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Abstract
In the context of 3D reconstruction, we present a static multi-texturing system yielding a seamless texture atlas calculated by
combining the colour information from several photos from the same subject covering most of its surface. These pictures can
be provided by shooting just one camera several times when reconstructing a static object, or a set of synchronized cameras,
when dealing with a human or any other moving object. We suppress the colour seams due to image misalignments and irregular
lighting conditions that multi-texturing approaches typically suffer from, while minimizing the blurring effect introduced by
colour blending techniques. Our system is robust enough to compensate for the almost inevitable inaccuracies of 3D meshes
obtained with visual hull–based techniques: errors in silhouette segmentation, inherently bad handling of concavities, etc.

Keywords: texture mapping, texture synthesis

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Colour, shading, shadowing and texture

1. Introduction

Realistic 3D models are very useful and have been widely
adopted for entertainment (computer games and films), but also
for many other more serious fields such as health, education or
security, where virtual/augmented/mixed reality applications play
an increasingly important role. A key component which makes
a 3D model look realistic is its texture. Indeed, in the process of
capturing a 3D object from the real world, many problems appear,
most of them related to the acquisition of its shape/geometry,
typically a surface approximated by a triangular 3D mesh; but also
related to the appearance attributes of that mesh, normally to be
rendered with texture mapping. Although high-resolution scanning
techniques are becoming more common nowadays, there are still
many applications which generate a 3D model by processing a set
of images taken from different viewpoints, which may be either
sparsely distributed around the object or very densely, if a video
stream is recorded by surrounding it. In both cases, a system is
necessary to assign a texture and the corresponding texture coordi-
nates to each vertex of the mesh, and to do so as automatically as
possible.

We consider a very popular capturing scheme involving no com-
plex structured light patterns or expensive projectors, but simply
a group of regular photographs taken from different perspectives.
These pictures can be provided by shooting just one camera at

different time instants, if a static object is reconstructed, or a set
of synchronized cameras in the case of a moving subject such a
person (see Figure 1 to see our camera setup for 3D humanoid
reconstruction). The calibration parameters of the camera(s) are
extracted either using a calibration pattern or an autocalibration
approach. A segmentation algorithm is first used to extract the
silhouette of the subject in each of the pictures; then, thanks to the
calibration parameters of the cameras, another algorithm extracts a
visual hull (VH) of the subject’s surface; finally, after voxelizing the
VH, a plain (i.e. untextured) 3D mesh approximating that surface
is extracted from it with the marching cubes algorithm. Our system
was conceived for dressing that 3D mesh with a single texture atlas
obtained by mixing the colour information provided by the different
photographs.

In the case of avatar capture, the typical setup we are using pro-
cesses around a dozen photographs taken from strategic locations
so as to cover most of the face and body surfaces. The resolution
of the input images will determine the quality of the resulting 3D
models. Nevertheless, as VH-based techniques do not handle con-
cavities correctly, these models undergo a facial refinement process
which increases the polygonal resolution of the facial section of the
mesh significantly.

Some high-quality view-dependent texture mapping techniques
dress 3D models dynamically, i.e. at rendering time [DYB98].
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Figure 1: Typical camera setup. Top: a photo taken by one of the
cameras of the setup, with other cameras highlighted in red. Bottom:
the capture room may have very irregular lighting.

However, the models they produce are less usable than those whose
textures are computed statically, once and for all viewpoints, at
modelling time. The reason for this is that the former needs a
specific renderer able to handle the transitions between viewpoints,
whereas any generic renderer can handle the latter.

Nevertheless, using static texture mapping does not preclude
mixing the pixels from all input images, and we precisely propose
a method which creates a single, static texture atlas using a
combination of the colour information provided by different input
images. The colour mixture performed by our method takes into
account perspective distortion, which avoids discontinuities in the
textured model, and creates a smooth seamless texture across the
whole 3D model. An initial and less robust approach and its results
were previously presented in another paper of ours [PAMB10]. In
this, extended paper it is possible to find a deeper mathematical
description of the processes, as well as a better analysis of the
impact of the different stages of the algorithm. Besides, we have
included a very important step to avoid the inclusion of unwanted
background pixels in the blending stage. We also present a better
study of the state of the art of multi-texturing approaches and an
improved analysis of the results compared to some of these other
techniques. All this makes it easier to reproduce, and also to decide
whether it suits any particular multi-texturing scenario.

2. Proposed Technique: Overview

As shown in Figure 2, our system is divided in several stages which
can be classified as 3D, floating point, world coordinate (WC) pro-
cesses versus 2D, integer, texture coordinates (ITC) processes. Note

Figure 2: Different stages of our system, which takes as input one
3D mesh plus several 2D camera images and the corresponding
camera calibration parameters. Some processes operate in 3D,
floating point, world coordinates (highlighted in blue) whereas oth-
ers use 2D, integer, texture coordinates (in orange).

that our ITC are not the typical (u, v) floating point texture coordi-
nates.

The first stage which operates with WC, explained in Section 4.1,
is unfolding/unwrapping the 3D mesh using a zero-distortion ap-
proach. This creates a set of 2D patches which are later packed
efficiently so the resulting image is as compact as possible (see
Section 4.2). Section 4.3 elaborates on the last stage, which con-
sists in a WC to ITC mapping, and where the final resolution of the
resulting texture atlas is determined.

Before colouring the texture atlas resulting from the previous
steps, it is necessary to pre-process the input images obtained from
the camera setup. Section 4.4 is devoted to this stage, which removes
the background in the images so it is not included in the textured
model even if the volume of the 3D model is bigger than the subject,
as is usually the case due to the nature of the VH technique.

Section 4.5 explains the most important stage, and the one where
our main contribution resides: determining the colour of every pixel
in the texture atlas. This process blends RGB data from different
cameras to texture every triangle, but needs a previous rectifying
stage, which uses the zero-distortion unwrapping system mentioned
above. The blending itself is a customized interpolation which uses
the most influential cameras for each vertex and triangle, thus avoid-
ing discontinuities or visible seams in the textured model.

Lastly, to avoid any possible spurious inclusion of the texture atlas
background in the textured 3D model, which could happen with
renderers using bilinear (or bicubic) interpolation, it is advisable to
apply an additional step. Once we have the texture atlas completely
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coloured using our blending technique, we extend the shape of the
unwrapped patches using a nearest neighbour approach detailed in
Section 4.6.

3. Previous work

In the process of creating a realistic 3D model using several in-
put images to be used in the texture mapping process, it is very
convenient to create a single texture atlas where information from
the different images is packed together. This helps compile (and,
in some cases, also save) information in transmission or storage
scenarios, where we would otherwise need to send or save all the
images independently. Because of this, the creation of texture atlases
is a topic which has been very well studied [WLK*09]. However,
researchers and professionals do not agree on a common approach
when they create 3D models from real objects.

Every approach first checks which is the best camera for texturing
a determined region (group of triangles) of the mesh, and normally
bases this decision on a perpendicularity criterion. If this was the
only criterion taken into account, we could—and, most frequently,
would—have big discontinuities across neighbouring regions as-
signed to neighbouring cameras. These discontinuities can be due
to: (i) the perspective transformation present in every image, which
may lead to misalignments in the textured model; (ii) irregular il-
lumination conditions (see bottom row of Figure 1), as in general
cameras are not (jointly) colour-calibrated and surfaces are non-
Lambertian, which typically leads to big variations in colour and
very noticeable seams in the global texture and (iii) poorly recon-
structed 3D geometry which does not represent the model accurately.
Proposed techniques which solve these problems can be divided into
two big categories: image stitching versus image blending ones.

Image stitching techniques focus on solving the misalignment
problems by finding correspondences in areas where there is a
potential visible seam, and distorting iteratively the images to be
stitched until all the correspondences have been aligned. This is the
basic idea behind the approach proposed by Gal et al. [GWO*10],
where a labelling system is used to perform these local geometric
transformations. Their results are correct, but their iterative system
can be very time-consuming. Moreover, when the texture applied
has many high-frequency components and the geometry presents
errors, the system is unable to form a seamless montage. A simi-
lar approach is the one proposed by Aganj et al. [AMK10], where
the deformations applied to the input images come from estimat-
ing some displacement vectors by finding feature correspondences
among the images. Another interesting approach is the one pro-
posed by Lemptisky and Ivanov [LI07] to solve the problem using
a Markov random field mosaicing system, and a seam levelling
technique specially adapted to manifold 3D meshes. Although their
results are also good, and most of the artefacts are successfully re-
moved, some seams are still visible when small details are present
in different images. These methods are initially conceived to han-
dle misalignments, where they have a good performance. However,
they need to add a global colour correction stage to compensate
for different colour balance in different input images, which can
lead to visual colour seams in case of extreme lighting conditions.
Moreover, these techniques introduce some distortion in the images
which can be too severe in some cases, mainly in images with many

high-frequency components and especially if they are mapped onto
inaccurate geometry.

On the other hand, image blending techniques try to solve the
seam problems by merging the colour information provided by
two cameras using different criteria. For instance, in the system
proposed by Rocchini et al. [RCMS99], resampling is applied near
texture patch borders. A classic approach is the one introduced
by Baumberg [Bau02], where 2D image blending techniques are
extended to 3D. Another technique is the one developed by Allène
et al. [APK08], which first locates the seams very efficiently using
graph-cuts, and then applies pixel-wise colour correction across
neighbours with a multi-band image blending system. To obtain
a good result with image blending techniques, it is important to
consider the perspective distortion introduced in the images: for
instance, Wang et al. [WKSS01] propose a system focused on
perspective correction, which avoids aliasing thanks to a particular
weighting method specially designed for blending. One of the most
useful approaches is the one proposed by Callieri et al. [CCCS08],
which blends the information from several masks for obtaining
a reliable weighted colour contribution for every camera. These
masks represent geometry, topology and colour in every pixel
of the input images. This technique is focused on a colour per
vertex texturing approach, which is valid for models with high
polygonal resolution, but it can also produce a combined texture
atlas if a parametrization of the 3D model is available. All blending
techniques depend strongly on the calibration of the cameras,
particularly in the acquisition of the extrinsic parameters, which are
normally retrieved by feature matching algorithms. If these param-
eters are not very accurate, aliasing or ghosting effects are likely to
be very apparent in the final textured model. To solve this problem,
one can optimize the extraction of the extrinsic parameters using
a contour-based approach, as in Marroquim et al.’s [MPMdCO11]
work; or use the system proposed by Dellepiane et al. [DMC*12],
which computes the optical flow between two overlapping images
to correct the misalignment between them.

As in Callieri’s algorithm, our approach is based on an image
blending technique which, instead of focusing only on the areas
where a potential seam could appear, applies an image fusion tech-
nique across the whole mesh. This way, colour is balanced in the
whole 3D model, and there are no misalignments across mesh re-
gions. With this, we generate a combined texture atlas which avoids
the need of transmitting or storing a large set of images.

4. Proposed Technique: Detailed Explanation

4.1. Mesh unwrapping

Many texturing algorithms choose to create a texture atlas with
certain distortion due to the parametrization they use to map a
3D mesh onto a flat image. For instance, Floater [Flo97] uses a
method based on graph theory to create his parametrization, and
Lévy et al. [LPRM02] create theirs based on a least-squares approx-
imation of the Cauchy–Riemann equations. Instead, we decided to
perform a simple and efficient unwrapping technique which does not
introduce any distortion in the resulting texture atlas: every triangle
is translated to the texture atlas in proportion to its original size
in the 3D mesh. This is crucial for our colour blending technique
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described in Section 4.5, because it needs to rectify the projection
of each triangle onto each input image so that colour information
from different images is merged correctly, and our zero-distortion
unwrapping guarantees that the rectified/unwarped triangles will
have the exact same shape as the original 3D ones.

Although a zero-distortion approach could lead, if used carelessly,
to more visible seams in the textured model, this potential issue is
later solved with the image extension process at the last stage of our
system. This zero-distortion mesh unwrapping system has been very
useful in the design of an intertexture error measurement system also
developed by us [PFM11].

Before starting to unwrap the 3D mesh, which we assume to be
manifold, it is necessary to gather some topological information
about the mesh, e.g. triangle adjacency. Once this is done, Algo-
rithm 1 unwraps the 3D mesh onto a set of 2D patches.

Algorithm 1. 3D mesh unwrapping

Data: 3D mesh and triangle adjacency info
Result: a set of 2D patches representing the unwrapped

mesh
patches[] ← set which will store the 2D patches;
while there are triangles left do

currentPatch ← new 2D patch;
seed ← a random seed triangle is added to
currentPatch;
perimeter ← list of edges in the patch perimeter;
while there are available edges in perimeter do

edge ← we pick an edge;
tri ← we pick the triangle attached to edge
outside the patch;
if tri does not pass the efficiency growth test
then

mark edge as unavailable;
continue;

end
for all the edges in the perimeter do

currentEdge ← current edge;
if edges of tri intersect with currentEdge
then

mark edge as unavailable;
break;

end
end
if edge is still available then

add tri to the current patch;
update perimeter with the new edges;
mark tri as used;

end
end
insert currentPatch in patches[];

end

This algorithm starts by choosing a random seed triangle in the
mesh, whose edges are added to a variable called perimeter and
marked as ‘available’ by default, which is the state the algorithm
will check when the patch starts growing. As can be inferred from

Figure 3: Result of the block packing algorithm (patches are rep-
resented by their bounding boxes) [PAMB10].

the pseudo-code description, there is an efficiency growth test which
prevents the patch from having long octopus legs, and thus leaving
big empty gaps in the texture atlas. This test is performed with
every candidate triangle by controlling the relation between the area
of the patch and its bounding box, and keeping it as close to one
as possible. Thus, we keep the effective area of the texture atlas
reasonably close to the total area of the image.

One of the key points in Algorithm 1 is checking for possible
intersections among two or more edges in the same 2D patch when
a new triangle is added. Since an edge is defined by two vertices,
e.g. a and b, to see if two edges intersect, we equate the parametric
expressions of the lines supporting each edge/vector:

(x, y) = ai + ui(bi − ai) (i ∈ {1, 2}),

where ui are the two unknowns of this simple equation system. If
ui ∈ [0, 1], there is indeed an intersection, so the triangle is dis-
carded for the current patch.

4.2. Block packing

Once the entire 3D mesh has been unwrapped onto 2D patches, it
is important to find an efficient way of packing them so that they
do not take up too much space. Although optimally packing the
irregular shapes of the patches is possible, it is a very complex
task, which would require high computational resources. Because
of that, and because in the previous stage we have created compact
patches, we have chosen to pack, rather than the patches themselves,
their rectangular bounding boxes. This NP-hard problem has been
studied extensively and is known as the ‘pants packing’ (or ‘tetris
packing’) problem. Two of its best solutions are the ones proposed
by Huang and Korf [HK09], and by Murata et al. [MFNK95]. An
example of the specific use of block packing for texture mapping is
described by Sander et al. [SSGH01]. In our case, we have chosen
to implement a simplified version of their algorithm, where we fix
one of the dimensions and optimize the other. This way, we obtain
good results (as shown in Figure 3) while saving time.

4.3. Pixel mapping

At this point, we have already unwrapped and packed a set of 2D
patches, but they are still expressed in WC. The transition between
WC and ITC is what we call pixel mapping, and it is the process
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Figure 4: Pixel to triangle mapping [PAMB10].

which will determine the size of the final texture atlas. The user is
able to create a texture atlas which suits the specific requirements
of the application where it will be used later, or the transmission
conditions.

To go from WC to ITC, we create a square grid in WC, which
will represent 2D pixels, as well as a 2D array with the dimensions
of the final image, which will store important information for the
subsequent blending process: on which triangle t each pixel p lies.
This is used for calculating α, β and γ , the barycentric coordinates
of that pixel p with respect to that triangle t . Barycentric coordinates
are very useful, as they represent any pixel p inside a triangle t as a
convex sum of its three vertices a, b and c:

p = αa + βb + γ c (0 ≤ α, β, γ ≤ 1; α + β + γ = 1).

Besides, these same barycentric coordinates are also valid to
express P, the backprojected 3D point version of p, in terms of A,
B and C, the three vertices of the 3D triangle on which P lies. The
triangle t on which p lies is determined by checking if the centre
of p lies inside t . Partially covered pixels are also assigned to the
corresponding triangle, whether their centre lies inside t or not.
This differs from classic computer graphics approaches such as
Bresenham’s line drawing algorithm [Bre65], which discards less
than 50% covered pixels when determining which ones belong to a
line segment. In our case, however, since we do not want the back-
ground to be part of the texture, all pixels covered only partially by
an edge must be completely assigned to the corresponding triangle.

Figure 4 illustrates how this algorithm works:

� pixels with a dark green/blue centre are assigned to the green/blue
triangle because their centre lies on it;

� light green/blue pixels are also assigned to the green/blue triangle
because they are partially covered by it;

� yellow pixels could be assigned to either the green or the blue
triangle (it is just a matter of triangle processing order) because
they are partially covered by both;

� white pixels do not intersect any triangle, so they are assigned to
none.

Figure 5: Image pre-processing stage: input (left) and output
(right) images.

4.4. Image pre-processing

Due to the nature of the VH technique, the real 3D volume is a
subset of the reconstructed one, so the resulting model is always
slightly bigger than the original subject. This is even more notice-
able in setups with a reduced number of cameras, and can lead to
obvious texturing errors, since the background of the images can
be wrongly included in the effectively used pixels of the texture
atlas. Because of this, before starting to mix the colour information
from the input images, we pre-process them. This makes our system
more robust against occlusions and mesh inaccuracies, yielding per-
ceptually correct texturing results in potentially problematic mesh
regions.

We first erode the input foreground mask of each image to remove
any remaining background pixels from the silhouette contour. Then,
we apply the inpainting algorithm proposed by Telea [Tel04] over
the area defined by the eroded mask, but to modify only the pixels
labelled as background in the original (uneroded) mask (other in-
painting techniques could be used for this purpose). Figure 5 shows
the result of this pre-processing stage for two input images.

4.5. Pixel colouring

The most important step in our entire system is the one devoted to
colour blending. As mentioned above, our system mixes information
provided by different cameras, so it is very important to correct first
the perspective distortion of each triangle, as seen by each camera,
to avoid artefacts during blending.

We have used the scanline algorithm proposed by Wol-
berg [Wol90] which uses quadratic interpolation to avoid the
non-linearity due to perspective. This way, we make sure the same
3D point is used when colour information from its projection by
different cameras (i.e. from the corresponding pixels on different
images) are combined, regardless of perspective distortion.
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T
t

Figure 6: Occlusion test is performed for a particular vertex (e.g.
V or W), given a particular triangle (T ) and a particular camera
position (C).

Once unwarping is done, for every triangle T in the 3D mesh,
we assign a rating to each camera C. We could initially think that
the best criterion to rank the cameras is perpendicularity of their
principal axes to T . However, since we have unwarped the triangles,
we are not too concerned about perspective distortion, so a better
rating is the area (number of pixels) covered by T in the unwarped
image related to C. Moreover, before assigning the final rating, we
perform two important tests: the first checks if T is facing away
from C, and the second if any of the vertices of T is occluded by
another section of the mesh. In any of these two situations, a null
rating is assigned to C for T .

In our occlusion-checking algorithm, a (front-facing) triangle is
occluded if any of its vertices is occluded by another triangle; and a
vertex V is occluded by a triangle T in the image taken by C if the
projection of V lies inside t (the projection of T by C), and the plane
containing T lies between V and C (the position of C). Figure 6
illustrates the occlusion of a vertex by a triangle for a given camera:
V is occluded from C by T , but W is not.

Note that our system allows the user to manually assign a higher
rating to a specific camera to have it be more influential than the
others in some particular scenarios. For instance, when using the
multi-texturing technique described here within our humanoid re-
construction system, we usually increase the rating of the frontal
camera capturing the face of the subject, but only for those trian-
gles located in the facial region of the 3D mesh. This process is
automatic, since we use a face detection system based on the ap-
proach proposed by Viola and Jones [VJ01] to determine which is
the frontal camera.

If we were to calculate the final colour by mixing the RBG data
provided by the best N cameras (according to the previously de-
scribed rating), we would have a texture full of colour seams. Be-
cause of this, we need smooth transitions of the camera ratings along
the mesh, which we obtain by calculating vertex-camera ratings once
we have the triangle-camera ones. The vertex-camera ratings are the
ones assigned to each vertex for each camera, and are calculated by
averaging the triangle-camera ratings of all triangles sharing that
particular vertex, much like vertex normals are typically calculated
by averaging triangle normals.

To get the desired smooth transition of the camera ratings along
the mesh, we perform linear interpolation of vertex-camera ratings
inside each triangle, as shown in Figure 7 (note the similarity with
the popular shading technique by Gouraud). This yields a rating rij

Figure 7: Triangle- versus vertex-camera ratings [PBM13]. Left:
ratings calculated for each triangle independently (note the abrupt
transitions). Middle: ratings calculated for each vertex by averaging
the ratings of surrounding triangles. Right: detail of the ratings
calculated across two triangles with smooth transition.

for each pixel pi and camera j . Finally, we calculate the final colour
Clri of pixel pi as a weighted average of the colours provided by
each camera for Pi (the 3D point corresponding to pi), Clrij :

Clri =
(∑

j
rij · Clrij

) / (∑
j
rij

)
.

This last subprocess is of course the one which needs the most
time and computer resources. However, since it is repeated for each
pixel of the final texture atlas, we have also implemented a GPU
version of it, which significantly helps to improve the performance
of the algorithm.

4.6. Atlas dilation

Since most 3D renderers use bilinear or bicubic interpolation for
texture mapping, they normally use a square pixel window which
could wrongly include background colour information in their cal-
culations when the window is travelling along patch frontiers. This
would again result in visible seams, which is why, similarly to
what we do in the input image pre-processing stage described in
Section 4.4 (see also Figure 5), we include a final post-processing
step to dilate the 2D patches obtained from the unwrapping system.

We have used a morphological extension process which uses a
square structuring element to dilate the patch in all dimensions. The
colour assigned to each new pixel added is calculated using nearest
neighbour interpolation.

5. Results and Discussion

Although the technique presented in this paper was originally con-
ceived for texturing 3D meshes representing humanoids, within an
automatic avatar capture system, any reconstructed 3D mesh could
be textured using a set of images of the model taken from different
viewing perspectives.

5.1. Visual quality

The visual quality of the resulting textured models can be observed
in Figures 8–14. For instance, Figure 8 shows the reconstructed
model of a woman wearing a blouse with many creases in the back.
Our system is robust enough to handle these creases, and yields
smooth texture transitions between different mesh regions—in fact,
there are no ‘mesh regions’ any longer. Another two critical cases are

c© 2014 The Authors
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Figure 8: Seamless multi-texturing results for a woman’s body.
Note how the creases of her blouse are handled satisfactorily.

Figure 9: Seamless multi-texturing results for two men’s bodies:
complete 3D models with (left) and without (right) textures applied.

Figure 10: Details of the two textured 3D models from Figure 9. Top
row: striped T-shirt from the first model, seen from the back (left)
and front (right). Bottom two rows: facial section of the second
model, seen from several viewpoints.

illustrated Figures 9 and 10, which show the reconstructed models of
two men: the first was wearing a striped T-shirt, which was correctly
processed, avoiding aliasing (actually, in this case, the combination
of stripes and creases is very well handled); as for the second, we
have focused on the facial section of the 3D mesh, which is the
most important perceptually (note how, again, there are no visible
texturing seams, although the rating assigned to the frontal camera
was much higher than those assigned to the other cameras).

Figure 11 shows the improvements obtained by applying the pre-
processing stage described in Section 4.4, where the silhouette is
extended (original errors are marked in red).

As any other multi-texturing system, ours needs to find a com-
promise between seam correction and blurring: the maximum reso-
lution will be available when only one camera is used for texturing a
certain area of the mesh; however, in that case, seams will probably
appear all over the model. This problem is illustrated in Figures 12
and 13. The first one shows the difference between using just one
camera for each triangle, which leads to abrupt colour transitions,

c© 2014 The Authors
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Figure 11: Difference between applying and not applying the pre-
processing stage (original errors are marked in red).

Figure 12: Maximum number of cameras to be used in the image
blending process: one (top left), two (top right), four (bottom left)
and nine (bottom right).

and (at most) two, four and nine. As can be seen, there is almost no
difference between the two latter cases. That is because the number
of used cameras is just an upper bound and our system automatically
discards cameras with a null or very low rating. In the second figure,
we can see the effect of blurring when high-frequency components

Figure 13: High-frequency elements: difference between using a
maximum of one (top left), two (top right), four (bottom left) and
nine (bottom right) cameras.

Figure 14: Three versions of the same model with different triangle
counts: textured (top) and plain (bottom) 3D meshes.

are present in the input images. Again, the system is able to detect
the best number of cameras to minimize the blurring effect produced
by the bilinear interpolation, which acts as a low-pass filter, while
preserving correct blending between different areas of the mesh.

Another key asset of our system is its robustness with respect to
polygonal resolution. Figure 14 shows the result of applying our
multi-texturing process to a 3D mesh whose triangle count has been
reduced using a decimation approach based on quadric error metrics.
The texturing results themselves are as good for the very low quality
3D mesh as for the higher quality ones.

To test the performance of our algorithm, we compare its results
with the results obtained from two different techniques proposed
by Callieri, a multi-camera blending approach we already talked
about in Section 3 [CCCS08], and another technique which textures
each section of the mesh using just one single image [CCS02]. For
this, we have used a very high resolution facial 3D model acquired
using Beeler et al.’s [BBB*10] technique. This model has been
rendered from four different view points to obtain four images which
have been fed to the three texturing algorithms. Moreover, we have
reduced the number of polygons that the original model had (3.7M)
to 300k, 30k and 7k to be able to see the difference in performance
in every scenario. Figure 16 shows the visual results when every
model is rendered from a fifth different viewing perspective.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



R. Pagés et al. / Seamless, Static Multi-Texturing 9

Figure 15: 3.4 million triangle 3D mesh acquired using Beeler’s
approach [BBB*10] and used for testing the performance of our
algorithm.

Figure 16: Algorithm performance test. The first row shows the
plain input mesh with 300k, 30k and 7k triangles (from left to right).
Second row shows the three models textured using Callieri’s Masked
Photo Blending approach [CCCS08]. In the third row, models are
textured using another technique by Callieri et al. [CCS02]. The
last row shows our results. The value of the calculated PSNR in dB
between the original model (in Figure 15) and each corresponding
model is superimposed on each image.

In the first row of Figure 16, we see the plain input mesh in each
case: 300k, 30k and 7k triangles. The second row shows the result of
Callieri’s photo blending approach with a colour per vertex colour-
ing scheme. The third row shows the results of texture mapping
using just one image per section of the mesh. Finally, the fourth row
shows the result applying our multi-texturing approach.

Figure 17: Detail of the difference between the 7k triangle models
textured with [CCS02] (left) and our technique (right).

As most of the results are very similar, we have calculated the
PSNR value, in the 2D image domain (pixel-wise), between the
original mesh (shown in Figure 15, right) and the image obtained
by each texturing approach (in Figure 16), also rendered from the
same perspective. These values are superimposed on each case. As
it is possible to see, our approach obtains the best PSNR values in
every situation. When the polygonal resolution of the 3D model is
decreased, a colour per vertex scheme is not a viable solution, so
both texture mapping approaches get better results. All the models
in the third row exhibit lower brightness and contrast due to the
colour correction process applied by Callieri et al. [CCS02], which
sacrifices colour accuracy to improve continuity across different
regions. On the other hand, our per-pixel colour blending model
corrects colour transitions without altering the general brightness of
the model.

When observed from a close distance, the models which are
textured with our system look less blurred. This is illustrated
in Figure 17, where the eye detail is shown in one of Callieri’s
approaches and ours.

5.2. Computational cost

The first result of the multi-texturing technique we propose is an
obvious reduction of information needed for texturing the 3D mesh,
since instead of having one image per camera we use just one
texture atlas for the whole mesh. This compact representation not
only eases storage and transmission but also rendering because it
does not require writing custom fragment shaders to process input
from an a priori unknown number of original source cameras.

We have measured the performance of our system (the computer
we ran our tests on was equipped with an Intel Core i7-2600K
CPU with 16 GiB RAM, and an NVIDIA GTX 580 graphics card
with 1.5 GiB RAM) to evaluate the impact on processing time
of both the geometric complexity (i.e. the number of triangles)
of the input 3D mesh and the size (i.e. number of pixels) of the
output texture atlas. Figure 18 shows processing times for different
geometric resolutions of the same model, and a constant output
atlas size of 3 Mpx. As can readily be seen, the processing time
for the unwrapping phase grows quadratically with the number of
input triangles, while the processing time for the pixel colouring
phase remains almost unaffected, showing that the complexity of
the model is not so influential in the latter.

Conversely, Figure 19 illustrates the computational cost of the
pixel colouring phase for different sizes of the output atlas, us-
ing a single input model. In this case, the processing time grows

c© 2014 The Authors
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versus

Figure 18: Execution time (in seconds) versus input 3D mesh size
(triangle resolution is successively doubled) for a constant texture
atlas output size (3 Mpx).

versus

Figure 19: Execution time (in seconds) of both the CPU and GPU
implementations of our drawing algorithm versus texture atlas out-
put size.

linearly with the number of pixels of the output atlas. Besides, as
we explained in Section 4.5, the pixel colouring step is the one
which consumes the most processing resources and, as the colours
of different pixels can be determined independently, it is a perfect
match for a GPU implementation. Figure 19 shows a comparison
of the CPU and GPU implementations of our system with different
output atlas sizes, and leaves little doubts with regards to the ben-
efits obtained thanks to GPU programming, since the time cost is
significantly reduced.

6. Conclusions

We have developed an innovative, static multi-texturing system
which can help save data in storage and/or transmission scenar-
ios and, more importantly, yields good quality texture atlases. Our
system overcomes all the classical problems that multi-texturing
approaches face: it removes all noticeable seams due to texture
misalignments, irregular illumination, and presents smooth colour
transitions all over the whole texture atlas (and, therefore, all over
the textured 3D mesh), while minimizing the blurring effect.

Our system deals with many 3D reconstruction problems inher-
ent to VH-based techniques: the shape of the model is rarely re-
constructed accurately, since concavities are normally missing and
total volume is exaggerated. These issues make multi-texturing even
harder than it already is. However, our system solves these prob-
lems and yields realistic multi-textured models. The robustness of
our approach in non-optimal scenarios, where not very accurate 3D
meshes are used to model the shape of the subject, is one of its most

important features. Besides, when used for avatar reconstruction,
our system also provides handles to give more texture resolution to
the most important section of a humanoid: its face.

Our technique produces smooth colour transitions among dif-
ferent textured areas thanks to the nature of our colour blending
approach, which takes into account the weighted contribution of sev-
eral cameras in every triangle of the mesh. We can assume that there
will always be one dominant camera in the most important regions
of the mesh (in terms of number of triangles) and, in those cases,
the contribution of the other cameras will be minimized, while the
transition areas among these regions will have a more even camera
contribution. This will help to preserve the original colours present
in the original input images with a very smooth transition between
them, also minimizing the blurring effect. However, in cases where
the colour balance in these input images is very different, the colour
difference between areas will be noticeable. This limitation of our
system can be seen in Figure 12 (bottom row): although there are
no colour seams between areas, we can see a different tone in the
T-shirt, under the arm. This could be corrected by adding another
pre-processing stage to the pipeline to equalize the colour balance
of all input images, but this is something we wanted to avoid. An-
other possible solution could be assigning a lower rating to a certain
camera when there is a very noticeable colour difference among
images which should be similar.

Our system is specially good when the polygonal resolution of the
input 3D model is not very high. On the other hand, in cases where
the triangle count is very high (as the model presented in Figure 15) it
would be more memory efficient to use a colour per vertex approach,
which would be also interesting for a multi-resolution solution.

The techniques presented above have been used in a more
complete 3D human model reconstruction system [PBM13]. Be-
sides, we have used them as well to show how the results of
two different 3D facial model reconstruction techniques (based on
both passive [PAM11] and active [PM12] approaches) look after
multi-texturing.
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