Stem CO$_2$ efflux and its contribution to ecosystem CO$_2$ efflux decrease with drought in a Mediterranean forest stand

Jesús Rodríguez-Calcerradaa,*, Nicolas K. Martin-StPaulb, Morine Lempereurc, Jean-Marc Ourcivalc, María del Carmen del Reyc, Richard Joffrec, Serge Rambalc

a Grupo de Investigación en Genética y Fisiología Forestal, E.T.S.I. Montes, Universidad Politécnica de Madrid, Ciudad Universitaria S/N, 28040 Madrid, Spain
b UMR 8079, Ecologie, Systématique & Evolution, Equipe d’Ecophysiologie Végétale, Université Paris-Sud, 91405 Orsay, France
c Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, 1919 Route de Mende, 34293 Montpellier cedex 05, France

A B S T R A C T

The rate of metabolic processes demanding energy in tree stems changes in relation with prevailing climatic conditions. Tree water availability can affect stem respiration through impacts on growth, phloem transport or maintenance of diverse cellular processes, but little is known on this topic. Here we monitored seasonal changes in stem CO$_2$ efflux (F_s), radial growth, sap flow and non-structural carbohydrates in trees of Quercus illex in a Mediterranean forest stand subjected since 2003 to either partial (33%) through-fall exclusion (E) or unchanged throughfall (C). F_s increased exponentially during the day by an effect of temperature, although sap flow attenuated the increase in F_s during the day time. Over the year, F_s also increased exponentially with increasing temperatures, but F_s computed at a standard temperature of 15 °C (F_s^{15}) varied by almost 4-fold among dates. F_s^{15} was the highest after periods of stem growth and decreased as tree water availability decreased, similarly in C and E treatments. The decline in F_s^{15} was not linked to a depletion of soluble sugars, which increased when water stress was higher. The proportion of ecosystem respiration attributed to the stems was highest following stem growth (23.3%) and lowest during the peak of drought (6.5%). High within-year variability in F_s^{15} makes unadvisable to pool annual data of F_s vs. temperature to model F_s at short time scales (hours to months) in Mediterranean-type forest ecosystems. We demonstrate that water availability is an important factor governing stem CO$_2$ efflux and suggest that trees in Mediterranean environments acclimate to seasonal drought by reducing stem respiration. Stem respiratory rates do not seem to change after a long-term increase in drought intensity, however.

1. Introduction

Stem respiration (R_s) is an important component of tree and ecosystem carbon budgets; above ground woody tissues accounting for 5–40% of total annual respiration among different forest ecosystems (Lavigne et al., 1997; Xu et al., 2001; Damesin et al., 2002; Bolstad et al., 2004; Zha et al., 2004; Gaumont-Guay et al., 2006; Acosta et al., 2008; Maseyk et al., 2008; Tang et al., 2008; Wieser et al., 2009; Wang et al., 2010; Guidolotti et al., 2013). R_s and its contribution to ecosystem respiration may vary over time in relation with the sensitivity of stem growth, photosynthesis, carbohydrate transport or nitrogen mobilization to climatic factors such as temperature and rainfall. Given that temperature and drought are projected to increase in many regions of the world (Giorgi, 2006), it is crucial to better assess how they will affect R_s at different temporal scales. Accounting for the influence of temperature and water availability on R_s will improve estimates of ecosystem respiration and partitioning among ecosystem components, but so far the influence of both climatic factors is largely overlooked in the parameterization of most vegetation models (Smith and Dukes, 2013).

The rate of R_s increases as temperatures rise within a day or throughout the year, but it is often ignored that the rate of increase is not necessarily the same between the two time scales when making temporal extrapolations (e.g. Damesin et al., 2002; Tang et al., 2008; Wang et al., 2010; Guidolotti et al., 2013). Most vegetation models make the implicit assumption that maintenance respiration of living cells is a constant fraction of gross photosynthesis or just vary with instantaneous temperature similarly through the
year (Smith and Dukes, 2013). However, the increase in respiration following a long-term rise in temperature is generally lower than that occurring in a shorter period of time because of the thermal acclimation of respiratory metabolism (Atkin and Tjoelker, 2003; Atkin et al., 2005). The depletion of soluble sugars can cause respiration rates to decline in response to sustained hot temperatures, and on the other hand, accumulation of soluble sugars in cold-exposed plants can cause respiration rates to increase (Atkin and Tjoelker, 2003; Atkin et al., 2005; Kruse et al., 2011). This phenomenon of thermal acclimation has been observed in many tree species for leaves and roots, but it has rarely been examined for stems (but see Paembonan et al., 1991; Gansert et al., 2002).

Some field studies have suggested that R_s declines with decreasing soil water content (Levy and Jarvis, 1998; Nepstad et al., 2002; Stahli et al., 2011), but not others (Zach et al., 2010; Maier, 2001; Guidiottii et al., 2013). Discrepancies may arise from the distinct sensitivity of species to water deficit and the lack of studies examining the relationship between tree water availability and R_s. The cessation of growth seems to be the main effect of drought on reducing R_s (Ryan, 1991; Levy and Jarvis, 1998; Nepstad et al., 2002), but drought could also slow the rate of R_s by reducing phloem transport (see Sevanto et al., 2014), the turgor pressure of cells (Saveyn et al., 2007a,b), the availability of respiratory substrates (Wertin and Teskey, 2008; Maier et al., 2010; Maunoury-Danger et al., 2010), or the energy demand of cell maintenance processes if drought sets in progressively (Atkin and Macherei, 2009). In the long run, coordinated anatomical and functional changes at the tree level induced by drought can affect the rates of respiration of woody tissues. For example, R_s can be altered if increased drought affects wood density (Bowman et al., 2005). Besides, the sapwood area to leaf area ratio can increase as trees are exposed to increasingly dry conditions through a decline in supported leaf area (e.g. Martin-StPaul et al., 2013). Such change in biomass partitioning is crucial to reduce the possibility to suffer embolism in the long term, but it also modifies the ratio between photosynthetic and non-photosynthetic tissues, which could eventually affect R_s. Only Nepstad et al. (2002) have investigated how a sustained change in throughfall may affect stem respiratory rates. The authors found no effect of experimental throughfall reduction on stem CO$_2$ efflux in a tropical forest.

Measuring stem CO$_2$ efflux (F_s) is the method most widely used to estimate R_s, although there are some difficulties to unequivocally link both variables. F_s may not fully represent the metabolic activity of stem living tissues, and the diurnal and seasonal variation of different physical and physiological factors may affect F_s, but not R_s. Some of the problems that bias estimation of R_s from F_s are the re-fixation of respiratory CO$_2$ by bark photosynthesis (e.g. Cernusak et al., 2006), resistance to radial CO$_2$ diffusion (e.g. Steppe et al., 2007) and CO$_2$ transport through the xylem stream. Part of the CO$_2$ respired locally can dissolve in xylem sap and flow upward, reducing radial efflux as sap flow rises (e.g. Teskey et al., 2008). However, despite the complex regulation of stem CO$_2$ fluxes (Trumbore et al., 2013), studies that have measured xylem CO$_2$ concentration, and axial, radial and storage CO$_2$ fluxes in tree stems have estimated that F_s accounts for a high proportion of R_s, McGuire and Teskey (2004) estimated that, over 24h, F_s accounted for 77, 45 and 83% of R_s in Fagus grandifolia, Platanus occidentalis and Liquidambar styraciflua, respectively. Teskey and McGuire (2007) later estimated that F_s was approximately 65% of R_s in another experiment with P. occidentalis. The highest contribution of F_s to R_s (88% on average over 24 h) was suggested by Bowman et al. (2005) and Saveyn et al. (2008) for Dacrydium cupressinum and Populus deltoides, respectively. Therefore, F_s could be considered as a reasonable and practical proxy of R_s.

In this experiment we sought to explore how variations in temperature and plant water availability affected F_s at different temporal scales in a mature coppice of Quercus ilex. Specifically, we sought to answer the following questions: (1) is the diel pattern of F_s governed by temperature? (2) How seasonal variations in temperature and soil water availability affect F_s? (3) Does F_s change after a long-term increase in drought intensity? To address these questions we measured diel changes in F_s during a year in trees of Q. ilex equipped to measure sap flux and radial growth continuously. Half of the trees were subjected to partial exclusion of throughfall since 2003, which allowed comparing the effects of drought at different time scales. We measured the concentration of nitrogen and non-structural carbohydrates through time as potential causes of variation of F_s. Finally, we scaled measurements of F_s to the stand level, and compared the importance of considering different temperature response curves of F_s across the year vs a single annual temperature response curve.

2. Materials and methods

2.1. Study area

This study was conducted in a forest stand in the south of France (3°35’ E, 43°44’ N; 270 m a.s.l.). The stand is dominated by Q. ilex, which accounts for more than 90% of tree canopy cover. As of 2009, stem density and basal area were, respectively, 5100 stems ha$^{-1}$ and 27.4 m2 ha$^{-1}$. The high density is related to the full coppicing made in 1942. Climate is Mediterranean. Over the period from 1984 to 2011, mean annual temperature was 13.2°C and mean annual rainfall was 913 mm; during the summer months from June through September mean temperature was 20°C and rainfall was 205 mm. The soil is extremely stony, with 75% of stones in the first 50 cm of soil and 90% below.

2.2. Experimental design and stem CO$_2$ efflux

Measurements of F_s were made at 1.5 m height in five trees of Q. ilex nine times in 2011, at approximately monthly intervals from March to November. From May on, we included five additional trees that have been subjected to a partial exclusion of throughfall since spring 2003. By doing so we aimed at (1) enlarging the range of tree water status during summer, under the expectation that trees subject to throughfall exclusion (E trees) had lower water potential than control (C) trees; and (2) evaluating a long-term acclimation to increased drought (i.e. differences between treatments at a given level of current-year water stress). The throughfall exclusion system is detailed elsewhere (Limousin et al., 2009; Rodríguez-Calcerrada et al., 2011). Briefly, throughfall is intercepted by PVC rain gutters conducing water outside three 100 m2 plots. The ground area covered by the gutters is 33%. This makes for an average reduction in net precipitation to the soil of 27% compared to the C plots, which are also equipped with gutters turned upside down to balance the understory microclimate in both treatments. Throughfall exclusion has translated into higher cumulative water stress in E than C trees over the first 6 years of exclusion. Water stress integral during summer months, a parameter resulting from the summation of daily predawn leaf water potential over this period, was 26% lower in E than C trees (see Rodríguez-Calcerrada et al., 2011). Sampled trees were in the middle of one of the three plots. Mean stem diameter (±SE) at breast height (DBH) at the beginning of the study was 12.8 ± 1.1 cm for E trees and 11.5 ± 0.6 cm for C trees.

Stem CO$_2$ efflux (F_s) was measured in situ using a portable infrared gas analyser (LI-6400, Li-Cor Inc., Lincoln, NE, USA) coupled to a LI-6400-09 soil chamber, following the technique and protocol detailed in Xu et al. (2000). Collars of polyvinyl chloride (PVC) were made to assemble the chamber to the stem; one end of the collar
housing the chamber and the other being shaped as to match the curvature of the stem. Loose bark was removed from the surface of measurement and then collars were attached onto the stems by applying 100% silicone sealant. Measurements were made by drawing the CO$_2$ concentration inside the chamber down and letting it increase from stem CO$_2$ efflux up to an upper concentration limit. The lower and upper CO$_2$ concentration limits were changed through the day so as to bracket the ambient air CO$_2$ concentration, which was on average 380 ppm during the day and 394 ppm during the night. The rate of change of CO$_2$ over time was computed at ambient CO$_2$ concentration in three consecutive measurement cycles. Measurements were made at ambient air temperature and relative humidity. Values of F_s given by the LI-6400 system were re-calculated to account for the volume of the stem collar. To measure this volume, the open end of the PVC collar was closed and water from a graduated cylinder was added through a hole on the top of the collar. A further correction of F_s per unit surface area was applied to account for the curvature of the stem by using the equation given in Xu et al. (2000).

Stem CO$_2$ efflux (F_s) was measured at six, occasionally five times on each date, typically three times from dusk to dawn and three from dawn to afternoon. Stem temperature (T_s) at 2 cm depth was measured every 5 min and averaged at 30-min intervals for each tree, which allowed us to assess the short-term temperature sensitivity of F_s (Q_{10}) through the relationship of F_s and T_s. To test for a possible time-lag between these variables, the natural logarithm of F_s was regressed against T_s at the time of measuring and at 30, 60, 90 and 120 min earlier, and the coefficients of determination were compared (Ryan et al., 1995; Acosta et al., 2008). From the best regression model, we calculated the rate of F_s at the prevailing T_s of each date (i.e. at mean T_s of the week preceding measurements; F_{amb}) and at 15°C (F_{15}), a temperature commonly reported as the transition point (Atkin et al., 2005).

$$Q_{10} = e^{10k},$$

with k being the slope of the linear regression of the natural logarithm of F_s against T_s (Atkin et al., 2005).

2.3. Sap flow

Xylem sap velocity (V_s) was estimated in the same trees sampled for F_s using two 2-cm-long thermal dissipation probes inserted radially into the stem and separated 10 cm along its vertical axis. V_s was calculated from the difference in temperature between the upper probe, which was constantly heated, and the lower probe measuring current wood temperature (Granier, 1985; Granier et al., 1992). Data were taken at 5 min intervals and the 30-min means recorded in CR10X data loggers (Campbell Scientific Ltd.). Both probes were shielded from direct sunlight by aluminum reflectors.

The influence of V_s on F_s was evaluated by examining the relationship of V_s with residuals of F_s, i.e. the ratio of the F_s observed and that predicted from the regression against T_s when V_s was negligible (i.e. $V_s < 0.01$ mm s$^{-1}$; Maier and Clinton, 2006; Hölttä and Kolari, 2009). Furthermore, we compared F_{15} derived from models including either all data or just data at $V_s < 0.01$ mm s$^{-1}$.

2.4. Tree water availability

Shoot water potential was used as a surrogate of tree water availability. One shoot from each tree in which F_s was measured was excised before dawn and immediately measured using a pressure chamber (PMS Instrument Company, Albany, OR, USA).

2.5. Stem radial growth

Stem diameter was continuously monitored with dendrometer bands (ELPA-93, University of Oulu, Finland) in the same trees where F_s and V_s were measured. We computed the rate of diameter increment at each date as the slope of stem diameter vs. time in the one-month period bracketing the measurement of F_s. We considered F_s to potentially reflect both growth and maintenance respiration in a given date when significant diameter increments were registered in that period. The only exception was for the dates of October, when low Ψ_{pd} (n~4 MPa) at the time of F_s measurements likely precluded any growth-related activity preceding subsequent rains and stem growth.

2.6. Chemical analyses

Stem cores were extracted on May, June, late August and October from trees belonging to C and E treatments, although not those in which F_s was measured to avoid any damage in these trees. Samples were taken at midday and brought to the laboratory for being oven-dried at 60°C for three days. Bark was easily separated from sapwood. Then outer bark was removed and the concentration of carbon, nitrogen (N) and total non-structural carbohydrates were separately analyzed in the inner bark and the outer 0.5 cm of sapwood. The concentration of carbon and nitrogen was measured using an elemental analyzer (Flash EA1112 Series, Thermo Finnigan, Italy). The concentration of non-structural carbohydrates was measured in a gas chromatograph coupled to a mass spectrometer (GC-MS; Shimadzu QP2010plus). Soluble sugars (SS) were extracted as described in Göttlicher et al. (2006). The supernatant was dried in vacuo (SpeedVac Plus, Savant Instruments, New-York, USA), and then sugars were derivatized following Pfein (2006). The extraction of starch was made on the pellet resulting from the extraction of sugars. The pellet was washed with 1 ml of 20, 60 and 96% ethanol solutions, dried in vacuo, and then digested at 60°C with 3U of Amyloglucosidase from Rhizopus sp. in sodium acetate buffer. The quantification in the GC-MS was performed relative to internal and external standards; phenyl-β-D-glucopyranoside was the internal standard, and starch, d(-)-glucose, fructose and D(+)-sucrose were the external standards. Sugars were identified by their retention times; the identification was further verified by comparing their mass spectral data with the mass spectral library.

2.7. Sapwood density

Sapwood density was measured in 40 trees from each treatment in April 2011, excluding those sampled for F_s. The dry weight of samples were divided by their volume, which was measured using a density determination kit (Sartorius, YDK01, Germany), based on the principle of Archimedes.

2.8. Upscaling stem CO$_2$ efflux to the stand level

Punctual measurements of F_s expressed as a function of sapwood volume were upscaled to the stand (three 100 m2 plots) and the 24 h of the sampling days using the following equation:

$$F_{s-stand} = \frac{1}{\text{Total plot area}} \sum_{i=1}^{n} \sum_{j=1}^{48} F_{15}^{(i,j)} Q_{10}^{(i,j)-15}/10 \cdot SV,$$

where SV means stem sapwood volume (see below), and subscripts i and j refer to stems in the plots ($i=1,\ldots,n$) and half hourly temperatures ($j=1,\ldots,48$), respectively. To assess the importance
of seasonal shifts in respiratory characteristics \((F_s^{15} \text{ and } Q_{10})\) in modelling \(F_s\)-stand, these parameters were either taken from the temperature response curves of \(F_s\) of each date or the single response curve fitted to all annual data. Furthermore, to improve the accuracy of the up scaling, we examined the relationship between \(F_s\) and diameter in 25 extra trees subjected to normal rainfall during one night in April and August. Stem temperature at measurement time in these trees was calculated by interpolating the 30-min mean of 16 sensors placed in other stems to 1 min intervals. We used the mean \(Q_{10}\) obtained for the trees measured more frequently in the control plot to standardize \(F_s\) rates of the 25 extra trees to a common reference temperature.

The sapwood volume of each stem in the plot was calculated from allometric relationships derived from trees outside the plots. Sapwood area \((SA, \text{ cm}^2)\) was measured in 16 cut trees and expressed as a function of DBH (in cm) as:

\[
SA = \beta_1 DBH^{\alpha_1},
\]

with \(\beta_1 = 0.69\) (95% confidence interval = 0.29–1.08), \(\alpha_1 = 1.89 \pm 0.10, r^2 = 0.97, n = 16\). The allometric relationship between height \((H, \text{ cm})\) and DBH was:

\[
H = \beta_2 DBH^{\alpha_2},
\]

with \(\beta_2 = 128.7\) (95% confidence interval = 121.6–135.8), \(\alpha_2 = 0.57 \pm 0.01, r^2 = 0.69, n = 891\). Thus, assuming constant sapwood depth along the stem, sapwood volume \((\text{cm}^2)\) was calculated as:

\[
SV = SA \cdot H = \beta_1 \beta_2 DBH^{\alpha_1+\alpha_2} = 88.7 DBH^{2.465}.
\]

2.9. Ecosystem respiration

An eddy-covariance flux tower located approximately 100 m away from the C plot provided data of CO2 ecosystem exchange. Technical details on data acquisition, filtering and partitioning of net ecosystem exchange into gross primary production and ecosystem respiration \((R_{eco})\) can be found in Allard et al. (2008). Briefly, data processing and gap-filling was made based on the methodology developed by the FLUXNET global network (http://fluxnet.ornl.gov/). Daytime \(R_{eco}\) was estimated from night-time data using an algorithm including seasonality in temperature sensitivity of respiration \((\text{Reichstein et al., 2005})\). The estimated value of stand-scale stem \(CO_2\) efflux \((F_s^\text{stand})\) was compared with \(R_{eco}\) on the nine days of sampling.

2.10. Statistical analysis

The main effects of date and treatment and the interaction effect between both factors were tested with General Linear Models (GLM). The date was included in models as a within-subjects factor for analysis of variables that were repeatedly measured on the same stem. Means of treatments were further compared by dates when the interaction effect between the independent variable and the factor treatment. Some variables were logarithmically transformed to make relationships linear. Analyses were made with Statistica 7.1 (StatSoft, Tulsa, OK, USA).

3. Results

3.1. Environmental conditions

Air and stem temperatures increased from winter to summer and reached the maximum annual values of 2011 in August (Fig. 1a). The dry period started late because of a rainy month of July and lasted abnormally long due to the absence of significant rainfall until late October, when it rained 578 mm (50% of the annual total) in one month. This caused a clear seasonality in the soil water available to trees \((\Psi_{pd}; \text{ Fig. 1b})\), and resulted in a lack of correlation between temperature and \(\Psi_{pd}\) across measurement dates which was useful in untangling temperature and \(\Psi_{pd}\) effects on seasonal shifts of stem \(CO_2\) efflux \((F_s)\). \(\Psi_{pd}\) was significantly lower for trees subjected to throughfall exclusion, but only from August through October \((P\text{-value of date by treatment interaction effect} < 0.001)\).

3.2. Diurnal changes in stem \(CO_2\) efflux

On each date of measurement, the proportion of variance in \(F_s\) explained by stem temperature \((T_s)\) was low when all trees were pooled together because of between-tree variability in \(F_s\), but it was high when trees were considered individually. Of the 80 individual curves of \(F_s\) and concurrent \(T_s\) fitted across dates and treatments, 73% showed coefficients of determination \((r^2)\) higher than 0.90 and only 6% had \(r^2 < 0.50\). The goodness of fit increased for 38 curves when \(F_s\) was plotted against the \(T_s\) registered 30–120 min earlier, with 80% of curves having \(r^2\) values higher than 0.90 and only 3% (two curves) having \(r^2 < 0.50\). As \(\Psi_{pd}\) decreased over time, there was a trend for more trees to have the best \(r^2\) with any of the stem temperatures previous to rather than concurrent with \(F_s\) (Fig. 2a). Similarly, the average time lag between \(F_s\) and stem temperature

![Fig. 1. Seasonal variation of (a) air temperature (grey line), stem temperature (black line) and rainfall (grey line); and (b) predawn shoot water potential in trees subjected to throughfall exclusion and normal throughfall (black and white symbols, respectively).](image_url)
showed a weak trend to increase with decreasing ψ_{pd} ($r^2 = 0.27$, $n = 9$, $P = 0.156$; Fig. 2b). Concerning variability among individuals, there was a negative correlation between the annual average rate of F_s of a tree and the number of dates in which it exhibited a lagged response of F_s to temperature (Fig. 3a). Further, bigger trees, with higher area-based F_s (see below), had less frequently a lagged response of F_s to temperature (Fig. 3b).

In some dates, more noticeably in April, a hysteretic relationship was observed between F_s and the concurrent stem temperature, so that at a common temperature of 15°C, F_s was higher at times of negligible sap velocity ($\psi_{pd} < 0.01$ mm s$^{-1}$) than at times with appreciable sap flow (supplementary Fig. S1). To explore whether ψ_{pd} modified the relationship between T_s and F_s, we calculated the residuals between the values of F_s observed and those predicted from T_s when $\psi_{pd} < 0.01$ mm s$^{-1}$; then we plotted the residuals against ψ_{pd}. We found that the residuals varied with ψ_{pd}, but in a different way when concomitant stem temperatures were used in the regression models than when the time lag in the response of F_s to temperature was taken into account (Table 1): the ratio between the observed and predicted values tended to decrease with increasing ψ_{pd} within most and across all dates only when concomitant stem temperatures were used in the regression models.

Supplementary Fig. 1 related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.agrformet.2014.04.012.

3.3. Seasonal changes in stem CO$_2$ efflux

Stem CO$_2$ efflux (F_s) increased with increasing T_s throughout the year (Fig. 4). A close look to the annual response curve evidenced differences in the base rate and temperature sensitivity of F_s between dates. To examine seasonal shifts in respiratory features, individual curves for each stem were used to calculate $Q_{10} = F_s^{15}/F_s^{5}$ and F_s^{15} at each date, with the time lag between F_s and T_s being considered for calculations. The results showed that the values of Q_{10} varied over the year without a clear pattern (Fig. 5a). Stem CO$_2$ efflux at the prevailing stem temperature of each date (F_s^{amb}) peaked by the end of June and again, less markedly, by the end of November (Fig. 5b).

There were no differences in F_s^{15} between throughfall exclusion treatments, whether it was expressed per unit of stem surface area or sapwood volume (Fig. 5c). There were no differences in F_s^{15} between throughfall exclusion treatments, whether it was expressed per unit of stem surface area or sapwood volume (Fig. 5c). There were no differences in F_s^{15} between throughfall exclusion treatments, whether it was expressed per unit of stem surface area or sapwood volume (Fig. 5c). There were no differences in F_s^{15} between throughfall exclusion treatments, whether it was expressed per unit of stem surface area or sapwood volume (Fig. 5c). There were no differences in F_s^{15} between throughfall exclusion treatments, whether it was expressed per unit of stem surface area or sapwood volume (Fig. 5c). There were no differences in F_s^{15} between throughfall exclusion treatments, whether it was expressed per unit of stem surface area or sapwood volume (Fig. 5c).

<table>
<thead>
<tr>
<th>Date</th>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>P</td>
</tr>
<tr>
<td>9 March</td>
<td>-0.29</td>
<td>0.173</td>
</tr>
<tr>
<td>20 April</td>
<td>-0.59</td>
<td>0.003</td>
</tr>
<tr>
<td>31 May</td>
<td>-0.45</td>
<td>0.002</td>
</tr>
<tr>
<td>29 June</td>
<td>-0.07</td>
<td>0.6</td>
</tr>
<tr>
<td>2 August</td>
<td>0.28</td>
<td>0.032</td>
</tr>
<tr>
<td>22 August</td>
<td>-0.53</td>
<td><0.001</td>
</tr>
<tr>
<td>23 September</td>
<td>0.21</td>
<td>0.147</td>
</tr>
<tr>
<td>21 October</td>
<td>-0.35</td>
<td>0.006</td>
</tr>
<tr>
<td>24 November</td>
<td>-0.17</td>
<td>0.267</td>
</tr>
<tr>
<td>All data</td>
<td>-0.24</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Significant relationships at $P < 0.05$ are marked in bold characters.

We examined to what extent seasonal variations in F_s^{amb}, F_s^{15} and Q_{10} depended on prevailing temperatures, tree water...
availability, and radial growth rates. There were trends for \(F_{s}^{amb} \) to increase \((r^2: 0.22, n = 16, P = 0.063; \text{not shown})\) and \(F_{s15} \) to decrease \((\text{Fig. 7a})\) as temperatures increased through the year. Tree water availability showed a strong positive relationship with \(F_{s15} \) \((r^2: 0.28, n = 16, P = 0.036; \text{not shown})\), but not with \(Q_{10} \) (not shown). Slopes were not significantly different between treatments at \(P < 0.05 \) on any of those cases.

Across dates, stem growth rate was not correlated with \(F_{s15} \) \((\text{Fig. 7c})\), nor with \(Q_{10} \) or \(F_{s}^{amb} \) (not shown). Stem diameter growth started in the first week of May, by day of year (DOY) 127 ± 5 in C and day 126 ± 8 in E; it was negligible in summer and finished in the first week of November, by DOY 308 ± 2 in C and 311 ± 2 in E \((\text{Fig. 6b})\). Stem diameter growth reached 0.75 ± 0.10 mm in C and 0.57 ± 0.18 mm in E over the year of the experiment. The higher rates of growth took place in May and then again in late October, but were uncoupled from \(F_{s} \) \((\text{Fig. 5a})\). For example, high \(F_{s15} \) in March occurred 60 days before stem increment took place, and the peak of \(F_{s15} \) in late November occurred when stem diameter increment was nil. Across trees, however, there were positive correlations between stem growth rate and \(F_{s15} \) for the dates of May and early August \((\text{Fig. 8})\). The relationship between relative growth rate and \(F_{s15} \) was not significantly different between dates or treatments \((P\text{-value of interaction effects} > 0.10)\), and the linear regression model for all data pooled indicated \(F_{s15} \) at zero growth was 0.70 \(\mu \text{mol C}_2 \text{H}_2 \text{O} \text{mol}^{-1} \text{s}^{-1} \). Assuming \(F_s \approx R_s \), it was estimated that 30% of respiratory costs in May and early August \((i.e. 0.35 \mu \text{mol C}_2 \text{O}_2 \text{m}^{-2} \text{s}^{-1})\) were attributed to growth, after subtracting the value of 0.70 \(\mu \text{mol C}_2 \text{O}_2 \text{m}^{-2} \text{s}^{-1} \) to the mean \(F_{s15} \) observed in these dates. From this relationship, we calculated the growth respiration coefficient to be 0.19 g C respired g \(^{-1}\) C wood formed.

Density of sapwood was 0.87 g cm\(^{-3}\) and average carbon concentration 46.6% in the sapwood and 42.8% in the inner bark, with no differences between treatments. These values were used to convert rates of stem diameter increment into carbon accumulation rates and calculate the growth respiration coefficient.
Fig. 7. Relationship between stem CO₂ efflux at 15 °C (F_s15) and (a) prevailing stem temperature at each measurement date, (b) shoot predawn water potential (ψ_p)), and (c) stem diameter increment rate. Values are means (±2SE) from nine dates and five trees subjected to either normal rainfall (white symbols) or partial throughfall exclusion (black symbols). Values of F_s15 are expressed as a function of stem surface area. Regression models significant at P<0.10 were depicted for all data pooled: (a) y = 0.70 + 0.52x; r²: 0.24, n = 16, P = 0.056; and (b) y = 1.52e^0.24x; r²: 0.78, n = 16, P < 0.001.

From the relationship between relative growth rate and F_s15 in early May and August we could not obtain positive estimations of growth R_s for the rest of dates (assuming F_s = R_s and total R_s = growth R_s + maintenance R_m). Negative estimations of growth R_s were also obtained when considering the average F_s15 in dates with no growth as indicative of maintenance R_m, or after modelling maintenance R_m as function of ψ_p over the same period. Positive estimations of growth R_s were only obtained when the lowest annual value of F_s15 (registered at peak drought) was subtracted to total efflux in the rest of dates. This way, the proportion of R_s attributed to growth processes showed a clear seasonal pattern, being high at the beginning and end of the growing season, and decreasing as drought increased (Supplementary Fig. S2).

Supplementary Fig. II related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.agrformet.2014.04.012.

3.4. Stem chemical composition

The decline in F_s15 through summer and early autumn was not related to low concentration of non-structural carbohydrates (TNC) (Fig. 9). Actually, the concentration of TNC in the sapwood was significantly higher in October than in May in both treatments, being intermediate in the other dates. The concentration of TNC in the inner bark was the highest in October, but only in the case of C trees (P-value of date by treatment interaction effect = 0.028). The seasonal increase in the concentration of TNC was due to that in the concentration of soluble sugars because starch tended to decline over time, statistically significantly in the inner bark. To some extent, variations in starch and soluble sugars across dates were correlated with the water status of trees (Fig. 10a and b). The concentration of starch tended to decline and that of soluble sugars to increase as water stress increased. The concentration of nitrogen (N) in the sapwood, which was half that in the inner bark, was significantly lower in October than in August (P-value of date main effect = 0.037). However, as it occurred for TNC, seasonal changes in F_s15 were not related to variations in N concentration (Fig. 9).

3.5. Upscaling stem CO₂ efflux to the stand level

We found no correlation between stem diameter and surface-area-based F_s15 in April but a positive one in August (Fig. 11). When F_s was expressed per unit of sapwood volume, there was a negative correlation between stem diameter and F_s15 in April, but no correlation in August. Based on these results, we considered the negative relationship between stem diameter and F_s15 in April for modelling stand-scale stem CO₂ efflux (F_s-stand) in spring.

Two models of up-scaling were compared: one in which the values of Q_10 and F_s15 of each date were applied to calculate F_s-stand in the respective dates, and another one in which the values of Q_10 and F_s15 resulting from the single annual temperature response curve were applied to all dates (Table 2). In the first case, F_s-stand was the highest in late June and lower in winter and summer, in a seasonal pattern similar to that of F_s-ann. The proportion of ecosystem respiration (R_eco) that was ascribed to F_s-stand peaked also in late June and declined with increasing water stress (Fig. 10c). The results changed when F_s-stand in each date was modelled from one single value of Q_10 and F_s15: compared to estimations from the previous model, F_s-stand was 0.09–0.13 g C m⁻² soil day⁻¹ higher during the drought period (ψ_p < -1 MPa) and 0.03–0.27 g C m⁻² soil day⁻¹ lower in the rest of dates.

4. Discussion

4.1. Diurnal changes in stem CO₂ efflux

Temperature exerted a strong control on diel shifts of F_s. However, at a given temperature, daytime F_s was lower than the value
expected from the relationship of \(F_s \) vs. \(T_s \) at \(V_s < 0.01 \text{ mm s}^{-1} \). Increasing \(V_s \) caused an increasing depression of daytime \(F_s \) in most dates and, on average, \(F_s \) standardized at \(15^\circ \text{C} (F_s^{15}) \) was 7\% lower when it was estimated from all data than when it was estimated from only data of \(F_s \) vs. \(T_s \) at \(V_s < 0.01 \text{ mm s}^{-1} \). Based on similar findings, Teskey et al. (2008) stated that part of the CO\(_2\) respired by the cells in the stem is transported dissolved in the sap towards the leaves. Here the effect of sap flow in depressing \(F_s \) disappeared or was reversed when the delay in the response of \(F_s \) to temperature was taken into account. The same result was found by Maier and Clinton (2006). By regressing \(F_s \) against preceding stem temperatures we could have artefactually removed the effect of \(V_s \) in transporting respired CO\(_2\) upward. But it could well be the case that CO\(_2\) diffused radially at a slower pace than air and stem temperatures increased during the day. Slow CO\(_2\) radial diffusion can cause a lagged response of \(F_s \) to temperature and be responsible for its diel hysteresis (Ryan et al., 1995). Low \(V_s \) imposed by climatic conditions and small-diameter xylem vessels of \(Q. \) ilicifolia, particularly in this dry region (Villar-Salvador et al., 1997), could make restrictions in CO\(_2\) radial diffusion to be more relevant for diel shifts in \(F_s \) than \(V_s \) itself, as concluded by Cerasoli et al. (2009).

The lag of \(F_s \) relative to stem temperature tended to be longer and occur in more trees as drought increased. A similar result was observed by Savelyn et al. (2007b) in Quercus robur trees subjected to a short cycle of drought. The radial diffusion of CO\(_2\) depends on the gradient of CO\(_2\) concentration between the atmosphere and the stem, and the barriers to CO\(_2\) diffusion imposed by the different stem tissues. Increased lignification and thickening of cells could have increased the resistance to CO\(_2\) diffusion through wood and bark at the end of summer (Stockfors and Linder, 1998; Teskey et al., 2008); however, this would not explain why the number of trees showing a lagged response of \(F_s \) to temperature decreased after autumn rains, since anatomical changes are not rapidly reversible. Savelyn et al. (2007b) found that the onset of drought brought about a decline in the xylem CO\(_2\) concentration, and Teskey and McGuire (2005) found that xylem CO\(_2\) concentration was positively related with \(F_s \). Based on these results we hypothesize that as a consequence of drought, respiration (see next section) and the concentration of CO\(_2\) in the xylem decreased, which slowed down CO\(_2\) accumulation were used to calculate \(F_s^{15} \) for each date. The same result was found by Maier and Clinton (2006). By regressing \(F_s \) against preceding stem temperatures we could have artefactually removed the effect of \(V_s \) in transporting respired CO\(_2\) upward. But it could well be the case that CO\(_2\) diffused radially at a slower pace than air and stem temperatures increased during the day. Slow CO\(_2\) radial diffusion can cause a lagged response of \(F_s \) to temperature and be responsible for its diel hysteresis (Ryan et al., 1995). Low \(V_s \) imposed by climatic conditions and small-diameter xylem vessels of \(Q. \) ilicifolia, particularly in this dry region (Villar-Salvador et al., 1997), could make restrictions in CO\(_2\) radial diffusion to be more relevant for diel shifts in \(F_s \) than \(V_s \) itself, as concluded by Cerasoli et al. (2009).

The lag of \(F_s \) relative to stem temperature tended to be longer and occur in more trees as drought increased. A similar result was observed by Savelyn et al. (2007b) in Quercus robur trees subjected to a short cycle of drought. The radial diffusion of CO\(_2\) depends on the gradient of CO\(_2\) concentration between the atmosphere and the stem, and the barriers to CO\(_2\) diffusion imposed by the different stem tissues. Increased lignification and thickening of cells could have increased the resistance to CO\(_2\) diffusion through wood and bark at the end of summer (Stockfors and Linder, 1998; Teskey et al., 2008); however, this would not explain why the number of trees showing a lagged response of \(F_s \) to temperature decreased after autumn rains, since anatomical changes are not rapidly reversible. Savelyn et al. (2007b) found that the onset of drought brought about a decline in the xylem CO\(_2\) concentration, and Teskey and McGuire (2005) found that xylem CO\(_2\) concentration was positively related with \(F_s \). Based on these results we hypothesize that as a consequence of drought, respiration (see next section) and the concentration of CO\(_2\) in the xylem decreased, which slowed down CO\(_2\) accumulation were used to calculate \(F_s^{15} \) for each date. The same result was found by Maier and Clinton (2006). By regressing \(F_s \) against preceding stem temperatures we could have artefactually removed the effect of \(V_s \) in transporting respired CO\(_2\) upward. But it could well be the case that CO\(_2\) diffused radially at a slower pace than air and stem temperatures increased during the day. Slow CO\(_2\) radial diffusion can cause a lagged response of \(F_s \) to temperature and be responsible for its diel hysteresis (Ryan et al., 1995). Low \(V_s \) imposed by climatic conditions and small-diameter xylem vessels of \(Q. \) ilicifolia, particularly in this dry region (Villar-Salvador et al., 1997), could make restrictions in CO\(_2\) radial diffusion to be more relevant for diel shifts in \(F_s \) than \(V_s \) itself, as concluded by Cerasoli et al. (2009).

The lag of \(F_s \) relative to stem temperature tended to be longer and occur in more trees as drought increased. A similar result was observed by Savelyn et al. (2007b) in Quercus robur trees subjected to a short cycle of drought. The radial diffusion of CO\(_2\) depends on the gradient of CO\(_2\) concentration between the atmosphere and the stem, and the barriers to CO\(_2\) diffusion imposed by the different stem tissues. Increased lignification and thickening of cells could have increased the resistance to CO\(_2\) diffusion through wood and bark at the end of summer (Stockfors and Linder, 1998; Teskey et al., 2008); however, this would not explain why the number of trees showing a lagged response of \(F_s \) to temperature decreased after autumn rains, since anatomical changes are not rapidly reversible. Savelyn et al. (2007b) found that the onset of drought brought about a decline in the xylem CO\(_2\) concentration, and Teskey and McGuire (2005) found that xylem CO\(_2\) concentration was positively related with \(F_s \). Based on these results we hypothesize that as a consequence of drought, respiration (see next section) and the concentration of CO\(_2\) in the xylem decreased, which slowed down CO\(_2\) accumulation were used to calculate \(F_s^{15} \) for each date. The same result was found by Maier and Clinton (2006). By regressing \(F_s \) against preceding stem temperatures we could have artefactually removed the effect of \(V_s \) in transporting respired CO\(_2\) upward. But it could well be the case that CO\(_2\) diffused radially at a slower pace than air and stem temperatures increased during the day. Slow CO\(_2\) radial diffusion can cause a lagged response of \(F_s \) to temperature and be responsible for its diel hysteresis (Ryan et al., 1995). Low \(V_s \) imposed by climatic conditions and small-diameter xylem vessels of \(Q. \) ilicifolia, particularly in this dry region (Villar-Salvador et al., 1997), could make restrictions in CO\(_2\) radial diffusion to be more relevant for diel shifts in \(F_s \) than \(V_s \) itself, as concluded by Cerasoli et al. (2009).

The lag of \(F_s \) relative to stem temperature tended to be longer and occur in more trees as drought increased. A similar result was observed by Savelyn et al. (2007b) in Quercus robur trees subjected to a short cycle of drought. The radial diffusion of CO\(_2\) depends on the gradient of CO\(_2\) concentration between the atmosphere and the stem, and the barriers to CO\(_2\) diffusion imposed by the different stem tissues. Increased lignification and thickening of cells could have increased the resistance to CO\(_2\) diffusion through wood and bark at the end of summer (Stockfors and Linder, 1998; Teskey et al., 2008); however, this would not explain why the number of trees showing a lagged response of \(F_s \) to temperature decreased after autumn rains, since anatomical changes are not rapidly reversible. Savelyn et al. (2007b) found that the onset of drought brought about a decline in the xylem CO\(_2\) concentration, and Teskey and McGuire (2005) found that xylem CO\(_2\) concentration was positively related with \(F_s \). Based on these results we hypothesize that as a consequence of drought, respiration (see next section) and the concentration of CO\(_2\) in the xylem decreased, which slowed down CO\(_2\) accumulation were used to calculate \(F_s^{15} \) for each date. The same result was found by Maier and Clinton (2006).
radial diffusion in our study. Similarly, lower sapwood in smaller stems could make for lower CO₂ concentration and radial diffusion than in bigger ones, which would explain why smaller trees, despite their lower path for CO₂ diffusion, showed more often a lagged response of F_s to temperature than bigger ones.

4.2. Seasonal changes in stem CO₂ efflux

Temperature and water availability affected F_s through the control they exerted on growth phenology and maintenance R_s. Here the estimation of growth and maintenance components of R_s at each date was problematic. One explanation is that in most dates F_s reflected respiratory costs associated to both growth and maintenance, even when significant stem diameter increments were not observed. Long lasting processes related with growth that go undetected by dendrometer bands, such as cell-wall lignification (Sprugel and Benecke, 1991; Gindl et al., 2000), could complicate the separation of growth and maintenance respiratory components (Lavigne et al., 2004). It could also explain why F_s (standardized at 15°C) did not peak at the same time than radial growth. Several authors have discussed high F_s following periods of stem diameter increment reflects the high demand of respiratory products during the processes of cell wall thickening and lignification (Ryan, 1990; Sprugel and Benecke, 1991; Cannel and Thornley, 2000; Edwards and Hanson, 1996; Gaumont-Guay et al., 2006). By assuming that only the lowest value of F_s observed over the year reflected exclusively maintenance costs, the calculated growth component of R_s showed a clear seasonal pattern. However, it indicated growth R_s accounted for 80% of total F_s in March, two months before any change in diameter was registered by dendrometers. Although cambial reactivation has been adduced to explain high F_s before growth is observed (Rambal et al., 2004; Gaumont-Guay et al., 2006; Gruber et al, 2009), it is more likely that maintenance R_s acclimated to low temperatures and caused high rates of F_s in March (Paembonan et al., 1991; Gansert et al., 2002; Atkin and Tjoelker, 2003). A number of mechanisms required to maintain stem functionality during winter might up regulate the respiratory metabolism (Cavender-Bares, 2005). Seasonal acclimation of maintenance R_s to temperature and water stress...
can affect the partitioning of R_s into growth and maintenance in climatic regions with ample seasonal variations in temperature and soil water availability.

Thus, the drought-induced decline in F_s was likely caused by a progressive reduction in the demand of energy from growth and maintenance processes. Low turgor pressure of living cells, reflected in the contraction of stem diameter during the drought (see Zweifel et al., 2006; Fig. 7), could also be one factor underpinning low F_s during this period, as adduced by Saveyn et al. (2007a,b). On the contrary, drought-induced variations in V_s could affect the concentration of oxygen in the stem, but less likely R_s because the threshold for oxygen inhibition of mitochondrial respiration is very low (Spicer and Holbrook, 2007). Data on non-structural carbohydrates (TNC) suggested that soluble sugars (SS) did not limit R_s during the dry period either. As previously found by Larcher and Thomaser-Thin (1988) in Q. ilex, SS tended to increase in dry dates, to some extent at the cost of starch in the inner bark. The rise in the concentration of SS may increase the osmoticum in the cells and help to maintaining phloem carbon transport during the period of higher water stress (Servanto et al., 2014).

4.3. Does stem respiration acclimate to nine years of experimentally increased drought?

One objective of this work was to assess whether a sustained, long-term reduction in rainfall resulted in a change in F_s. Over the course of the experiment, Q_10 and F_s never significantly differed between C and E trees, suggesting R_s remained unaffected by the throughfall exclusion. A similar result was found for leaves of Q. ilex (Rodriguez-Calcerrada et al., 2011), which supports the idea that long-term acclimation to drought relies on the adjustment of morphological traits at the whole-tree level (Martin-StPaul et al., 2013). Only one stem from the E treatment showed increasingly higher F_s rates as the rest as drought progressed, up to 4 times higher at the peak of drought, which made for a non-significant trend of higher F_s in E than C trees at low Ψ |x| . Although E trees achieved lower growth than C trees over the entire year, stem growth rate was similar between treatments around the time of F_s measurements. This and the similar growth respiration coefficient contributed to explain why F_s was the same in C and E trees during the period of stem growth. The similar growth respiration coefficient among treatments (0.19 g C respired g |x| C wood formed, see also Rambal et al. (2004)) is consistent with the observation that construction costs are relatively constant among plants with contrasted growth conditions (Cannell and Thornley, 2000). Furthermore, similar rates of F_s during the period with no radial growth point out to similar metabolic costs to maintaining living stem tissues, which is consistent with the similar wood density and concentrations of non-structural carbohydrates and nitrogen in both treatments.

Two considerations should be borne in mind on the comparison of F_s between C and E trees. Firstly, differences in V_i between treatments were of little relevance for F_s, given the low influence of V_i on F_s. Indeed, the comparison of night-time F_s between treatments led to the same suggestion that R_s was not affected by the throughfall exclusion. Secondly, stem cores were not taken in the trees sampled for F_s-stand that ranged from 33 to 125% during the drought period, and an underestimation of F_s-stand from 8 to 48% in the rest of dates. The data suggest that F_s-stand and its contribution to R_co and net carbon exchange should be estimated after accounting for seasonal changes in respiratory characteristics, particularly in Mediterranean-type forest ecosystems.

Some assumptions were made on the scaling up that can be further refined. First, we scaled up rates of F_s at DBH to the entire stem, while it has been reported that specific rates of respiration vary along the stem (e.g. Damesin et al., 2002; Prunet et al., 2002). Second, in April, sapwood-based F_s rates were negatively correlated with stem diameter – suggesting that smaller and perhaps younger stems had a higher cambial activity than larger ones (Bosc et al., 2003). Based on this result, F_s |x| was considered to vary between trees as a function of their DBH in spring (i.e. both in April and May). Higher surface-area-based F_s of bigger than smaller stems in summer disappeared when F_s was expressed per sapwood volume. This indicated F_s in summer was mostly dependent on stem sapwood volume (Edwards and Hanson, 1996), and that the proportion of living cells in the xylem was rather constant across the observed range of stem diameter.

4.4. Stand-level stem CO_2 efflux

The average release of CO_2 from stems (F_s-stand) amounted to 0.36 g C m |x| 2 soil day |x| 1 and was equivalent to 13% of all CO_2 released from the ecosystem; to the best of our knowledge this is the first estimate for a Mediterranean evergreen broadleaf forest. The contribution of F_s-stand to ecosystem CO_2 efflux (R_co) varied from 6.5 to 23.3% over the year. It was the highest after spring radial growth and decreased with increasing water stress, probably because of lower sensitivity of R_s to fluctuations in topsoil moisture than the rest of ecosystem components. Soil respiration is the most important source of CO_2 in the ecosystem and is very sensitive to rain pulses (Joffre et al., 2003; Allard et al., 2008). In fact, in forests where trees have access to deep soil water, soil respiration seems more sensitive to summer rainfall shortage and small rain events than ground level respiration (Reichstein et al., 2002; Joffre et al., 2003; Wieser et al., 2009; Guidolotti et al., 2013). Thus, frequent events of rainfall during summer probably boosted soil respiration and thus R_co, but had a lower effect on R_s.

Respiration of ecosystem components at fine time scales (minutes to days) is in many cases estimated from annual curves of respiration vs. temperature. However, the base rate of respiration and its temperature sensitivity can change over the year. Here, disregarding the seasonal variation of F_s |x| that took place mainly in relation to tree water availability led to an overestimation of F_s-stand that ranged from 33 to 125% during the drought period, and an underestimation of F_s-stand from 8 to 48% in the rest of dates. The data suggest that F_s-stand and its contribution to R_co and net carbon exchange should be estimated after accounting for seasonal changes in respiratory characteristics, particularly in Mediterranean-type forest ecosystems.

4.5. Conclusions

Stem CO_2 efflux varied seasonally, not in relation with sap flow or the availability of carbohydrates, but likely in relation with a temperature- and drought-induced variation in the demand of respiratory products. This calls to be cautious when extrapolating modelled rates of stem CO_2 efflux from annual temperature response curves to shorter time scales. The strong relationship between seasonal changes in tree water availability and stem CO_2 efflux could be useful for modelling purposes in ecosystems with no seasonality in stem growth. Nine years of continuous throughfall exclusion did not affect stem CO_2 efflux and its sensitivity to environmental factors, which suggest there was no acclimation of stem respiration to a long-term increase in drought intensity.

Conflict of interest

The authors declare no conflict of interest in relation with this work.

