Optimal Piecewise Linear Function Approximation for GPU-based Applications

Berjón Díez, Daniel; Gallego Bonet, Guillermo; Cuevas Rodríguez, Carlos; Morán Burgos, Francisco y García Santos, Narciso (2015). Optimal Piecewise Linear Function Approximation for GPU-based Applications. "IEEE Transactions on Cybernetics" ; pp. 1-12. ISSN 2168-2267. https://doi.org/10.1109/TCYB.2015.2482365.


Título: Optimal Piecewise Linear Function Approximation for GPU-based Applications
  • Berjón Díez, Daniel
  • Gallego Bonet, Guillermo
  • Cuevas Rodríguez, Carlos
  • Morán Burgos, Francisco
  • García Santos, Narciso
Tipo de Documento: Artículo
Título de Revista/Publicación: IEEE Transactions on Cybernetics
Fecha: 9 Octubre 2015
Palabras Clave Informales: computer vision, image processing, numerical approximation and analysis, error equalization, orthogonal projection, parallel processing, piecewise linearization, system linearization, error bounds, graphics processing units, Gaussian function, Lorentzian function, Bessel function
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Grupo Investigación UPM: Tratamiento de Imágenes GTI
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (730kB) | Vista Previa


Many computer vision and human-computer interaction applications developed in recent years need evaluating complex and continuous mathematical functions as an essential step toward proper operation. However, rigorous evaluation of this kind of functions often implies a very high computational cost, unacceptable in real-time applications. To alleviate this problem, functions are commonly approximated by simpler piecewise-polynomial representations. Following this idea, we propose a novel, efficient, and practical technique to evaluate complex and continuous functions using a nearly optimal design of two types of piecewise linear approximations in the case of a large budget of evaluation subintervals. To this end, we develop a thorough error analysis that yields asymptotically tight bounds to accurately quantify the approximation performance of both representations. It provides an improvement upon previous error estimates and allows the user to control the trade-off between the approximation error and the number of evaluation subintervals. To guarantee real-time operation, the method is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), where it outperforms previous alternative approaches by exploiting the fixed-function interpolation routines present in their texture units. The proposed technique is a perfect match for any application requiring the evaluation of continuous functions, we have measured in detail its quality and efficiency on several functions, and, in particular, the Gaussian function because it is extensively used in many areas of computer vision and cybernetics, and it is expensive to evaluate.

Proyectos asociados

Gobierno de EspañaTEC2013-48453MR-UHDTVSin especificarMixed Reality over Ultra High Definition Television
FP7ICT-610691BRIDGETSin especificarBridging the Gap for Enhanced Broadcast

Más información

ID de Registro: 38077
Identificador DC: http://oa.upm.es/38077/
Identificador OAI: oai:oa.upm.es:38077
Identificador DOI: 10.1109/TCYB.2015.2482365
Depositado por: Dr Guillermo Gallego Bonet
Depositado el: 13 Oct 2015 08:12
Ultima Modificación: 13 Oct 2015 08:12
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM