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ABSTRACT 

In this work, we present a novel imaging design formed by two optical surfaces with rotational symmetry. In these 
designs, both object and image shapes are given but mapping from object to image is obtained through the design 
process. In the examples considered, the image from a planar object surface is virtual and located at infinity and is seen 
from a known pupil, which can emulate a human eye. 

The differential equation method is used to provide single optical surface imaging designs by considering the local 
properties of the imaging surface and the wavefronts. In the first introductory part, both the rotational symmetrical and 
the freeform single surface imaging designs are presented using the differential equation method. In these designs, not 
only the mapping is obtained in the design process, but also the shape of the object is found. 

In the second part, the method is extended to two surface designs with rotational symmetry and the astigmatism of the 
image has been studied. By adding one more optical surface to the system, the shape of the rotational symmetrical object 
can be designed while controlling the tangential rays and sagittal rays simultaneously. As a result, designs without 
astigmatism (at the small pupil limit) on a planar object surface have been obtained. 
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1. INTRODUCTION  
The first graphics-driven head-mounted display (HMD) was developed by Ivan Sutherland in the 1960s1.  This display 
system is supposed to be worn on the human head, providing three-dimensional interactive displays while not limiting 
not only the free motion of the head, but also the potential body movement. Considering the fact that the humans have 
not evolved to wear heavy devices on the head, the lightweight and ergonomics have been the important criteria for the 
design of HMD2.  

A simple optical system, like a single reflective system or a single lens system with double surfaces, can help to fulfill 
the design criteria. Aspheric and freeform optics are required to provide good performance of the optical system. There 
are various approaches to generate aspheric and freeform optic profiles: Simultaneous Multiple Surface (SMS) method3,4, 
differential equations based on surface slopes5, analytical solutions to surface profiles6,7, etc. These aspheric and 
freeform optics can be fitted with a series of representation forms8,9 for potential optimization or manufacturing process. 

We have presented a differential equation based single surface imaging design approach in previous papers10,11. This 
approach considers both the tangential and sagittal ray propagation and can readily provide anastigmatic optical surface 
profile. The image surface and the mapping from the object to the image are obtained after the design. The anastigmatic 
design obtained acts as a good starting point for the final solution after subsequent optimization. 

In this paper, we extend the former single surface optical design approach to a double surface optical design approach. 
The one more optical surface added can provide additional freedom to the design. The shape of the image surface can be 
controlled with this additional freedom. Thus, a double surface image design with a flat image surface is obtained. The 
mapping from the object to the image is obtained after the design. 

2. SINGLE SURFACE DESIGNS 
The design approach presented in this section is for 3D rotational designs and 3D freeform designs. Due to the 
reversibility of optical path, the design can be considered as a design of a single optical surface forming a mapping of the 
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rays from the source, which is the pupil, with angle θ respected to the optical axis to the image plane, which is the object, 
at the point x(θ). The sketch map of the refractive and reflective design is shown in Fig. 1. 

 
Figure 1. Sketch map of the refractive design (a) and the reflective design (b) 

The generalized ray tracing can be expressed by local properties of the surface and wavefronts such as slopes and 
curvatures by the following equations known as Coddington equations12: 
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Where n denotes the refractive index, ρ denotes the radius of curvature and θ denotes the angle between the ray and the 
normal of the surface. Subscripts i, o and s refer to input, output and surface. Subscripts q and p refer to the plane of 
incidence and the one rotated 90 degrees about the incident ray respectively.  

2.1 3D rotational designs 

Considering an infinitesimal part in polar coordinate (r(α), α), we can derive the slope and the radius of curvature in the 
plane of incidence in differential form as follows: 
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For designs with rotational symmetry, the q and p directions in Eq. 1 are tangential and sagittal directions and the radius 
of curvature in the rotated plane about the incident ray is the function of the slope in the plane of incidence, thus can be 
expressed as Eq. 3. 

ρ p = ρ p r,α , dr
dα
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      (3) 

Combining the above formulations, we can derive a second-order ordinary differential equation. The numerical solution 
from specific boundary condition represents a specific 3D rotational optical surface profile. We have derived 
anastigmatic designs for plane input wavefront shown in Fig. 2. 
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Figure 2. The reflective anastigmatic rotational design (a) and the refractive anastigmatic rotational design (b). The image 

surface profile is calculated after the design of the optical surface 

The image surface and the mapping from object to image are obtained from the optical surface profile. 

2.2 3D freeform designs 

For 3D designs without rotational symmetry in spherical coordinates (r(α, β), α, β), the curvature in the rotated plane 
about the incident ray is no longer the function of the slope in the plane of incidence.  

In differential geometry, the two principal radii of curvature can be given as the two solutions of the following equation13: 

EG − F2( )ρ 2 − EN +GL − 2FM( )ρ + LN − M 2 = 0     (4) 

In this equation, E, F, G are the first fundamental quantities which are functions of r, α, β, ∂r/∂α and ∂r/∂β and L, N, M 
the second fundamental quantities which are functions of ∂2r/∂α2, ∂2r/∂β2 and ∂r2/∂α∂β besides r, α, β, ∂r/∂α and ∂r/∂β. 
We can derive a partial differential equation by substituting the two solutions into Eq. 1. Similar to rotational cases, the 
numerical solution from specific boundary condition represents specific 3D freeform optical surface profile.  

For designs with plane input wavefront and spherical output wavefront condition, we can derive a second order 
hyperbolic partial differential equation. 
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We have derived a 3D freeform reflective anastigmatic design shown in Fig. 3. The boundary condition is chosen that 
the initial curve of the image surface is a straight line, so that the image surface obtained after the design is much closer 
to a flat plane, which is more applicable in real applications. The mapping from object to image is obtained from the 
optical surface profile. 

 
Figure 3. 3D freeform reflective anastigmatic design 

This approach is also applicable for refractive designs. 
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3. DOUBLE SURFACE DESIGN  
The differential equation presented in section 2 removes the freedom from controlling the mapping from the object to the 
image, and uses this freedom to control the sagittal ray propagation. But the single optical surface is incapable of 
providing additional freedom to control the mapping or the shape of the image surface. Even in 3D freeform designs in 
section 2, the appropriate choice of the boundary condition can only provide an image surface closer to a flat one (Fig, 4). 

 

Figure 4. The flat image plane and the freeform image surface  

In some cases, more freedom is required to control the mapping or the shape of the image surface. Thus we have 
extended the former differential equation method to the double surface design with rotational symmetry. 

We consider the refractive double surface optical system with rotational symmetry which has a flat image plane as 
shown in Fig. 5. 

 
Figure 5. Sketch map of the double surface optical system with flat image plane  

The first and the second optical surfaces are expressed by (rf(α), α) and (rs(β), β) respectively. 

The Eq. 1 describes the ray propagation in both the first surface and the second surface as shown in Eq. 6:  
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Where 2 and 3 refer to the wavefronts after the first surface and the wavefronts before the second surface respectively.  

Between the two surfaces, the transformation of the radii of curvature of the wavefronts are shown in Eq. 7: 

ρ 2q−D = ρ 3q , 2 3p pDρ ρ− =      (7) 

The parameter D is the distance between the two points on the two surfaces where the refraction occurs. 

The Eq. 7 unifies the two pairs of equations in Eq. 6 describing the ray propagation on the first and the second surface. 
Thus we can derive equations to describe the ray propagation for the entire system (Eq. 8). 
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For anastigmatic designs, the output wavefronts are spherical, i.e., ρ4q=ρ4p in Eq. 8. This condition can be expressed by 
the following equation: 

2
1 4 1

2
1 4 2 322 3 1 4 2 3

2
22 2

2 2 1 12 2 1 1

cos
cos coscos cos cos

cos
cos coscos cos

fp spfq sq

n n
n nnn n n

nn DD n nn n

θ
θ θθ θ θ

ρ ρθ ρ ρ
θ θθ θ

=
−− ++

⋅ −− −−

 (9) 

The flat image plane condition gives the values of the radii of curvature of the outgoing spherical wavefronts. 
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The two optical surfaces are connected by the law of sines: 
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In Eq. 9, 10 and 11: 
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2θ  and 4θ  can be derived by 1θ  and 3θ  using Snell´s law. 

Substituting Eq. 11 into Eq. 9 and Eq. 10 and applying the expressions shown in Eq. 12, we can derive two implicit 
second order ordinary differential equations with dependent variables rf and rs in functions of one single independent 
variable α. The numerical solution from specific boundary condition represents specific 3D rotational optical surface 
profiles. 

4. DOUBLE SURFACE DESIGN EXAMPLE  
We have derived a refractive anastigmatic design with a flat image plane using the approach presented in section 3. The 
input rays come from the origin with input angle α respect to the optical axis. For every input angle, the input wavefront 
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is a plane wavefront, thus the parameters ρ1q=ρ1p=∞. The vertex of the first optical surface is on the optical axis and is 
3.15 from the origin; the vertex of the second optical surface is also on the optical axis and is 4.15 from the origin; the 
image plane is perpendicular to the optical axis and is set to be 8.5 from the origin. All the dimensions are of arbitrary 
units. The material between the two surfaces is PMMA and the rest parts are vacuum with refractive index of 1. The 
whole system is rotationally symmetrical about the optical axis. 

The numerical solution of the implicit second order ODE from conditions listed above represents a lens profile shown in 
Fig. 6.  

 
Figure. 6 The refractive double surface anastigmatic design with flat image plane 

The tangential image plane and sagittal image plane are calculated separately from the lens profile. The difference 
between the two image planes is evaluated by the difference of the radii of curvature of the tangential and sagittal output 
wavefronts (Fig. 7).  

 
Figure. 7 Difference between two radii of curvature of the output wavefronts in percentage of the average value 

The maximum difference is less than 0.002% of the average value, which indicates that the design is anastigmatic. The 
mapping Y(α) from the origin to the image is obtained from the lens profile. 

5. CONCLUSION 
The Coddington equations describe both the tangential and sagittal ray propagations. Based on these equations, the ODE 
and PDE design approaches provide the freedom to control the tangential and sagittal ray propagations simultaneously 
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during optical designs. The single surface anastigmatic designs can be readily obtained but the mapping from object to 
image and the shape of the image surface is uncontrollable. 

The single surface differential approach has been extended to double surface designs which provide more freedom to 
control the mapping or the shape of the image surface. Applying this extended approach, a refractive double surface 
design with flat image plane has been derived. The result of the verification of the design has indicated that the design is 
anastigmatic as the design goal. This approach is also applicable for reflective designs. 
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