Image processing methods for human brain connectivity analysis from in-vivo diffusion MRI

Esteban Sanz-Dranguet, Oscar (2015). Image processing methods for human brain connectivity analysis from in-vivo diffusion MRI. Tesis (Doctoral), E.T.S.I. Telecomunicación (UPM).

Descripción

Título: Image processing methods for human brain connectivity analysis from in-vivo diffusion MRI
Autor/es:
  • Esteban Sanz-Dranguet, Oscar
Director/es:
  • Santos Lleó, Andrés de
  • Ledesma-Carbayo, María-Jesús
Tipo de Documento: Tesis (Doctoral)
Fecha: 25 Noviembre 2015
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Ingeniería Electrónica
Licencias Creative Commons: Reconocimiento - Sin obra derivada

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) (Tesis) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (36MB) | Vista Previa
[img]
Vista Previa
PDF (Document Portable Format) (Presentación) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (31MB) | Vista Previa
[img] Texto plano (Bibliografía)
Descargar (47kB)

Resumen

The structural connectivity of the brain is considered to encode species-wise and subject-wise patterns that will unlock large areas of understanding of the human brain. Currently, diffusion MRI of the living brain enables to map the microstructure of tissue, allowing to track the pathways of fiber bundles connecting the cortical regions across the brain. These bundles are summarized in a network representation called connectome that is analyzed using graph theory. The extraction of the connectome from diffusion MRI requires a large processing flow including image enhancement, reconstruction, segmentation, registration, diffusion tracking, etc. Although a concerted effort has been devoted to the definition of standard pipelines for the connectome extraction, it is still crucial to define quality assessment protocols of these workflows. The definition of quality control protocols is hindered by the complexity of the pipelines under test and the absolute lack of gold-standards for diffusion MRI data. Here we characterize the impact on structural connectivity workflows of the geometrical deformation typically shown by diffusion MRI data due to the inhomogeneity of magnetic susceptibility across the imaged object. We propose an evaluation framework to compare the existing methodologies to correct for these artifacts including whole-brain realistic phantoms. Additionally, we design and implement an image segmentation and registration method to avoid performing the correction task and to enable processing in the native space of diffusion data. We release PySDCev, an evaluation framework for the quality control of connectivity pipelines, specialized in the study of susceptibility-derived distortions. In this context, we propose Diffantom, a whole-brain phantom that provides a solution to the lack of gold-standard data. The three correction methodologies under comparison performed reasonably, and it is difficult to determine which method is more advisable. We demonstrate that susceptibility-derived correction is necessary to increase the sensitivity of connectivity pipelines, at the cost of specificity. Finally, with the registration and segmentation tool called regseg we demonstrate how the problem of susceptibility-derived distortion can be overcome allowing data to be used in their original coordinates. This is crucial to increase the sensitivity of the whole pipeline without any loss in specificity.

Más información

ID de Registro: 38431
Identificador DC: http://oa.upm.es/38431/
Identificador OAI: oai:oa.upm.es:38431
Depositado por: Oscar Esteban
Depositado el: 01 Dic 2015 11:43
Ultima Modificación: 22 Dic 2015 07:47
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM