Dinámica no lineal de sistemas multicuerpo flexibles mediante algoritmos conservativos

García Orden, Juan Carlos (1999). Dinámica no lineal de sistemas multicuerpo flexibles mediante algoritmos conservativos. Tesis (Doctoral), E.T.S.I. Caminos, Canales y Puertos (UPM).

Descripción

Título: Dinámica no lineal de sistemas multicuerpo flexibles mediante algoritmos conservativos
Autor/es:
  • García Orden, Juan Carlos
Director/es:
  • Goicolea Ruigómez, José María
Tipo de Documento: Tesis (Doctoral)
Fecha: 1999
Materias:
Palabras Clave Informales: INGENIERIA ESTRUCTURAL; SIMULACION; DISEÑO DE MAQUINAS; MECANICA DE SOLIDOS; TECNOLOGIA DE LA CONSTRUCCION; CIENCIAS TECNOLOGICAS; CIENCIA DE LOS ORDENADORES; MATEMATICAS; INGENIERIA Y TECNOLOGIA MECANICAS; MECANICA; FISICA;
Escuela: E.T.S.I. Caminos, Canales y Puertos (UPM)
Departamento: Mecánica de Medios Continuos y Teoría de Estructuras
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (4MB) | Vista Previa

Resumen

Esta tesis se centra en el estudio de la dinámica no lineal de sistemas multicuerpo. Se entiende como tales los compuestos por sólidos rígidos y deformables conectados mediante distintos tipos de uniones y con elementos discretos activos como muelles y amortiguadores. Se considera que los cuerpos deformables pueden experimentar grandes desplazamientos y deformaciones y están representados por modelos de tipo hiperelástico. El medio continuo de cada sólido deformable se discretiza mediante técnicas de elementos finitos. La configuración del sistema se parametriza mediante las coordenadas cartesianas de puntos que constituyen un conjunto de parámetros dependientes y las restricciones se imponen mediante el método de penalización. Este procedimiento permite representar de una forma simple y sistemática, la dinámica del sistema global mediante un único conjunto de ecuaciones diferenciales ordinarias. Se propone para la integración temporal del movimiento un método del tipo energía-momento que conserva de forma exacta la cantidad de movimiento, el momento cinético y la energía total en sistemas conservativos. Este método proporciona una gran fiabilidad a los resultados calculados en simulaciones de larga duración, y además supera los problemas tradicionalmente asociados al empleo del método de penalización, concretamente el mal condicionamiento numérico. El resultado es un método robusto y fiable que puede ser aplicado eficazmente en una amplia gama de sistemas multicuerpo flexibles de aplicación práctica.

Más información

ID de Registro: 361
Identificador DC: http://oa.upm.es/361/
Identificador OAI: oai:oa.upm.es:361
Depositado por: Archivo Digital UPM
Depositado el: 30 May 2007
Ultima Modificación: 20 Abr 2016 06:15
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM