuous Cleaning Sy...*
ten; durante el proceso de enjuagado el agua clara es enviada al depósito mediante una bomba adicional de pistón-membrana, desde el tanque la bomba centrífuga impulsa el agua y los restos del caldo a las boquillas.

- **John Deere:** Sistema para intercambio de electricidad entre la explotación, el tractor y los implementos *Battery Boost*

El sistema posibilita el uso de energía eléctrica tanto en el vehículo como en los implementos mediante un conjunto de baterías instaladas en la parte frontal del tractor y es el primero que permite al tractor conectarse a la red eléctrica. Se implementan baterías para el almacenamiento de energía que puede proceder de plantas solares, de biogás o eólicas, potenciando el uso de energías renovables en las labores agrícolas. Conectado a un modelo modificado el JD 6RE (*Figura 12*), *Battery Boost* puede proporcionar hasta 107 kW de potencia adicional lo que amplía el rango de potencia del tractor independiente de su modo de operación. Los conectores del sistema, diseñados según los estándares de la Agricultural Industry Electronics Foundation, conforman un sistema ‘plug and play’ sencillo que puede también aportar potencia eléctrica directamente a los implementos.

- **McHale:** rotoempacadora-encintadora McHale Fusion 3 PLUS

La *McHale Fusion 3 Plus* (*Figura 13*) es una rotoempacadora - encintadora formada por una cámara fija de 18 rodillos y un anillo de encintado vertical. Esta empacadora incorpora el concepto de ‘film sobre film’, aplicando plástico en la cámara de compresión para el atado en lugar de cuerda o red, lo que aumenta el número de capas de plástico en la superficie curva de la paca. El encintado finaliza en la parte trasera de la máquina, mientras se puede seguir avanzando para conformar la siguiente rotopaca. El sistema permite obtener pacas con mayor densidad y mejor conformadas.

- **Pérard:** Sistema para la recuperación de tamo *VMP Pérard*

El sistema *VMP* (*Figura 14*), permite recuperar y comprimir el tamo producido en la trilla y separación de las cosechadoras de grano. De este modo se evita la posible dispersión de semillas de malas hierbas y se valoriza un subproducto de la cosecha de cereales que puede ser utilizado como cama para el ganado y/o biomasa. Pérard ha desarrollado un sistema para comprimir el tamo y conformar pacas de 2,2 m de longitud x 640 mm de diámetro, que se puede fijar fácilmente a la mayor parte de las cosechadoras modernas. Para el transporte el VMP se conecta al transportador de la cosechadora y se pliega en dos. La unidad está accionada por un motor diesel de 36 CV y es comandada desde una consola independiente en la cabina de la cosechadora. El tamo es aspirado mediante dos conducciones flexibles hasta una cámara de compresión con un pistón accionado hidráulicamente y capaz de conformar pacas de 700 kg. Envolvidas en film plástico, la máquina produce una paca cada 5 minutos.

AUTOMATIZACIÓN Y ROBÓTICA

Como hemos venido diciendo, uno de los pilares tecnológicos en los que se asientan muchas de las innovaciones actuales es el estándar de comunicación y control digital *ISOBUS*, basado en la norma internacional ISO 11783. Decir que *ISOBUS* es novedad es faltar a
la verdad, pues la primera versión de este estándar internacional se publicó en 2001, cuando el grupo de trabajo internacional de ISO dio por completadas las tareas de descripción de los componentes principales de una red de conexión digital para maquinaria agrícola, plasmándola en las 14 partes de que consta la norma (relativas al protocolo de comunicación, cableado, conectores, pantallas de visualización, almacenamiento de datos, unidades de control, automatización de tareas, etc.). Dicho grupo de trabajo sigue a día de hoy renovando las especificaciones técnicas de ISOBUS, para mejorar su eficacia y actualizar dicha tecnología a las necesidades agrícolas de hoy.

Sin embargo, cuando uno oye el término ISOBUS y desea saber más sobre el tema, puede tomar dos caminos (no excluyentes). El primero es buscar información escrita y empaparse de la norma 11783 y documentos relacionados para saber hasta dónde es capaz de llegar esta tecnología. Siguiendo este camino, la conclusión a la que podemos llegar fácilmente es la de que aquel grupo de trabajo hizo bien sus deberes y planificó una tecnología con futuro, con posibilidades de crecer, y cuya aplicación real, para resolver problemas y necesidades del agricultor, es potente, variada y flexible. Sin duda alguna, la implementación de ISOBUS en la maquinaria abre incontables posibilidades de control, automatización y seguridad, mucho más allá del uso actual que se hace de dicha tecnología. Por otro lado cabe preguntarse ¿tiene límites; los hemos alcanzado? Efectivamente ISOBUS tiene límites y algunas de las aplicaciones puntuales que se demandan hoy en día ponen a prueba algunas de las capacidades del bus. Es el caso de las conocidas cámaras de vídeo para visión de ángulos difíciles en la maquinaria (parte trasera, tubos de descarga, laterales, tolvas...) tan de moda hoy en día por ser sencillamente útiles para el operario. Pues bien, la transmisión de esta información (el vídeo) a través del bus CAN de ISOBUS lo colapsaría por completo (no estaba pensado para ello) y los fabricantes se han buscado alternativas para soslayar el inconveniente. Pero lo ideal sería re-elaborar el estándar y adaptarlo a las crecientes necesidades de la agricultura moderna, inmersa en internet y las comunicaciones globales, tanto es así que hay grupos de trabajo que actualmente se interesan por definir un nuevo ISOBUS "de alta capacidad" y un ISOBUS "wifi" o inalámbrico. Lo veremos en algunos años.

El otro camino posible para acercarse al 'mundo ISOBUS' es mucho más práctico: subírse al tractor. Es un hecho que todos los tractores de gama alta incorporan esta tecnología, y muchos fabricantes de maquinaria (pulverizadores, sembradoras, abonadoras, incluso arados de vertedera) la incluyen en sus sistemas, con el objeto de que apero y tractor cooperen de forma...
diáfana. ISOBUS es una realidad en la maquinaria de Europa, Norteamérica y otros grandes productores como Australia o Brasil. Sin embargo la teoría (digásemos el escaparate de ventas de maquinaria) no coincide con la realidad en muchos casos: el agricultor medio no adquiere tractores enormes y prefiere gamas medias (por coste o capacidad) que no siempre incluyen ISOBUS. En algunos casos el agricultor expresamente busca un modelo convencional, “con poca tecnología”. Y en gran medida la realidad que se ve en el campo es que ISOBUS no se usa tanto como se debería, a juzgar por los catálogos de venta. Ciertamente ha habido una reticencia inicial a adquirir/ usar esta tecnología, lo cual es lógico, pues el usuario espera que los desarrollos estén maduros, comprobados, para lanzarse a su uso masivo. Sin embargo también es verdad que en muchos casos ISOBUS está dentro de la máquina o tractor y se hace uso de él casi sin saberlo. Tareas como la gestión de automatismos en cabezadas (subir tripuntal, desconectar tdf, conexiones auxiliares, giros, etc.) ahora son realizados en muchos casos mediante comandos del protocolo de ISOBUS.

Aun así, no basta redactar una norma, un estándar internacional, para que se use una tecnología, y hacía falta en este caso un conjunto de técnicos que promovieran el buen uso y aplicación de la ISO 11783. Por ello nació la AEF (Agricultural Electronics Foundation) cuya misión es facilitar la implementación a los fabricantes y ser de utilidad práctica a los usuarios a la hora de adquirir o poner en marcha maquinaria ISOBUS. El éxito de esta asociación ha venido avalado por numerosos reconocimientos, entre otros el recientemente otorgado a AEF en SIMA 2015. El galardón ha puesto en valor una de las iniciativas de la asociación: una página web en la que un agricultor cualquiera puede entrar y consultar si tal modelo de tractor es 100% compatible con un completo listado de maquinaria agrícola (www.aef-isobus-database.org). La base de datos en la que se sustenta la práctica página es el resultado de muchas pruebas de compatibilidad entre maquinaria, gracias a unas reuniones específicas llamadas “plugfests”, en las que los fabricantes literalmente enchufan sus máquinas para comprobar si todo es conforme a ISO 11783 y compatible. Otras de las menciones de SIMA 2015 reconoce la herramienta para el diagnóstico de máquinas ISOBUS InsightME, de Müller Elektronik (Figura 15), que permite la conexión al sistema electrónico de la máquina vía ISOBUS para el diagnóstico de problemas. Esta herramienta permite la transmisión de esta información en tiempo real vía WIFI o 3G/4G a otros dispositivos móviles, lo que habilita la posibilidad de diagnóstico remoto.

La disposición de máquinas con sistema ISOBUS permite dar un paso más en el intercambio de información entre ellas, así como con los sistemas de gestión y ayuda a la decisión, avanzando un paso más en la agricultura de precisión. Entre las novedades premiadas en SIMA 2015 basadas en ISOBUS podemos encontrar una abonadora centrífuga ISOBUS de doble disco (Figura 16), del fabricante Sulky Burrel, que permite la distribución de abono de forma independiente en cada uno de sus lados mediante el empleo de mapas de prescripción y la comunicación con el tractor y GPS. Otras aplicaciones premiadas relacionadas con el intercambio y explotación de la información recopilada por las máquinas comprenden una aplicación de Hardi-Excela denominada EVRARD-ScanApp para la gestión de datos de tratamientos y productos fitosanitarios empleados a través de dispositivos móviles como tabletas o teléfonos inteligentes; el módulo completo para agricultura de precisión Prizizon, que se integra en las soluciones en línea ofrecidas vía internet por la empresa Maferme-Neotic para la gestión de explotaciones o el sistema AGROGEOVISIO® de RAZOL, que emplea un sistema de visión en combinación con GPS...
para el guiado de una grada escardadora, registrando a su vez la información obtenida sobre la posición de las plantas y estado del cultivo.

Por último, el empleo de la robótica en agricultura cada vez está más próximo a la realidad y una de las menciones de SIMA 2015 ha correspondido al robot eléctrico ANATIS (Figura 17), de la empresa Carre SAS, destinado a labores de escarda mecánica y recogida de información que puede ser transmitida posteriormente a un dispositivo móvil.

GESTIÓN EN RED: EL PROYECTO iGREEN

Como ya se ha apuntado, los fabricantes de maquinaria agrícola ofrecen soluciones telemáticas que permiten la supervisión remota (por ejemplo JDLink) que proporcionan información relativa a la posición, el consumo de combustible y la carga de trabajo, relacionada con un análisis individual de los equipos y sin compatibilidad entre fabricantes.

Por otra parte, los sistemas de gestión de información en explotaciones agrícolas (FMS según sus siglas en inglés), tales como el SigAgroAsesor, cubren distintas operaciones desde el procesado electrónico de datos, al empleo de herramientas de ayuda a la decisión (HADs, por ejemplo selección de variedades, fertilización, riesgos y aplicación de pesticidas). El principal problema asociado con el desarrollo de software en la agricultura es que es cada vez más sofisticado, precisa la implicación de un operador entrenado y apoyado por un sistema de extensión agraria, además de no disponer de conexión directa con la producción. Cada vez está más claro que estos programas deben de ser capaces de emplear repositorios de información en la nube.

El Término iGreen es la denominación de un proyecto de investigación alemán con financiación público-privada (23 participantes) que ha analizado y verificado (desde 2009) los procedimientos para el alojamiento y compartición de datos basado en servicios en la nube (Figura 18). El proyecto iGreen pretende ampliar y dar cobertura a las actividades de conexión telemática de las máquinas agrícolas, y al tratamiento de datos y ayuda a la decisión. Para ello, aborda la integración en red de forma semi-automática de las actividades de negocio de los agricultores, de las empresas a terceros, así como los fabricantes de maquinaria, fertilizantes y pesticidas en tiempo real. Se basa en sistemas de producción descentralizados y organizados colaborativamente, de manera que pueda aprovecharse el conocimiento del conjunto de participantes.

El funcionamiento colaborativo permite a los usuarios el acceso simultáneo, la participación en discusiones, la realización de votaciones y la anotación o etiquetado (@ver, @ambiguo, @pendiente de revisión).

La base operativa del proyecto iGreen (Figura 19) son dos componentes: los conectores de máquinas (Machine Connectors, MC), y las cajas de red (Online box). Los primeros son responsables de comunicar cada tractor o máquina autopropulsada con la infraestructura de red (M2I) o con otras máquinas (M2M). Para ello dispone de dos elementos clave una base de datos no SQL y un programa residente (MC Daemon). En la base de datos se registran tres tipos de información: tiempo-real (último valor), documentación (histórico completo o logfile) y configuración (nombre y dirección IP). El MC está preparado para almacenar datos hasta alcanzar un punto con acceso gratuito a red de forma parecida a como nuestros móviles se conectan a la red wifi abierta disponible en cada lugar. En otro caso, supongamos que existe un tractor con JDLink y varios alrededor sin él, en este caso el primero recibiría a través de comunicación M2M información de los tractores cercanos con sus implementos y la transmitiría. Por este motivo algunos de los tractores se conciben como mulas de “datos” al acercar la información de varias unidades independientemente del fabricante. El componente OB (onlinebox) permite el acceso a la plataforma vía internet a cualquier usuario.

Uno de los aspectos más importantes en el proyecto iGreen es la capacidad de alineación y agregación.
de datos en las máquinas, especialmente en los tractores, donde se aporta información del bus interno tractor y de ISOBUS (es decir de los implementos), integrando adicionalmente consideraciones sobre la tipología y funcionamiento de los sensores (sensor knowledge) y sobre las tareas o contextos de utilización (domain knowledge). Ver Figura 20.

La integración de datos a bajo nivel, aprovecha la redundancia de sensores, y se realiza mediante un sistema de votación interna, en el que se obtiene un valor de señal y un nivel de confiabilidad. El resultado se incorpora a un módulo de fusión de alto nivel que emplea conocimiento propio de la actividad desarrollada (p.ej. siembra). Todo ello a efectos de disponer de unos datos depurados antes de la transmisión (Figura 21). Este hecho es fundamental pues cada vez más las máquinas se han convertido en auténticas plataformas de recogida de datos geo-espaciales, sistemas de supervisión y de registro complejo (data rich sensing and monitoring system) que en un futuro incorporarán además información social (valores de configuración preferidos por distintos usuarios).

El proyecto iGreen supone el salto de los datos y la información, al conocimiento. Los dos primeros (siendo de gran ayuda) son parciales y están atomizados en los distintos componentes de la cadena de producción, el segundo es global e integrador y se basa en la combinación colaborativa de todos los elementos de la red. Una vez creado el marco de trabajo, es conjeturable que el número de modelos de negocio que queden abarcados y subsumidos no deje de crecer, nutriéndose y nutriendo al conjunto.

BIBLIOGRAFÍA

