ESTUDIO CUANTITATIVO DEL EFECTO DE LOS INHIBIDORES DE LA NITRIFICACIÓN Y DE LA ACTIVIDAD UREASA SOBRE EL RENDIMIENTO DE LOS CULTIVOS
Abalos, D. a, Sanz-Cobena, A. a, Guardia, G. a, Jeffery, S. b, Vallejo, A. a
a ETSI Agronomos, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
b Department of Soil Quality, Wageningen University, Wageningen 6700 AA, The Netherlands

1. Introducción
Los inhibidores de la nitrificación y de la actividad ureasa se proponen habitualmente como estrategias para reducir pérdidas nitrogenadas y por tanto, aumentar la eficiencia en el uso del nitrógeno por parte de los cultivos (Abalos y col. 2012). Sin embargo, este efecto positivo solo ocasionalmente parece reportar mayores rendimientos, a pesar del mayor coste para el agricultor que supone el uso de estos productos (Akiyama y col. 2010). El objetivo de este estudio es integrar los resultados disponibles a nivel mundial para evaluar cuantitativamente el efecto de dos inhibidores de la nitrificación (dicyandiamide (DCD) y 3,4-dimethylpyrazole phosphate (DMPP)) y del inhibidor de la actividad ureasa N-(n-butyl) thiophosphoric triamide (NBPT) sobre la productividad de los cultivos. Estos inhibidores fueron seleccionados para el estudio dado que generalmente se consideran las mejores opciones disponibles.

2. Materiales y Métodos
El objetivo del experimento se trató de conseguir mediante un meta-análisis estadístico. Se evaluaron a su vez los principales factores experimentales, medioambientales y de manejo que afectan a la respuesta de los inhibidores. Los datos se obtuvieron de estudios en los que un fertilizante sin inhibidor (control) se comparaba con otro tratamiento equivalente con inhibidor sin que ningún otro factor fuera alterado. Como medida del tamaño del efecto, usamos los ratios de respuesta logarítmicamente transformados (Hedges y col. 1999):

\[\ln R = \ln \left(\frac{\bar{x}_E}{\bar{x}_C} \right) \]

Donde \(\bar{x}_E \) es la media del grupo experimental (con inhibidor), y \(\bar{x}_C \) es la media del grupo control (sin inhibidor).

Para el cálculo del tamaño del efecto se empleó el programa MetaWin 2.1. Los efectos medios se consideraron significativamente distintos de cero si el intervalo de confianza al 95% no se solapa con el valor cero, y diferentes entre uno y otro si su intervalo de confianza al 95% no se solapa entre sí.

3. Resultados y Discusión
Los inhibidores evaluados aumentaron los rendimientos de manera consistente (c. 8%) y estadísticamente significativa. El inhibidor de la ureasa (NBPT) produjo un aumento significativamente mayor al del resto de inhibidores. Los inhibidores mostraron mayor efecto en suelos de textura gruesa, posiblemente debido a la reducción en la lixivición de nitratos inducida por estos productos. En sistemas cuyo manejo es susceptible de generar mayores pérdidas nitrogenadas (altas tasas de aplicación de fertilizantes, regadío en exceso) los inhibidores generaron mayores efectos sobre el rendimiento, dado que su capacidad para reducir pérdidas de nitrógeno es mayor en este tipo de agroecosistemas. Es necesario incluir más estudios en la base de datos para evaluar el efecto de factores de manejo como "método de aplicación", y de factores medioambientales como el contenido de materia orgánica, temperatura y capacidad de intercambio catiónico del suelo, así como la velocidad del viento.
4. Conclusión
En base a los resultados obtenidos, los inhibidores pueden recomendarse como estrategias efectivas para aumentar el rendimiento de los cultivos. Sin embargo, dado su coste, son necesarios más estudios que permitan entender las condiciones bajo las cuales su efecto es mayor. Ese trabajo permitirá realizar comparaciones con otras prácticas que también suponen aumentos de rendimiento sin incurrir en costes adicionales (e.g. manejo adecuado de la fertilización y el riego).

Referencias