Limit load instabilities in structural elements

Alhayani, Ammar Abduljabbar Mohammed (2015). Limit load instabilities in structural elements. Thesis (Doctoral), E.T.S.I. Caminos, Canales y Puertos (UPM).

Description

Title: Limit load instabilities in structural elements
Author/s:
  • Alhayani, Ammar Abduljabbar Mohammed
Contributor/s:
  • Merodio Gómez, José
Item Type: Thesis (Doctoral)
Date: 2015
Subjects:
Faculty: E.T.S.I. Caminos, Canales y Puertos (UPM)
Department: Mecánica de Medios Continuos y Teoría de Estructuras
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

Este trabajo analiza distintas inestabilidades en estructuras formadas por distintos materiales. En particular, se capturan y se modelan las inestabilidades usando el método de Riks. Inicialmente, se analiza la bifurcación en depósitos cilíndricos formados por material anisótropo sometidos a carga axial y presión interna. El análisis de bifurcación y post-bifurcación asociados con cilindros de pared gruesa se formula para un material incompresible reforzado con dos fibras que son mecánicamente equivalentes y están dispuestas simétricamente. Consideramos dos casos en la naturaleza de la anisotropía: (i) Fibras refuerzo que tienen una influencia particular sobre la respuesta a cortante del material y (ii) Fibras refuerzo que influyen sólo si la fibra cambia de longitud con la deformación. Se analiza la propagación de las inestabilidades. En concreto, se diferencia en el abultamiento (bulging) entre la propagación axial y la propagación radial de la inestabilidad. Distintos modelos sufren una u otra propagación. Por último, distintas inestabilidades asociadas al mecanismo de ablandamiento del material (material softening) en contraposición al de endurecimiento (hardening) en una estructura (viga) de a: hormigón y b: hormigón reforzado son modeladas utilizando una metodología paralela a la desarrollada en el análisis de inestabilidades en tubos sometidos a presión interna. This present work deals with the instability of structures made of various materials. It captures and models different types of instabilities using numerical analysis. Firstly, we consider bifurcation for anisotropic cylindrical shells subject to axial loading and internal pressure. Analysis of bifurcation and post bifurcation of inflated hyperelastic thick-walled cylinder is formulated using a numerical procedure based on the modified Riks method for an incompressible material with two preferred directions which are mechanically equivalent and are symmetrically disposed. Secondly, bulging/necking motion in doubly fiber-reinforced incompressible nonlinearly elastic cylindrical shells is captured and we consider two cases for the nature of the anisotropy: (i) reinforcing models that have a particular influence on the shear response of the material and (ii) reinforcing models that depend only on the stretch in the fiber direction. The different instability motions are considered. Axial propagation of the bulging instability mode in thin-walled cylinders under inflation is analyzed. We present the analytical solution for this particular motion as well as for radial expansion during bulging evolution. For illustration, cylinders that are made of either isotropic incompressible non-linearly elastic materials or doubly fiber reinforced incompressible non-linearly elastic materials are considered. Finally, strain-softening constitutive models are considered to analyze two concrete structures: a reinforced concrete beam and an unreinforced notch beam. The bifurcation point is captured using the Riks method used previously to analyze bifurcation of a pressurized cylinder.

More information

Item ID: 37277
DC Identifier: http://oa.upm.es/37277/
OAI Identifier: oai:oa.upm.es:37277
Deposited by: Biblioteca ETSI Caminos
Deposited on: 02 Sep 2015 07:34
Last Modified: 30 Mar 2016 22:56
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM