DC and RF Performance of AlGaN/GaN HEMTs on SiC at High Temperatures

R. Cuerdo a,*, E. Sillero a, M. F. Romero a, M. Uren b, E. Muñoz a, and F. Calle a

a Instituto de Sistemas Optoelectrónicos y Microtecnología and Dpto. de Ingeniería Electrónica, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
b QinetiQ, Malvern Technology Centre, Malvern, Worcestershire, WR14 3PS, United Kingdom

* Corresponding author: rcuerdo@die.upm.es

Introduction

GaN-based transistors have demonstrated to be the most promising candidates for applications with high power and high frequency requirements, and working in harsh environments. They take advantage of some interesting properties of nitrides such as their thermal stability or high electron velocity, together with a high sheet carrier density (~10^{13} cm$^{-2}$) provided by AlGaN/GaN heterostructures thanks to the favorable band offsets and internal piezoelectric fields. In above applications, transistors may work in small signal amplifiers under high ambient temperatures, or in power amplifiers where channel temperatures may increase significantly. Thus, high temperature (HT) operation and related reliability issues have become important research topics in GaN electronics. Although some works have been recently published about DC characterization of HEMTs at HT [1-5], there are few papers studying their behaviour at RF [4,5]. This work aims to understand the small signal performance of AlGaN/GaN HEMTs on SiC at HT, using DC and RF measurements combined with proper modeling and small signal parameters extraction.

Experimental

Al$_{0.28}$Ga$_{0.72}$/GaN HEMTs, with 25 nm barriers, were grown on SiC by metal-organic chemical vapour deposition. The sheet carrier density was $9.9\cdot10^{12}$ cm$^{-2}$. Ti/Al/Pt/Au metallizations were used for ohmic contacts, obtaining contact resistances of 0.15 $\Omega\cdot$mm and sheet resistances of \sim475 Ω/sq. Ni/Au was used for the Schottky T-shape gates, 0.25 μm long and 100 μm wide. Gate-source and drain-source distances were 1 μm and 4 μm, respectively. All transistors were passivated with Si$_3$N$_4$.

For DC and RF characterizations, an Agilent 4156C semiconductor parameter analyzer and an Agilent N5230A network analyzer were used, both connected to a Cascade RF probe station. Devices were placed on a Wenesco thermal chuck. This study has been carried out from room temperature (RT) up to 250ºC, every 50ºC, in air atmosphere. For the wafer RF measurements from 0.25 GHz to 20 GHz, a standard SOLT calibration was performed at RT. The electron channel temperature was derived for each ambient condition from thermal simulations using ANSYS software.

Results and discussion

Drain current at $V_{GS} = 0$ V (I_{DSS}), extrinsic transconductance ($g_{m,ext}$) and source and drain resistances (R_S and R_D) worsen as external temperature increases, as shown in Fig. 1, mainly due to the reduction in the 2DEG mobility and electron velocity [1,2]. The maximum of I_{DSS} decreases from 0.96 A/mm at RT to 0.62 A/mm at 250ºC, while the maximum of $g_{m,ext}$ is reduced from 256 mS/mm to 155 mS/mm (see Fig. 1). On the other hand, R_S and R_D increase from 11 Ω to 24 Ω and from 17.5 Ω to 42 Ω, respectively, for a drain current $I_D = 0.2$ A/mm.

![Fig. 1. Normalized values of I_{DSS}, $g_{m,ext}$, R_S and R_D vs temperature.](image-url)
Some trapping is present in these devices, since I_D-V_{DS} characteristics show minor kink effects and the threshold voltage (V_{th}) shifts to higher values as devices are heated [3]. In fact, V_{th} increases almost linearly from -5.15 V at RT to -4.6 V at 250°C, so that $\alpha(dV_{th}/dT) \approx 2.5$ mV/°C [4].

Concerning device microwave performance, the current-gain cutoff frequency (f_T) and the small signal equivalent circuit parameters have been extracted from the measurements of the S-parameters. The maximum of f_T decreases about 35% from RT (35 GHz) to 250°C (23 GHz), and it seems to be reached at the same $I_D (=0.2$ A/mm) for all temperatures, as shown in Fig. 2. In this figure, the estimated temperature of the channel for several drain currents, obtained from the simulations, is also plotted. The increase in the channel temperature at the operation conditions where the maximum of f_T is achieved is lower than 50°C for all chuck temperatures under test, thanks to the high SiC thermal conductance.

Fig. 2. Simulations of channel temperature for drain currents around the maximum of f_T.

Fig. 3. Intrinsic transconductance and capacitances, C_{gd} and C_{gs}, as a function of temperature.

HEMT small signal parameters have been calculated as a function of temperature. The intrinsic transconductance ($g_{m,int}$) decreases with temperature from 338 mS/mm at RT to 236 mS/mm at 250°C (see Fig. 3), likely related to a reduction in the effective electron velocity in the channel. Whereas C_{gs} can be considered constant at different temperatures (see Fig. 3), C_{gd} suffers a clear decrease as devices are heated, which leads to a decrease in the HEMT global capacitance. This result, together with the shift of V_{th} to higher values as temperature increases, may be linked with active traps placed in the drain region, where the highest electric fields are reached. From our model, the other intrinsic parameters are almost constant with temperature, except for R_{ds} which shows an important increase.

Conclusion

DC and small signal RF characterizations at high temperature have been carried out in AlGaN/GaN HEMTs on SiC. Transistor performance worsens by 35-40% from RT to 250°C, mainly due to the reductions in mobility and electron velocity. In addition, the presence of traps has also been deduced and linked to the shift in V_{th} and the variation in capacitances as devices were heated.

Acknowledgements. The assistance of Yago Fernández-INDRA is acknowledged. This work has been supported by the European KORRIGAN project (EUROPA MOU 04/102.052/032) and Spanish MINANI project (TEC2007-67065/MIC).