Mechanical characterisation of tungsten-1wt.% yttrium oxide as a function of temperature and atmosphere

Palacios García, Teresa; Jiménez, A.; Muñoz, A.; Monge, M.A.; Ballesteros, C. y Pastor Caño, Jose Ignacio (2014). Mechanical characterisation of tungsten-1wt.% yttrium oxide as a function of temperature and atmosphere. "Journal of Nuclear Materials", v. 454 ; pp. 455-461. ISSN 0022-3115. https://doi.org/10.1016/j.jnucmat.2014.09.012.

Descripción

Título: Mechanical characterisation of tungsten-1wt.% yttrium oxide as a function of temperature and atmosphere
Autor/es:
  • Palacios García, Teresa
  • Jiménez, A.
  • Muñoz, A.
  • Monge, M.A.
  • Ballesteros, C.
  • Pastor Caño, Jose Ignacio
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Nuclear Materials
Fecha: Noviembre 2014
Volumen: 454
Materias:
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Ciencia de los Materiales
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

This study evaluates the mechanical behaviour of an Y2O3-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides formed

Más información

ID de Registro: 35446
Identificador DC: http://oa.upm.es/35446/
Identificador OAI: oai:oa.upm.es:35446
Identificador DOI: 10.1016/j.jnucmat.2014.09.012
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0022311514006023
Depositado por: Memoria Investigacion
Depositado el: 28 May 2015 18:02
Ultima Modificación: 28 May 2015 18:02
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM