Multisensor data fusion for accurate modelling of mobile objects

Sánchez Almodóvar, Nuria; Cuerdo, Alejandro; Sastre García, Daniel; Alfonso Kurano, Jorge y Menendez Garcia, Jose Manuel (2011). Multisensor data fusion for accurate modelling of mobile objects. En: "Symposium on Emerged/Emerging "Disruptive" Technologies", 09/05/2014 - 10/05/2014, Madrid, Spain. pp. 1-9.


Título: Multisensor data fusion for accurate modelling of mobile objects
  • Sánchez Almodóvar, Nuria
  • Cuerdo, Alejandro
  • Sastre García, Daniel
  • Alfonso Kurano, Jorge
  • Menendez Garcia, Jose Manuel
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: Symposium on Emerged/Emerging "Disruptive" Technologies
Fechas del Evento: 09/05/2014 - 10/05/2014
Lugar del Evento: Madrid, Spain
Título del Libro: Symposium on Emerged/Emerging "Disruptive" Technologies
Fecha: 2011
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (332kB) | Vista Previa


In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.

Más información

ID de Registro: 36988
Identificador DC:
Identificador OAI:
URL Oficial:
Depositado por: Memoria Investigacion
Depositado el: 26 Jul 2015 11:33
Ultima Modificación: 26 Jul 2015 11:33
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM