Automatic fault detection on BIPV systems without solar irradiation data

Leloux, Jonathan; Narvarte Fernández, Luis; Luna, Alberto y Desportes, Adrien (2014). Automatic fault detection on BIPV systems without solar irradiation data. En: "29th European Photovoltaic Solar Energy Conference and Exhibition", 22/09/2014 - 26/09/2014, Amsterdam, Netherlands. pp. 1-7.

Descripción

Título: Automatic fault detection on BIPV systems without solar irradiation data
Autor/es:
  • Leloux, Jonathan
  • Narvarte Fernández, Luis
  • Luna, Alberto
  • Desportes, Adrien
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 29th European Photovoltaic Solar Energy Conference and Exhibition
Fechas del Evento: 22/09/2014 - 26/09/2014
Lugar del Evento: Amsterdam, Netherlands
Título del Libro: 29th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2014)
Fecha: 2014
Materias:
Palabras Clave Informales: Performance To Peers, P2P, Performance Ratio, PR, Monitoring, Photovoltaic, PV, BIPV, BAPV, Performance, Fault, Failure, Detection, Automatic
Escuela: Instituto de Energía Solar (IES) (UPM)
Departamento: Otro
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (499kB) | Vista Previa

Resumen

BIPV systems are small PV generation units spread out over the territory, and whose characteristics are very diverse. This makes difficult a cost-effective procedure for monitoring, fault detection, performance analyses, operation and maintenance. As a result, many problems affecting BIPV systems go undetected. In order to carry out effective automatic fault detection procedures, we need a performance indicator that is reliable and that can be applied on many PV systems at a very low cost. The existing approaches for analyzing the performance of PV systems are often based on the Performance Ratio (PR), whose accuracy depends on good solar irradiation data, which in turn can be very difficult to obtain or cost-prohibitive for the BIPV owner. We present an alternative fault detection procedure based on a performance indicator that can be constructed on the sole basis of the energy production data measured at the BIPV systems. This procedure does not require the input of operating conditions data, such as solar irradiation, air temperature, or wind speed. The performance indicator, called Performance to Peers (P2P), is constructed from spatial and temporal correlations between the energy output of neighboring and similar PV systems. This method was developed from the analysis of the energy production data of approximately 10,000 BIPV systems located in Europe. The results of our procedure are illustrated on the hourly, daily and monthly data monitored during one year at one BIPV system located in the South of Belgium. Our results confirm that it is possible to carry out automatic fault detection procedures without solar irradiation data. P2P proves to be more stable than PR most of the time, and thus constitutes a more reliable performance indicator for fault detection procedures. We also discuss the main limitations of this novel methodology, and we suggest several future lines of research that seem promising to improve on these procedures.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
FP7PV CROPSSin especificarSin especificarSin especificar

Más información

ID de Registro: 36667
Identificador DC: http://oa.upm.es/36667/
Identificador OAI: oai:oa.upm.es:36667
Depositado por: Memoria Investigacion
Depositado el: 08 Dic 2015 10:08
Ultima Modificación: 06 Jun 2016 10:08
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM