Estimación de la resistencia de estructuras de hormigón armado reforzadas a cortante mediante FRP

Martín Rino, Andrés (2015). Estimación de la resistencia de estructuras de hormigón armado reforzadas a cortante mediante FRP. Tesis (Doctoral), E.T.S.I. Minas (UPM) [antigua denominación].

Descripción

Título: Estimación de la resistencia de estructuras de hormigón armado reforzadas a cortante mediante FRP
Autor/es:
  • Martín Rino, Andrés
Director/es:
  • Ruiz Perea, Antonio
  • Perera Velamazán, Ricardo
Tipo de Documento: Tesis (Doctoral)
Fecha: 2015
Materias:
Escuela: E.T.S.I. Minas (UPM) [antigua denominación]
Departamento: Ingeniería Geológica y Minera
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (5MB) | Vista Previa

Resumen

El empleo de refuerzos de FRP en vigas de hormigón armado es cada vez más frecuente por sus numerosas ventajas frente a otros métodos más tradicionales. Durante los últimos años, la técnica FRP-NSM, consistente en introducir barras de FRP sobre el recubrimiento de una viga de hormigón, se ha posicionado como uno de los mejores métodos de refuerzo y rehabilitación de estructuras de hormigón armado, tanto por su facilidad de montaje y mantenimiento, como por su rendimiento para aumentar la capacidad resistente de dichas estructuras. Si bien el refuerzo a flexión ha sido ampliamente desarrollado y estudiado hasta la fecha, no sucede lo mismo con el refuerzo a cortante, debido principalmente a su gran complejidad. Sin embargo, se debería dedicar más estudio a este tipo de refuerzo si se pretenden conservar los criterios de diseño en estructuras de hormigón armado, los cuales están basados en evitar el fallo a cortante por sus consecuencias catastróficas Esta ausencia de información y de normativa es la que justifica esta tesis doctoral. En este pro-yecto se van a desarrollar dos metodologías alternativas, que permiten estimar la capacidad resistente de vigas de hormigón armado, reforzadas a cortante mediante la técnica FRP-NSM. El primer método aplicado consiste en la implementación de una red neuronal artificial capaz de predecir adecuadamente la resistencia a cortante de vigas reforzadas con este método a partir de experimentos anteriores. Asimismo, a partir de la red se han llevado a cabo algunos estudios a fin de comprender mejor la influencia real de algunos parámetros de la viga y del refuerzo sobre la resistencia a cortante con el propósito de lograr diseños más seguros de este tipo de refuerzo. Una configuración óptima de la red requiere discriminar adecuadamente de entre los numerosos parámetros (geométricos y de material) que pueden influir en el compor-tamiento resistente de la viga, para lo cual se han llevado a cabo diversos estudios y pruebas. Mediante el segundo método, se desarrolla una ecuación de proyecto que permite, de forma sencilla, estimar la capacidad de vigas reforzadas a cortante con FRP-NSM, la cual podría ser propuesta para las principales guías de diseño. Para alcanzar este objetivo, se plantea un pro-blema de optimización multiobjetivo a partir de resultados de ensayos experimentales llevados a cabo sobre vigas de hormigón armado con y sin refuerzo de FRP. El problema multiobjetivo se resuelve mediante algoritmos genéticos, en concreto el algoritmo NSGA-II, por ser más apropiado para problemas con varias funciones objetivo que los métodos de optimización clásicos. Mediante una comparativa de las predicciones realizadas con ambos métodos y de los resulta-dos de ensayos experimentales se podrán establecer las ventajas e inconvenientes derivadas de la aplicación de cada una de las dos metodologías. Asimismo, se llevará a cabo un análisis paramétrico con ambos enfoques a fin de intentar determinar la sensibilidad de aquellos pa-rámetros más sensibles a este tipo de refuerzo. Finalmente, se realizará un análisis estadístico de la fiabilidad de las ecuaciones de diseño deri-vadas de la optimización multiobjetivo. Con dicho análisis se puede estimar la capacidad resis-tente de una viga reforzada a cortante con FRP-NSM dentro de un margen de seguridad espe-cificado a priori. ABSTRACT The use of externally bonded (EB) fibre-reinforced polymer (FRP) composites has gained acceptance during the last two decades in the construction engineering community, particularly in the rehabilitation of reinforced concrete (RC) structures. Currently, to increase the shear resistance of RC beams, FRP sheets are externally bonded (EB-FRP) and applied on the external side surface of the beams to be strengthened with different configurations. Of more recent application, the near-surface mounted FRP bar (NSM-FRP) method is another technique successfully used to increase the shear resistance of RC beams. In the NSM method, FRP rods are embedded into grooves intentionally prepared in the concrete cover of the side faces of RC beams. While flexural strengthening has been widely developed and studied so far, the same doesn´t occur to shearing strength mainly due to its great complexity. Nevertheless, if design criteria are to be preserved more research should be done to this sort of strength, which are based on avoiding shear failure and its catastrophic consequences. However, in spite of this, accurately calculating the shear capacity of FRP shear strengthened RC beams remains a complex challenge that has not yet been fully resolved due to the numerous variables involved in the procedure. The objective of this Thesis is to develop methodologies to evaluate the capacity of FRP shear strengthened RC beams by dealing with the problem from a different point of view to the numerical modeling approach by using artificial intelligence techniques. With this purpose two different approaches have been developed: one concerned with the use of artificial neural networks and the other based on the implementation of an optimization approach developed jointly with the use of artificial neural networks (ANNs) and solved with genetic algorithms (GAs). With these approaches some of the difficulties concerned regarding the numerical modeling can be overcome. As an alternative tool to conventional numerical techniques, neural networks do not provide closed form solutions for modeling problems but do, however, offer a complex and accurate solution based on a representative set of historical examples of the relationship. Furthermore, they can adapt solutions over time to include new data. On the other hand, as a second proposal, an optimization approach has also been developed to implement simple yet accurate shear design equations for this kind of strengthening. This approach is developed in a multi-objective framework by considering experimental results of RC beams with and without NSM-FRP. Furthermore, the results obtained with the previous scheme based on ANNs are also used as a filter to choose the parameters to include in the design equations. Genetic algorithms are used to solve the optimization problem since they are especially suitable for solving multi-objective problems when compared to standard optimization methods. The key features of the two proposed procedures are outlined and their performance in predicting the capacity of NSM-FRP shear strengthened RC beams is evaluated by comparison with results from experimental tests and with predictions obtained using a simplified numerical model. A sensitivity study of the predictions of both models for the input parameters is also carried out.

Más información

ID de Registro: 39735
Identificador DC: http://oa.upm.es/39735/
Identificador OAI: oai:oa.upm.es:39735
Depositado por: Archivo Digital UPM 2
Depositado el: 07 Jun 2016 13:48
Ultima Modificación: 07 Dic 2016 23:30
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM