remedia
WELCOME TO
valencia
10 | 11 abril 2014
remedia
III workshop
Consolidando la red
LIBRO DE RESÚMENES
www.remedial2014.org
Colección Congresos

© Fernando Estellés Barber (editor)

© 2014, de la presente edición: Editorial Universitat Politècnica de València
www.lalibreria.upv.es / Ref.: 6163_01_01_01

Queda prohibida la reproducción, la distribución, la comercialización, la transformación y, en general, cualquier otra forma de explotación, por cualquier procedimiento, de la totalidad o de cualquier parte de esta obra sin autorización expresa y por escrito de los autores.
ANIMAL FEEDING STRATEGIES TO REDUCE N₂O AND NH₃ EMISSION FROM SURFACE-APPLIED PIG SLURRY TO A GRASSLAND SOIL

Amanda Beccacorda, Laura Sánchez-Martínb, Carlos de Blasa, Paloma García Rebollarb, Mark Theobaldc, Fernando Estellésc, Antonio Vallecio, Alberto Sanz-Cobef

dDepartamento de Producción Animal. ETSI Agrónomos. UPM
bDepartamento de Química y Análisis Agrícola. ETSI Agrónomos. UPM
cDepartamento de Ciencia Animal. Universidad Politécnica de Valencia.

1. Introduction
It is estimated that N losses from fertilized crops range between 50-70%, depending on management practices, climate and soil conditions. Ammonia (NH₃) emissions following land application of animal manures give rise to a significant proportion of the total NH₃ emissions from agricultural sources (Misselbrook et al., 2002). Additionally, the increased amount of N and soluble organic carbon (SOC), associated with the application of slurries, may favour the emission of nitrous oxide (N₂O) and also affect the balance of other greenhouse gases (GHG) such as carbon dioxide (CO₂) (e.g. Amon et al., 2006). A large effort has been made in order to achieve a cost-effective reduction of N losses trying to minimize pollution swapping. In recent years, animal feeding strategies have been developed aiming to increase the N use efficiency of agrosystems (Arriga et al., 2010). Most of this research has focused on NH₃ abatement but little is known about the combined effect of animal feeding on NH₃ and GHG emissions following slurry application. The main objective of this study was to evaluate the effect of five different feeds on the emissions of NH₃, N₂O and CO₂ from a grassland soil fertilized with pig slurries.

2. Materials and methods
A greenhouse experiment was carried out in the ETSI Agrónomos of the Technical University of Madrid between 29th November and 8th January. Five types of pig slurry (Table 1) were surface-applied in a randomized complete plot design with three replicates to a grassland (Lolium perenne) soil (Calcic Haploxerepts), previously collected from the field, air dried and sieved (2 mm). This soil has a clayey loam texture (28% clay, 17% silt, and 55% sand) in the upper horizon (0-20 cm). A soil with no fertilizer applied was used as a control. Samples of GHG were taken following the procedure of Abalos et al. (2013) from a closed static chamber (7.96 l). Concentrations of GHG were determined by gas chromatography. Ammonia emissions were measured by a dynamic chamber connected to a chemiluminescence analyser.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N applied (kg N ha⁻¹)</th>
<th>Total N (g kg⁻¹)</th>
<th>Ammonium N (g kg⁻¹)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSControl</td>
<td>100</td>
<td>9.91</td>
<td>5.32</td>
<td>8.89</td>
</tr>
<tr>
<td>Ga 7.5</td>
<td>100</td>
<td>7.97</td>
<td>3.75</td>
<td>8.38</td>
</tr>
<tr>
<td>Ga 15</td>
<td>100</td>
<td>9.72</td>
<td>4.35</td>
<td>8.2</td>
</tr>
<tr>
<td>Pn 7.5</td>
<td>100</td>
<td>8.71</td>
<td>4.53</td>
<td>7.93</td>
</tr>
<tr>
<td>Pn 15</td>
<td>100</td>
<td>7.84</td>
<td>3.41</td>
<td>8.08</td>
</tr>
</tbody>
</table>

*PSControl* refers to a slurry coming from pigs fed with barley (40%), wheat (45%) and soybean (10.30%); *Ga* refers to slurries produced by pigs fed with a mixture of *Garrofa* a by-product of the Carob tree (Ceratonia siliqua) (7.5 and 15% for Ga7.5 and Ga15, respectively); wheat (45%); barley (20.17 and 16.34% for Ga7.5 and Ga15, respectively) and soybean (13.21 and 16.12% for Ga7.5 and Ga15, respectively); *Pn* refers to slurries produced by pigs fed with a mixture of orange pulp (7.5 and 15% for Pn7.5 and Pn15, respectively); wheat (45%); barley (30.09 and 20.16%, respectively) and soybean (12.18 and 14.06% for Pn7.5 and Pn15, respectively).

3. Results and discussion
Application of slurries increased N₂O emission in all cases compared to the control (from 98.2% to 96% for PSControl and Pn7.5, respectively). The type of pig slurry had an effect on these emissions. Incorporation of by-products in the animals' diet decreased N₂O emissions from applied
slurry by 36.6 and 55.6% for Ga and Pn, respectively (Fig 1). This was probably related to the higher NH₄⁺-N of PSControl (Table 1). Application of slurries enhanced soil respiration (i.e. CO₂ fluxes) in all cases (64% on average), being this increase lower for PSControl (34.6%) (data not shown), possibly due to a reduction of plant biomass as a result of foliar damage following slurry application.

![Graph showing cumulative N₂O emissions (mg N₂O-N m⁻²).](image)

Fig 1. Cumulative N₂O emissions (mg N₂O-N m⁻²).

Ammonia emissions were also enhanced by slurry application. Similarly, PSControl produced the highest emissions (50.6 and 9.2% higher than Ga and Pn, respectively) (data not shown).

4. Conclusions
Partial substitution of soybean and barley by “garrofa” and orange pulp in the diet of pigs reduced NH₃ and N₂O from slurry application under controlled conditions. These preliminary results may show the potential of alternative feeding strategies for the reduction of environmental problems associated with agriculture and for decreasing the external dependency of N imports for feeding animals in Spain. Further research under real conditions is needed to confirm these results.

References