variables: número de raíces principales (nRP), número de raíces secundarias (nRS), suma de las longitudes de todas las raíces (L), diámetro medio de cada raíz (D), superficie total (S) y volumen total (V) de cada raíz.

RESULTADOS Y CONCLUSIONES
Los valores de todas las variables fueron superiores en el montaje con papel Whatman, seguido de las cámaras con Termita y finalmente las cámaras con gel, excepto para el nRP que fueron más altos en estas últimas. Con el fin de determinar si las variables en cada uno de los genotipos, y en el conjunto de todos ellos, tienden a comportarse de forma similar en cada uno de los tres métodos, se han calculado las correlaciones entre los tres montajes tomando, para cada uno de las variables de cada genotipo, el valor medio de las cuatro réplicas. En todos los casos se han obtenido correlaciones altas y significativas (p<0.05), lo que indica que las variables se comportan de manera similar en los tres tipos de montaje. Considerando todos los genotipos y todos los experimentos realizados, se ha llevado a cabo un análisis de varianza (ANOVA) para cada una de las variables, teniendo en cuenta los factores: réplica, especie, tipo de montaje y genotipo. A pesar de ello y con el fin de normalizar las distribuciones, los datos se transformaron mediante la raíz cuadrada. No se observaron diferencias estadísticamente significativas entre réplicas. Cuando se considera el factor especie, B. distachyon presenta diferencias con respecto a los dos o tres especies para las variables: nRS, LS, S y D. En el caso de las variables nRP y V, los tres especies muestran siempre las mismas diferencias significativas. Tomando como factor el tipo de montaje, hay diferencias significativas entre los tres en el caso de las variables: nRS y LS. En las variables restantes, las diferencias se dan entre el montaje en cámaras de gel y los otros dos. Finalmente, los ANOVA tomando como factor el genotipo indican que, los de B. distachyon y de B. hybridum, tienen similitud para la mayor parte de las variables. Sin embargo, los cuatro genotipos de B. stacei tienen una mayor variabilidad, presentando algunos de ellos diferencias para todas las variables, excepto para el diámetro medio de las raíces. En conclusión, el desarrollo de las raíces puede ser analizado con cualquiera de las tres metodologías propuestas, detectándose clara diferencias interspecíficas y en algunos casos también intraspecíficas para algunos caracteres de su sistema radicular.

AGRADECIMIENTOS
Este trabajo forma parte del proyecto AGL2012-34052 (MINECO).

REFERENCIAS

AMPLIACIÓN DE LA VARIABILIDAD GENÉTICA
DE LA COLECCIÓN DE AEGILOPS CONSERVADA EN EL CRF-INIA
Y CARACTERIZACIÓN MOLECULAR DE LAS ESPECIES NEGLECTA Y GENICULATA

P. Giráldez, E. Benavente, R. Hijo, M. Rodríguez-Quijano, E. Casadoosa, J. Sillero, J. del Moral, M. Ruiz
1 Departamento de Biología Vegetal, ETSIA, 28040 Madrid
2 Centro Nacional de Recursos Genéticos, INIA, 28860 Ameixoeira
3 Dep. Fisiología, Centro La Orde de Valdeorras, 66071 Pontevedra
4 IFAPA, Centro Almería del Obispo, 14801 Córdoba

Palabras clave: geniculata, neglecta, triuncialis, venticosa, marcadores moleculares

INTRODUCCIÓN
La diversidad genética de las especies silvestres afines a las plantas cultivadas no está bien representada en las colecciones de bancos de germoplasma. Dentro del género Aegilops, las especies Aegilops geniculata Roth, Aegilops neglectaReq. Ex Bertol, Aegilops venticosa Trtch. y Aegilops triuncialis L. son las más extendidas en la Península Ibérica (Saggeren, 1994). Está demostrado que consti- tuyen un extraordinario acervo genético de resistencias a factores bióticos y abióticos que son transmisibles al trigo (Gill et al., 1985). En 2010, en el CRF-INIA se conservan siete 444 ace- siones de estas especies, y algunas zonas de España no estaban representadas. Existe además una problemática en la clasificación de material recolectado de las especies geniculata (2n=4x) y neglecta (que engloba formas 2n=4x y 2n=6x), ya que presentan caracteres morfológicos muy parciales y un amplio rango de variación internespecífica (Zaharieva y Monovescu, 2006). La forma hexa- ploide de neglecta corresponde en realidad a la especie Ae. recta (sínónimo de Ae. triuncitalis-6x). El grado parecido entre los genes constituyentes de estas especies, unido al considerable grado de polimorfismo que presentan, explica la dificultad de encontrar marcadores nucleares que ayuden a su correcta discriminación. Para reducir la complejidad, la búsqueda de marcadores fuc- sanes puede ser realizada en ADN extranuclear, ya que el citoplasma tiene distintos orígenes en estas especies.

Con el objetivo de incrementar la representación de la variabilidad genética de las especies Aegilops, Aegilops neglecta, Aegilops venticosa y Aegilops triuncialis que han evolucionado en España, y diferenciando correctamente las especies neglecta y geniculata se ha desarrollado este proyecto (RF2011-00018) parte de cuyos resultados se exponen en este trabajo.

MATERIAL Y MÉTODOS
La plantificación de invernaderos y recolección de poblaciones se realizó analizando la distri- bución geográfica de las acepciones conservadas en el CRF-INIA y el Sistema de información sobre plantas de España del proyecto Anthos (http://www.anthos.es). Las expediciones se realiza- ron en la zona oeste, sur y centro de España.

Para el desarrollo de marcadores moleculares, es indispensable disponer de un conjunto de genotipos bien clasificados, por lo que se comprobó la correcta asignación taxonómica de un conjunto de accesiones de Aegilops neglecta y Aegilops geniculata obtenidos de distintos bancos de germoplasma mediante análisis cromosómico y técnicas de hibridación in situ con ADN ribosómico (Badanell et al., 2004).

Para el análisis molecular, se seleccionaron los genes cloroplasticos trnT, trnL, trnL, trnK, trnY y trnP, por ser los que estaban más representados en las secuencias de Aegilops neglecta y de
Ae. geniculata depositadas en la base de datos del NCBI (http://www.ncbi.nlm.nih.gov/). Se diseñaron una serie de cebadores para amplificar regiones presumiblemente polimórficas entre ambas especies.

RESULTADOS Y DISCUSIÓN

Se han recolectado 248 poblaciones de las cuatro especies en 13 provincias de la zona oeste, sur y centro. Además, se han repatriado 43 poblaciones que estaban conservadas en Bancos extranjeros. Esto supone que la colección ha triplicado su tamaño, y que zonas no representadas hasta ahora han sido incluidas. Algunas de estas poblaciones se han empezado a multiplicar y caracterizar, y ya están disponibles para su utilización.

El análisis citogenético reveló varios errores en la clasificación de las accesiones de los bancos de germoplasma. Una elevada proporción de las accesiones catalogadas como Ae. neglecta, correspondían en realidad a Ae. geniculata o a la especie hexaploide Ae. recta (Ae. neglecta-6x). Además, algunas accesiones clasificadas como Ae. geniculata pertenecen a la especie hexaploide Ae. recta. Estos resultados apoyan la necesidad de desarrollar marcadores moleculares que ayuden, de una forma sencilla, a la correcta clasificación taxonómica de estas especies. La caracterización citogenética ha permitido tener un conjunto de materiales inexactamente clasificados en el que poder abordar el estudio molecular. En este conjunto se incluyen 5 genotipos de Ae. recta (Ae. neglecta-6x), 10 genotipos de Ae. neglecta (4x), y 8 genotipos de Ae. geniculata (4x).

El análisis de las secuencias amplificadas a partir de los genes cloroplasticos ha revelado la existencia de un gran número de polimorfismos, mayoritariamente intraespecíficos y de tipo SNP, pero también se han detectado algunos SNPs especie-específicos. Estos últimos se están corroborando, con el objetivo de desarrollar marcadores CAPs (Cleaved amplified polymorphic sequence) para aplicarlos al conjunto de poblaciones de Ae. geniculata y Ae. neglecta disponibles en el proyecto.

AGRADECIMIENTOS

Proyecto RF2011-00018 del INIA y fondos FEDER.

REFERENCIAS


