Especificaciones eMathTeacher, creación del Modelo Granular Lingüístico de la evaluación del aprendizaje humano, y diseño de sistemas que implementan estos conceptos

Sánchez Torrubia, M. Gloria (2016). Especificaciones eMathTeacher, creación del Modelo Granular Lingüístico de la evaluación del aprendizaje humano, y diseño de sistemas que implementan estos conceptos. Tesis (Doctoral), E.T.S. de Ingenieros Informáticos (UPM). https://doi.org/10.20868/UPM.thesis.39386.

Descripción

Título: Especificaciones eMathTeacher, creación del Modelo Granular Lingüístico de la evaluación del aprendizaje humano, y diseño de sistemas que implementan estos conceptos
Autor/es:
  • Sánchez Torrubia, M. Gloria
Director/es:
  • Torres Blanc, Carmen
Tipo de Documento: Tesis (Doctoral)
Fecha: 2016
Materias:
Escuela: E.T.S. de Ingenieros Informáticos (UPM)
Departamento: Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (9MB) | Vista Previa

Resumen

El concepto de algoritmo es básico en informática, por lo que es crucial que los alumnos profundicen en él desde el inicio de su formación. Por tanto, contar con una herramienta que guíe a los estudiantes en su aprendizaje puede suponer una gran ayuda en su formación. La mayoría de los autores coinciden en que, para determinar la eficacia de una herramienta de visualización de algoritmos, es esencial cómo se utiliza. Así, los estudiantes que participan activamente en la visualización superan claramente a los que la contemplan de forma pasiva. Por ello, pensamos que uno de los mejores ejercicios para un alumno consiste en simular la ejecución del algoritmo que desea aprender mediante el uso de una herramienta de visualización, i. e. consiste en realizar una simulación visual de dicho algoritmo. La primera parte de esta tesis presenta los resultados de una profunda investigación sobre las características que debe reunir una herramienta de ayuda al aprendizaje de algoritmos y conceptos matemáticos para optimizar su efectividad: el conjunto de especificaciones eMathTeacher, además de un entorno de aprendizaje que integra herramientas que las cumplen: GRAPHs. Hemos estudiado cuáles son las cualidades esenciales para potenciar la eficacia de un sistema e-learning de este tipo. Esto nos ha llevado a la definición del concepto eMathTeacher, que se ha materializado en el conjunto de especificaciones eMathTeacher. Una herramienta e-learning cumple las especificaciones eMathTeacher si actúa como un profesor virtual de matemáticas, i. e. si es una herramienta de autoevaluación que ayuda a los alumnos a aprender de forma activa y autónoma conceptos o algoritmos matemáticos, corrigiendo sus errores y proporcionando pistas para encontrar la respuesta correcta, pero sin dársela explícitamente. En estas herramientas, la simulación del algoritmo no continúa hasta que el usuario introduce la respuesta correcta. Para poder reunir en un único entorno una colección de herramientas que cumplan las especificaciones eMathTeacher hemos creado GRAPHs, un entorno ampliable, basado en simulación visual, diseñado para el aprendizaje activo e independiente de los algoritmos de grafos y creado para que en él se integren simuladores de diferentes algoritmos. Además de las opciones de creación y edición del grafo y la visualización de los cambios producidos en él durante la simulación, el entorno incluye corrección paso a paso, animación del pseudocódigo del algoritmo, preguntas emergentes, manejo de las estructuras de datos del algoritmo y creación de un log de interacción en XML. Otro problema que nos planteamos en este trabajo, por su importancia en el proceso de aprendizaje, es el de la evaluación formativa. El uso de ciertos entornos e-learning genera gran cantidad de datos que deben ser interpretados para llegar a una evaluación que no se limite a un recuento de errores. Esto incluye el establecimiento de relaciones entre los datos disponibles y la generación de descripciones lingüísticas que informen al alumno sobre la evolución de su aprendizaje. Hasta ahora sólo un experto humano era capaz de hacer este tipo de evaluación. Nuestro objetivo ha sido crear un modelo computacional que simule el razonamiento del profesor y genere un informe sobre la evolución del aprendizaje que especifique el nivel de logro de cada uno de los objetivos definidos por el profesor. Como resultado del trabajo realizado, la segunda parte de esta tesis presenta el modelo granular lingüístico de la evaluación del aprendizaje, capaz de modelizar la evaluación y generar automáticamente informes de evaluación formativa. Este modelo es una particularización del modelo granular lingüístico de un fenómeno (GLMP), en cuyo desarrollo y formalización colaboramos, basado en la lógica borrosa y en la teoría computacional de las percepciones. Esta técnica, que utiliza sistemas de inferencia basados en reglas lingüísticas y es capaz de implementar criterios de evaluación complejos, se ha aplicado a dos casos: la evaluación, basada en criterios, de logs de interacción generados por GRAPHs y de cuestionarios de Moodle. Como consecuencia, se han implementado, probado y utilizado en el aula sistemas expertos que evalúan ambos tipos de ejercicios. Además de la calificación numérica, los sistemas generan informes de evaluación, en lenguaje natural, sobre los niveles de competencia alcanzados, usando sólo datos objetivos de respuestas correctas e incorrectas. Además, se han desarrollado dos aplicaciones capaces de ser configuradas para implementar los sistemas expertos mencionados. Una procesa los archivos producidos por GRAPHs y la otra, integrable en Moodle, evalúa basándose en los resultados de los cuestionarios. ABSTRACT The concept of algorithm is one of the core subjects in computer science. It is extremely important, then, for students to get a good grasp of this concept from the very start of their training. In this respect, having a tool that helps and shepherds students through the process of learning this concept can make a huge difference to their instruction. Much has been written about how helpful algorithm visualization tools can be. Most authors agree that the most important part of the learning process is how students use the visualization tool. Learners who are actively involved in visualization consistently outperform other learners who view the algorithms passively. Therefore we think that one of the best exercises to learn an algorithm is for the user to simulate the algorithm execution while using a visualization tool, thus performing a visual algorithm simulation. The first part of this thesis presents the eMathTeacher set of requirements together with an eMathTeacher-compliant tool called GRAPHs. For some years, we have been developing a theory about what the key features of an effective e-learning system for teaching mathematical concepts and algorithms are. This led to the definition of eMathTeacher concept, which has materialized in the eMathTeacher set of requirements. An e-learning tool is eMathTeacher compliant if it works as a virtual math trainer. In other words, it has to be an on-line self-assessment tool that helps students to actively and autonomously learn math concepts or algorithms, correcting their mistakes and providing them with clues to find the right answer. In an eMathTeacher-compliant tool, algorithm simulation does not continue until the user enters the correct answer. GRAPHs is an extendible environment designed for active and independent visual simulation-based learning of graph algorithms, set up to integrate tools to help the user simulate the execution of different algorithms. Apart from the options of creating and editing the graph, and visualizing the changes made to the graph during simulation, the environment also includes step-by-step correction, algorithm pseudo-code animation, pop-up questions, data structure handling and XML-based interaction log creation features. On the other hand, assessment is a key part of any learning process. Through the use of e-learning environments huge amounts of data can be output about this process. Nevertheless, this information has to be interpreted and represented in a practical way to arrive at a sound assessment that is not confined to merely counting mistakes. This includes establishing relationships between the available data and also providing instructive linguistic descriptions about learning evolution. Additionally, formative assessment should specify the level of attainment of the learning goals defined by the instructor. Till now, only human experts were capable of making such assessments. While facing this problem, our goal has been to create a computational model that simulates the instructor’s reasoning and generates an enlightening learning evolution report in natural language. The second part of this thesis presents the granular linguistic model of learning assessment to model the assessment of the learning process and implement the automated generation of a formative assessment report. The model is a particularization of the granular linguistic model of a phenomenon (GLMP) paradigm, based on fuzzy logic and the computational theory of perceptions, to the assessment phenomenon. This technique, useful for implementing complex assessment criteria using inference systems based on linguistic rules, has been applied to two particular cases: the assessment of the interaction logs generated by GRAPHs and the criterion-based assessment of Moodle quizzes. As a consequence, several expert systems to assess different algorithm simulations and Moodle quizzes have been implemented, tested and used in the classroom. Apart from the grade, the designed expert systems also generate natural language progress reports on the achieved proficiency level, based exclusively on the objective data gathered from correct and incorrect responses. In addition, two applications, capable of being configured to implement the expert systems, have been developed. One is geared up to process the files output by GRAPHs and the other one is a Moodle plug-in set up to perform the assessment based on the quizzes results.

Más información

ID de Registro: 39386
Identificador DC: http://oa.upm.es/39386/
Identificador OAI: oai:oa.upm.es:39386
Identificador DOI: 10.20868/UPM.thesis.39386
Depositado por: Archivo Digital UPM 2
Depositado el: 29 Feb 2016 08:41
Ultima Modificación: 29 Sep 2016 22:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM