Identification of pore spaces in 3D CT soil images using a PFCM partitional clustering

Ojeda Magaña, Benjamín; Quintanilla Domínguez, Joel; Tarquis Alfonso, Ana Maria; Tarquis Alfonso, Ana Maria; Gómez Barba, Leopoldo y Andina de la Fuente, Diego (2014). Identification of pore spaces in 3D CT soil images using a PFCM partitional clustering. "Geoderma", v. 217 ; pp. 90-101. ISSN 0016-7061. https://doi.org/10.1016/j.geoderma.2013.11.005.

Descripción

Título: Identification of pore spaces in 3D CT soil images using a PFCM partitional clustering
Autor/es:
  • Ojeda Magaña, Benjamín
  • Quintanilla Domínguez, Joel
  • Tarquis Alfonso, Ana Maria
  • Tarquis Alfonso, Ana Maria
  • Gómez Barba, Leopoldo
  • Andina de la Fuente, Diego
Tipo de Documento: Artículo
Título de Revista/Publicación: Geoderma
Fecha: Abril 2014
Volumen: 217
Materias:
Palabras Clave Informales: Soil structure; Soil morphology; Image sub-segmentation; PFCM clustering
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (6MB) | Vista Previa

Resumen

Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images.

Más información

ID de Registro: 35661
Identificador DC: http://oa.upm.es/35661/
Identificador OAI: oai:oa.upm.es:35661
Identificador DOI: 10.1016/j.geoderma.2013.11.005
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0016706113004126
Depositado por: Memoria Investigacion
Depositado el: 22 Jun 2015 16:26
Ultima Modificación: 22 Jun 2015 16:26
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM