Multi-sensor background subtraction by fusing multiple region-based probabilistic classifiers

Camplani, Massimo; Blanco Adán, Carlos Roberto del; Salgado Álvarez de Sotomayor, Luis; Jaureguizar Núñez, Fernando y García Santos, Narciso (2014). Multi-sensor background subtraction by fusing multiple region-based probabilistic classifiers. "Pattern Recognition Letters", v. 50 ; pp. 23-33. ISSN 0167-8655. https://doi.org/10.1016/j.patrec.2013.09.022.

Descripción

Título: Multi-sensor background subtraction by fusing multiple region-based probabilistic classifiers
Autor/es:
  • Camplani, Massimo
  • Blanco Adán, Carlos Roberto del
  • Salgado Álvarez de Sotomayor, Luis
  • Jaureguizar Núñez, Fernando
  • García Santos, Narciso
Tipo de Documento: Artículo
Título de Revista/Publicación: Pattern Recognition Letters
Fecha: Diciembre 2014
Volumen: 50
Materias:
Palabras Clave Informales: Region-based background modeling; Foreground prediction; Mixture of Gaussians; Mixture of experts; Mean shift; RGB-D cameras
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (7MB) | Vista Previa

Resumen

In the recent years, the computer vision community has shown great interest on depth-based applications thanks to the performance and flexibility of the new generation of RGB-D imagery. In this paper, we present an efficient background subtraction algorithm based on the fusion of multiple region-based classifiers that processes depth and color data provided by RGB-D cameras. Foreground objects are detected by combining a region-based foreground prediction (based on depth data) with different background models (based on a Mixture of Gaussian algorithm) providing color and depth descriptions of the scene at pixel and region level. The information given by these modules is fused in a mixture of experts fashion to improve the foreground detection accuracy. The main contributions of the paper are the region-based models of both background and foreground, built from the depth and color data. The obtained results using different database sequences demonstrate that the proposed approach leads to a higher detection accuracy with respect to existing state-of-the-art techniques.

Proyectos asociados

TipoCódigoAcrónimoResponsableTítulo
Gobierno de EspañaTEC2010-20412Sin especificarSin especificarSin especificar

Más información

ID de Registro: 37436
Identificador DC: http://oa.upm.es/37436/
Identificador OAI: oai:oa.upm.es:37436
Identificador DOI: 10.1016/j.patrec.2013.09.022
URL Oficial: http://www.sciencedirect.com/science/article/pii/S0167865513003589
Depositado por: Memoria Investigacion
Depositado el: 12 Sep 2015 07:24
Ultima Modificación: 01 Ene 2017 23:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM