A linearization-based system reliability method with application to geotechnical analysis

Zeng, Peng (2015). A linearization-based system reliability method with application to geotechnical analysis. Thesis (Doctoral), E.T.S.I. Caminos, Canales y Puertos (UPM).

Description

Title: A linearization-based system reliability method with application to geotechnical analysis
Author/s:
  • Zeng, Peng
Contributor/s:
  • Jiménez Rodríguez, Rafael
Item Type: Thesis (Doctoral)
Date: 2015
Subjects:
Faculty: E.T.S.I. Caminos, Canales y Puertos (UPM)
Department: Ingeniería y Morfología del Terreno
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview

Abstract

Los análisis de fiabilidad representan una herramienta adecuada para contemplar las incertidumbres inherentes que existen en los parámetros geotécnicos. En esta Tesis Doctoral se desarrolla una metodología basada en una linealización sencilla, que emplea aproximaciones de primer o segundo orden, para evaluar eficientemente la fiabilidad del sistema en los problemas geotécnicos. En primer lugar, se emplean diferentes métodos para analizar la fiabilidad de dos aspectos propios del diseño de los túneles: la estabilidad del frente y el comportamiento del sostenimiento. Se aplican varias metodologías de fiabilidad — el Método de Fiabilidad de Primer Orden (FORM), el Método de Fiabilidad de Segundo Orden (SORM) y el Muestreo por Importancia (IS). Los resultados muestran que los tipos de distribución y las estructuras de correlación consideradas para todas las variables aleatorias tienen una influencia significativa en los resultados de fiabilidad, lo cual remarca la importancia de una adecuada caracterización de las incertidumbres geotécnicas en las aplicaciones prácticas. Los resultados también muestran que tanto el FORM como el SORM pueden emplearse para estimar la fiabilidad del sostenimiento de un túnel y que el SORM puede mejorar el FORM con un esfuerzo computacional adicional aceptable. Posteriormente, se desarrolla una metodología de linealización para evaluar la fiabilidad del sistema en los problemas geotécnicos. Esta metodología solamente necesita la información proporcionada por el FORM: el vector de índices de fiabilidad de las funciones de estado límite (LSFs) que componen el sistema y su matriz de correlación. Se analizan dos problemas geotécnicos comunes —la estabilidad de un talud en un suelo estratificado y un túnel circular excavado en roca— para demostrar la sencillez, precisión y eficiencia del procedimiento propuesto. Asimismo, se reflejan las ventajas de la metodología de linealización con respecto a las herramientas computacionales alternativas. Igualmente se muestra que, en el caso de que resulte necesario, se puede emplear el SORM —que aproxima la verdadera LSF mejor que el FORM— para calcular estimaciones más precisas de la fiabilidad del sistema. Finalmente, se presenta una nueva metodología que emplea Algoritmos Genéticos para identificar, de manera precisa, las superficies de deslizamiento representativas (RSSs) de taludes en suelos estratificados, las cuales se emplean posteriormente para estimar la fiabilidad del sistema, empleando la metodología de linealización propuesta. Se adoptan tres taludes en suelos estratificados característicos para demostrar la eficiencia, precisión y robustez del procedimiento propuesto y se discuten las ventajas del mismo con respecto a otros métodos alternativos. Los resultados muestran que la metodología propuesta da estimaciones de fiabilidad que mejoran los resultados previamente publicados, enfatizando la importancia de hallar buenas RSSs —y, especialmente, adecuadas (desde un punto de vista probabilístico) superficies de deslizamiento críticas que podrían ser no-circulares— para obtener estimaciones acertadas de la fiabilidad de taludes en suelos. Reliability analyses provide an adequate tool to consider the inherent uncertainties that exist in geotechnical parameters. This dissertation develops a simple linearization-based approach, that uses first or second order approximations, to efficiently evaluate the system reliability of geotechnical problems. First, reliability methods are employed to analyze the reliability of two tunnel design aspects: face stability and performance of support systems. Several reliability approaches —the first order reliability method (FORM), the second order reliability method (SORM), the response surface method (RSM) and importance sampling (IS)— are employed, with results showing that the assumed distribution types and correlation structures for all random variables have a significant effect on the reliability results. This emphasizes the importance of an adequate characterization of geotechnical uncertainties for practical applications. Results also show that both FORM and SORM can be used to estimate the reliability of tunnel-support systems; and that SORM can outperform FORM with an acceptable additional computational effort. A linearization approach is then developed to evaluate the system reliability of series geotechnical problems. The approach only needs information provided by FORM: the vector of reliability indices of the limit state functions (LSFs) composing the system, and their correlation matrix. Two common geotechnical problems —the stability of a slope in layered soil and a circular tunnel in rock— are employed to demonstrate the simplicity, accuracy and efficiency of the suggested procedure. Advantages of the linearization approach with respect to alternative computational tools are discussed. It is also found that, if necessary, SORM —that approximates the true LSF better than FORM— can be employed to compute better estimations of the system’s reliability. Finally, a new approach using Genetic Algorithms (GAs) is presented to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes, and such RSSs are then employed to estimate the system reliability of slopes, using our proposed linearization approach. Three typical benchmark-slopes with layered soils are adopted to demonstrate the efficiency, accuracy and robustness of the suggested procedure, and advantages of the proposed method with respect to alternative methods are discussed. Results show that the proposed approach provides reliability estimates that improve previously published results, emphasizing the importance of finding good RSSs —and, especially, good (probabilistic) critical slip surfaces that might be non-circular— to obtain good estimations of the reliability of soil slope systems.

More information

Item ID: 37285
DC Identifier: http://oa.upm.es/37285/
OAI Identifier: oai:oa.upm.es:37285
Deposited by: Biblioteca ETSI Caminos
Deposited on: 02 Sep 2015 06:49
Last Modified: 31 Mar 2016 22:56
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM