Biomarkers and inorganic proxies in the paleoenvironmental reconstruction of mires: The importance of landscape in Las Conchas (Asturias, Northern Spain)

José E. Ortiz a,*, Ángeles G. Borrego b, José L.R. Gallego c, Yolanda Sánchez-Palencia a, Justyna Urbanczyk b, Trinidad Torres a, Laura Domingo d,e, Belén Estébanez g

a Biomolecular Stratigraphy Laboratory, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, Madrid 28003, Spain
b Instituto Nacional del Carbón (INCAR-CSIC), Ap. 73, Oviedo 33080, Spain
c Environmental Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres 33600, Spain
d Departamento de Geología Sedimentaria y Cambio Climático, Instituto de Geociencias (CSIC-UCM), Madrid 28040, Spain
e Departamento de Paleontología, Universidad Complutense de Madrid, Madrid 28040, Spain
f Earth and Planetary Sciences Department, University of California, Santa Cruz, CA 95064, USA
g Facultad de Ciencias (Biología), Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Darwin 2, 28049 Madrid, Spain

A B S T R A C T

We determined the lipid distributions (n-alkanes, n-alkan-2-ones, n-alkanoic acids), total organic carbon (TOC), total nitrogen (TN), Ca/Mg and ash content in Las Conchas mire, a 3.2 m deep bryophyte-dominated mire in Northern Spain covering 8000 cal yr BP. Bog conditions developed in the bottom 20 cm of the profile, and good preservation of organic matter (OM) was inferred from n-alkanoic acid distribution, with the exception of the uppermost 20 cm (last ca. 200 yr). Microbial synthesis of long chain saturated fatty acids from primary OM likely produced a dominance of short chain n-alkanoic acids with a bimodal distribution, as well as the lack of correspondence between the n-alkane and n-alkanoic acid profiles in the upper 20 cm. This was accompanied by an increase in ash content, a decrease in TOC and variation in n-alkane ratios, thereby suggesting significant changes in the mire, namely drainage and transformation to a meadow, in the last ca. 200 yr. The distribution of n-alkan-2-ones indicated an increase in bacterial source from the bottom of the record to 94 cm, whereas their distribution in the upper part could be attributed mainly to plant input and/or the microbial oxidation of n-alkanes. The different n-alkane proxies showed variations, which we interpreted in terms of changes in vegetation (Sphagnum vs. non-Sphagnum dominated phases) during the last 8000 cal yr BP. C_{23} was the most abundant homolog throughout most of the record, thereby suggesting dominant humid conditions alternating with short drier phases. However, such humid conditions were not linked to paleoclimatic variation but rather to geomorphological characteristics: Las Conchas mire, at the base of the Cuera Range, receives continuous runoff—even during drier periods—which is not necessarily accompanied by additional mineral input to peat, producing the development of Sphagnum moss typical of waterlogged ecotopes and damp habitats. Thus, although geochemical proxies indicated an ombrotrophic regime in the mire, geomorphological characteristics may make a considerable contribution to environmental conditions.

1. Introduction

Mires contain valuable lipid records that can be used to reconstruct past climate evolution, even during the Holocene when relatively subtle climate shifts occurred. Research into the behavior and nature of mires has provided insight into paleoenvironmental evolution, global climate change and the impact of human activity. Northwestern Spain contains a number of bogs that have developed on high plains relatively close to the coast (within 4 km). Organic geochemical studies of them have allowed reconstruction of humid and dry periods over the Holocene (Ortiz et al., 2010; López-Díaz et al., 2010a, 2013a). Of particular interest is that the mires in the region are located on the southern edge of the European Atlantic climate region and provide information on the paleoenvironmental evolution at the boundary with the
Mediterranean region. Located in the area, Las Conchas mire has particular geomorphological conditions that make it of interest for the study of the lipid content to infer paleoenvironmental conditions, thereby allowing comparison with other records for this region.

Biomarkers such as \(n \)-alkanes occur widely in peat samples from mires. The \(n \)-alkane content and distribution have been used to discriminate between Sphagnum (moss) vs. Erica (heather) input and in turn to reconstruct paleoenvironmental conditions linked to humid or drier climatic phases (Nott et al., 2000; Pancost et al., 2002; McLay et al., 2005; Nichols et al., 2006; Ortiz et al., 2010). \(n \)-Alkan-2-ones also occur in peat (Morrison and Bick, 1967; Lehtonen and Ketola, 1990; Xie et al., 2004; Nichols and Huang, 2007; Zheng et al., 2007; Ortiz et al., 2010; López-Díaz et al., 2013b). They may have diverse origins, including direct input from plants (Arpino et al., 1970; Volkman et al., 1981), microbial oxidation of \(n \)-alkanes (Cranwell et al., 1987; Ambles et al., 1993; Jaffe et al., 1993, 1996; van Bergen et al., 1998), microbial \(\beta \)-oxidation and decarboxylation of fatty acids (FAs; Volkman et al., 1983; Chaffee et al., 1986; de Leeuw, 1986; Quénéa et al., 2004) and bacterial material (López-Díaz et al., 2013b).

Like aliphatic hydrocarbons, \(n \)-alkanoic acids derive from plants and microorganisms, and their distribution can be used to distinguish between land plant and algal sources. However, selective degradation and diagenesis, including microbial degradation and synthesis of other compounds, commonly overprint \(n \)-alkanoic acid distributions (Cranwell, 1974, 1976; Kawamura et al., 1987; Haddad et al., 1992; Ho and Meyers, 1994).

The characteristics of mires condition the information provided by biomarkers in paleoenvironmental reconstruction. Ombrotrophic bogs receive water exclusively from rainfall and are characterized by the accumulation of peat in a raised mass over the groundwater table. In contrast, minerotrophic fens also receive water or upward diffusion of dissolved elements released by mineral weathering (Hill and Siegel, 1991; Shotyk, 1996a; Weiss et al., 1997). To identify the presence and extent of an ombrotrophic zone, the Ca/Mg ratio in the peat can be compared with that of rainwater, springs and rivers. The core was split in half longitudinally, photographed and described, and then sliced into 2 cm thick. Samples were freeze dried at -18°C by means of a lyophilizer (Moore and Hilbert, 1992; Esterle and Ferm, 1994) before analysis to prevent alteration of the OM.

Here we sought to contrast the information provided by organic geochemistry (TOC, atomic C/N ratio and lipid proxies) and the inorganic fraction (ash content, selected trace elements), together with geomorphological characteristics, to reconstruct paleoenvironmental conditions in mires. For this purpose we selected the record of Las Conchas mire, in the northwestern part of the Iberian Peninsula, which covers the last ca. 8000 cal yr BP. The ash content, C and N content of OM, and biomarkers, mainly \(n \)-alkanes, \(n \)-alkan-2-ones and \(n \)-alkanoic acids, were studied at high resolution to address OM sources and diagenetic processes. Also, the geochemistry of the mire water was compared with that of rainwater, springs and rivers.

3. Material and methods

3.1. Peat coring and sample preparation

A 3.2 m core was drilled in the central part of Las Conchas mire with a manual probe (5 cm diameter). The core was split in half longitudinally, photographed and described, and then sliced into portions 2 cm thick. Samples were freeze dried at -18°C by means of a lyophilizer (Moore and Hilbert, 1992; Esterle and Ferm, 1994) before analysis to prevent alteration of the OM.

The record consisted of bryophytic, spongy, reddish and brownish peat, with clearly recognizable plant remains. It was darker towards the bottom, except for the last few cm, which consisted of gray and light colored silt (Fig. 2). We refer to the horizons of the core by their depth (in cm) from top to bottom (e.g. level LC-230 is at 230 cm).

Samples were taken for radiocarbon dating, determination of ash content, total organic C (TOC) and total N (TN) contents, and lipid and trace element analysis. Additionally, living terrestrial plants were selected for lipid analysis.

3.2. Living plants

Living plants from the mire, including various mosses and stems from vascular plants (Table 2), were selected for lipid analysis. In order to avoid degradation and contamination, they were frozen immediately after collection. Prior to analysis, they were washed and classified. The mosses, including Sphagnum, and grasses (Gramineae) comprise the main plant inputs to the mire at present, although other plants, including Ericaceae, also contribute to peat composition. We selected the plant specimens on the basis of their current abundance in the mire (S. denticulatum, Gramineae, J. effusus and U. europaeus) and diversity (non-Sphagnum mosses). For other species of Las Conchas, we consider the results of Ortiz et al. (2011) from the neighboring peat bog of Roñanzas (only 1 km from Las Conchas, Fig. 1).

3.3. Radiocarbon dating

Peat samples (12) from various depths (Table 1) were sent to the “Centro Nacional de Aceleradores” (C.S.I.C., Seville, Spain) for radiocarbon dating. Samples were pre-treated with dilute HCl to remove carbonate and with NaOH to remove secondary organic
Fig. 1. Geographical and geological setting of Las Conchas and Roñanzas mires. Distance is in m. Sites in which water samples were collected are located on the map: (2) Spring in Cuera Range, (3) Tornu river, (4) contact zone between Las Conchas mire and the Cuera Range, (5) Las Conchas mire, (6) Roñanzas peat bog.
acids. Finally, they were acid rinsed to neutralize the solution prior to drying. C in the samples was reduced to graphite (100%), which was examined for 14C content with an accelerator mass spectrometer, and the radiocarbon age was calculated and calibrated using the CALIB 7.0 program (Stuiver et al., 2014) with the INTCAL 13 calibration curve (Reimer et al., 2013). All age values are in calibrated years BP (cal BP).

3.4. Ash content

A total of 78 samples recovered at 2 cm intervals of ca. 0.5–1 g peat was selected to determine ash content. Samples were placed in a porcelain crucible, dried at 110 °C for 3 h and weighed. They were then heated at 900 °C in a muffle furnace for 3 h and weighed. The ash content (% dry wt) is the weight of the sample heated at 900 °C divided by the dry weight after heating at 110 °C.

3.5. TOC, TN

The same 78 samples were selected for C, H and N analysis, performed with a LECO CHN apparatus after removing carbonate via addition of HCl.

3.6. Lipid extraction and analysis (biomarker analysis)

Another set of 78 samples from the core was used. Between 0.2 and 0.7 g dried sample were ground, and biomarkers extracted using accelerated solvent extraction (Dionex ASE 200). Free lipids were extracted with dichloromethane (DCM)/MeOH (2:1) at 1500 psi and 175 °C. The heating phase was 8 min and the static extraction time 5 min. Living plants were prepared following the same procedure.

The extract was concentrated using rotary evaporation. Prior to analysis using gas chromatography–mass spectrometry (GC–MS), samples were methylated with trimethylsilyldiazomethane and silylated with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and pyridine at 70 °C for 2 h. Samples were injected into an HP 6890 gas chromatograph equipped with a selective mass detector (HP 5973) and an ATM-5 column (25 m x 0.25 mm; 0.20 μm). He was the carrier gas and decafluorobiphenyl an internal standard. The oven temperature was programmed from 60 to 300 °C (held 20 min) at 6 °C/min, and the injector was maintained at 275 °C. Components were identified with the Data Analysis programme and the Wiley Library. Although other compounds were identified in the samples, we focused this study on n-alkanes and other compounds.
n-alkanoic acids; n-alkane distributions were obtained from the m/z 57 chromatograms (base peak), the n-alkan-2-ones from m/z 59, and the n-alkanoic acids from m/z 74.

3.7. Multi-element inorganic analysis

The same set of 78 representative samples was dried at 40 °C in order to minimize loss of volatile elements (Hg, As), then softly hand milled and homogenized with an agate mortar and pestle, mechanically split (riffle) to obtain a representative sample, and pulverized again to at least 85% passing 200 mesh (75 μm). All utensils were thoroughly cleaned with EtOH between samples. The samples were analyzed at Activation Laboratories Ltd. (Actlabs; Ancaster, Ontario, Canada). Actlabs is an ISO (International Organization for Standardization) 17025 (Lab 266) and NELAP (National Environmental Laboratory Accreditation Program; Lab E87979) accredited lab for specific registered tests. For QA/QC (quality assurance/quality control), Actlabs systematically inserts standards, duplicates and blanks into every sample batch. In this case, the samples included data on eight compositionally different standards with well defined element concentrations. In addition, duplicate samples were routinely analyzed. In brief, an aliquot (1 g) of sample in an open Teflon reactor was subjected to addition of a mixture of HNO₃, HClO₄, HCl and HF. This results in “near total” digestion to achieve the greatest degree of sample dissolution without fusing the sample.

After evaporation to dryness, the residue was dissolved in HCl and diluted with distilled water. The solution was analyzed by way of inductively coupled plasma-mass MS (ICP-MS).

3.8. Water characterization

Composite water samples were collected during summer from rainfall, a spring located in the Cuera Range, a river (Tormu), the surface of Las Conchas mire (at the contact with Cuera Range and at the other edge of the mire) and Roñanzas mire (Fig. 1), without disturbing the sediment. Laboratory-cleaned sample bottles were used for this purpose. The pH and conductivity were monitored using a BASIC 20 pH meter and an EC Meter BASIC 30+, respectively [both from Crison (Barcelona, Spain)]. The main cations and anions were determined using ion chromatography (Metrohm 883 Basic IC Plus). TOC was measured with a TOC-V CSH Analyzer (Shimadzu, Kyoto, Japan).

4. Results

4.1. Chronology

The age values are shown in Table 1. An age-depth model was constructed by means of a 3rd order polynomial interpolation (Fig. 3), which was the one that best fit (highest correlation coefficient), taking into account maximum probability intervals at a 2 σ range, which is considered a robust statistical value (Telford et al., 2004). For the chronological model, the sample taken at 186.4 cm was excluded because of the high mineral content (35%) observed in nearby levels (Fig. 2C), which may indicate the reworking of OM. This approach allowed calculation of the age of undated intermediate horizons using the chronological scale in Fig. 2. The results indicate that the core covered the last ca. 8000 cal yr BP. The accumulation rate was 0.5 mm/yr from 6500 to 500 cal yr BP, coinciding with other Asturian mires (cf. López-Días et al., 2013a). However, the sedimentation rate was lower in the uppermost 25 cm, probably due to gaps that were not possible to detect, and at the bottom (315–290 cm), because of compaction.

4.2. Ash content (% dry wt)

The lithological description of the profile and ash content, the latter reflecting the mineral fraction of the record, is shown in Fig. 2C. In general, the ash content was low (<3%), with the exception of the bottom (312–294 cm), which was characterized by an interval of light gray silt with high mineral matter content (ash > 10%). Likewise, in the upper 20 cm, the ash content was >5%, reaching values as high 9.6%. Of note, some levels (190 cm, 138 cm) were excluded because of the high mineral content (35%) observed in nearby levels (Fig. 2C), which may indicate the reworking of OM.
The concentration of TOC was between ca. 7% and 30% at the bottom (320–300 cm) and increased sharply upwards to between 53% and 58% (Fig. 2A). A high carbon concentration (66%) at 207 cm probably reflected a contribution from charcoal. TOC decreased in the upper 20 cm, with values ranging from 47% to 49%. Atomic C/N values in the mire were between 15 and 20 in the interval 3.16–3.06 m and in the upper 20 cm (Fig. 2B). In the rest of the core, values exceeded 25, reaching a maximum at 206 cm (48.2).

4.4. Lipids

The distributions of n-alkanes, n-alkan-2-ones and n-alkanoic acids are shown in Figs. 4 and 5.

4.4.1. n-Alkanes

Typical chromatograms from selected samples are shown in Fig. 4. All the samples showed a predominance of odd n-alkanes, with a distribution ranging mainly from C_{17} to C_{31} or C_{35}, and a bimodal distribution maximizing at either C_{23} (Fig. 4A) or C_{31} (Fig. 4B).

The values of various indices, namely the predominant n-alkane chain, average chain length (ACL), aquatic macrophytes proxy (Paq), C_{29}/C_{29} ratio and modeled C_{29}/C_{29} ratio (Pancost et al., 2002), are shown in Fig. 5. Most of the samples showed a maximum at C_{23} or C_{31} (Fig. 5A), suggesting a distinct origin of the OM. For only 3 samples (178 cm, 174 cm, and 66 cm) was C_{25} the most abundant n-alkane, while another 3 samples had maxima at C_{29} (312 cm, 308 cm, 294 cm). Considerable oscillations were apparent in the ACL profile, calculated as \((\sum_{i=1}^{n} C_{i} + C_{n/2} + \ldots + C_{2})/n\), with \(i = 13, n = 33\), (Fig. 5B), i.e. values varied between the marked minimum at 182 cm (23.20) and the maximum at 18 cm (29.85). The oscillations showed good inverse correspondence with the other indices (Paq, C_{23}/C_{29}, C_{25}/C_{29}, and modeled C_{29}/C_{29}).

The Paq values, calculated as \((C_{23} + C_{25}/C_{23} + C_{25} + C_{31})\), oscillated between 0.12 at 14 cm and 0.96 at 182 cm (Fig. 5C), showing a similar profile to the other n-alkane ratios, especially the modeled C_{23}/C_{29}. The C_{29}/C_{29} ratio also showed several oscillations (Fig. 5D), with values <1 at 312–302 cm, 296–294 cm, 288–274 cm, 260–258 cm, 224–222 cm, 180–174 cm, 152–146 cm, 96–94 cm, 68–62 cm and 48–0 cm. Similar oscillations were apparent in both C_{25}/C_{29} and modeled C_{25}/C_{29}, expressed as \([-0.0151 (C_{25}/C_{29}) + 0.1144 (C_{25}/C_{29})^{3} - 0.3916 (C_{25}/C_{29})^{2} + 0.8996 (C_{25}/C_{29}) - 0.0455\] (Fig. 5E).

4.4.2. n-Alkan-2-ones

The n-alkan-2-ones ranged mainly from C_{17} to C_{19} to C_{35}, with a strong odd predominance. In almost all the samples, there was a bimodal distribution, maximizing mainly at C_{19} (Fig. 4C) or C_{27} (Fig. 4D); in some samples they centered on C_{25} or C_{31}. In general, there was a clear predominance of C_{27} in most of the record (312–94 cm; Fig. 5F). In contrast, in the uppermost 94 cm, C_{27} was most abundant, with some exceptions where C_{25}, C_{31}, C_{21} and C_{19} were predominant.

4.4.3. n-Alkanoic acids

All samples showed a strong even predominance, with a distribution ranging mainly from C_{12} to C_{34} and maximizing at C_{24} or C_{26} (Fig. 4F) along the profile (Fig. 5G). However, the uppermost 20 cm showed a maximum at C_{16}, with a bimodal distribution (Fig. 4E), and at 304 cm C_{20} was most abundant.

4.5. Lipid biomarkers in living plants

Coinciding with the analysis of living plants in the Roñanzas peat bog by Ortiz et al. (2011), U. europaeus and J. effusus maximized at C_{29} alkane, whereas in Gramineae C_{31} and C_{27} were the most abundant. Mosses exhibited a greater predominance of higher molecular weight n-alkanes, mainly C_{31} (3 samples) and C_{29} (Table 2), with the exception of the species of Sphagnum, which maximized at C_{25}, coinciding with the results of previous studies (Baas et al., 2000; Nott et al., 2000; Pancost et al., 2002; Nichols et al., 2006; Ortiz et al., 2011; Bush and Mcinerney, 2013). These findings thus show that the predominant n-alkane in most of Sphagnum moss species is C_{32}, while in other plants long chain n-alkanes are the most abundant.

n-Alkan-2-ones were found at significantly lower concentration than n-alkanes in living plants (between 4 and 20 times less abundant) and ranged from C_{25} to C_{31}, with an odd predominance (Table 3). Those in mosses, including Sphagnum spp., maximized at C_{25} or C_{27}. Gramineae maximized at C_{27} or C_{31}, Ericaceae species at C_{29} and C_{27} (Ortiz et al., 2011) and C_{21} was the most abundant in U. europaeus and J. effusus stems. In contrast, Ortiz et al. (2011) showed that the predominant n-alkan-2-one in U. europaeus and J. effusus stems were C_{27} and C_{29}, respectively. These differences may be attributed to seasonal changes in temperature and/or humidity conditions, which affect the lipid distribution, at least of n-alkanes (cf. Bush and Mcinerney, 2015). In fact, the n-alkan-2-one concentrations measured here in these two species were higher than those reported by Ortiz et al. (2011).

Most of the living plants maximized at C_{24} and C_{26} alkanolic acids (Table 4), with the exception of U. europaeus, in which C_{25} was most abundant. The findings are in agreement with those of Ortiz et al. (2011). Flowers of J. effusus and white beak-sedge (Rhynchospora alba) also maximized at C_{22}.

4.6. Ca/Mg

Ca and Mg concentrations were used to calculate the Ca/Mg molar ratio, which showed values <1 in the lowest 20 cm (Fig. 2D), coinciding with gray and light colored silt derived from the weathering of quartzite. After a sharp increase to 6.3 (295 cm), the values decreased gently to ca. 1.0, although in the upper part of the record (40 cm) they reached ca. 3.0.

4.7. Geochemistry of water

The pH, conductivity, main anions and cations, total carbon, TIC and TOC concentrations are shown in Table 5.

5. Discussion

5.1. Characterization of the mire

The concentration of TOC is a fundamental proxy for describing OM content of sediments (Meyers, 2003). It reflects the OM that escapes mineralization during sedimentation, and is influenced by both the initial production of biomass and subsequent degree of degradation. The ash content reflects the inorganic material in sediments, and it is usually employed, together with TOC, to determine the characteristics of mires, i.e. the ash content of ombrotrophic peat is generally low, the mineral fraction being supplied exclusively by atmospheric deposition; in contrast, minerotrophic bogs receive extra mineral nutrients from groundwater and mineral soil.
Fig. 4. Typical chromatograms from selected samples in Las Conchas record. (A) and (B) n-alkanes; (C) and (D) n-alkan-2-ones; (E) and (F) n-alkanoic acids. Sample maxima: (A) C$_{23}$ n-alkane; (B) C$_{31}$ n-alkane; (C) C$_{19}$ n-alkan-2-one; (D) bimodal distribution between C$_{27}$ and C$_{19}$ n-alkan-2-ones; (E) bimodal distribution between C$_{16}$ and HMW n-alkanoic acids; (F) C$_{24}$ n-alkanoic acid. n-Alkane distributions were obtained from the m/z 57 chromatograms (base peak), the n-alkan-2-ones from m/z 59, and the n-alkanoic acids from m/z 74.
water (Shotyk, 1988, 1996a). In ombrotrophic peat, the ash content is <5% by weight (Naucke, 1990; Steinman and Shotyk, 1997; Weiss et al., 2002), typically in the region of 1–3%.

The lower concentration of TOC at the bottom of the record coincided with the increase in detritic sediments (mainly lutite) and ash content (>10%). The sudden increase in TOC (from 7–30% to 55%) and decrease in ash content (from 80% to <3%) at 294 cm marked a dramatic change in the sedimentary record, with the predominance of peat and the establishment of bog conditions.

Despite the relatively abundant inorganic material in two samples (190 cm, 96 cm), the ash content between 294 cm and 18 cm (<3%) was within the typical range for ombrotrophic peat bogs (cf. Naucke, 1990), which was confirmed by the TOC values (Fig. 2A). Moreover, the high TOC concentration, together with the scarce variation from 294 cm to the upper 20 cm top of the core, and low ash content indicate a slow OM decay rate (Meyers and Ishiwatari, 1993; Meyers and Lallier-Verges, 1999), supporting the idea that the ash content reflects in most part of the profile the
minerals originally deposited in the mire, with no posterior input or transformation.

However, in the uppermost 20 cm, the ash content increased, reaching values up to 9.6%, while TOC slightly decreased. Elevated concentrations of mineral matter in the surface layers of bogs (Le Roux and Shotyk, 2006) have been attributed to the following: a change in peat accretion rate (Steinmann and Shotyk, 1997); peat decomposition and humification (Zaccone et al., 2012); variation in the rate of deposition of atmospheric soil dust (Shotyk, 2001; Zaccone et al., 2012) sometimes produced by local human activity, or significant input of volcanic ash (Dugmore and Newton, 1992; Wastegard et al., 2003). Also, higher ash content may indicate a temporary drying of the bog surface in response to local land use practices, such as extensive forest clearing or grazing (Steinmann and Shotyk, 1997).

Also, mires are usually classified as ombrotrophic or minerotrophic on the basis of a comparison of the Ca/Mg ratio of the peat with that of local rainwater (Shotyk, 1996b; Steinman and Shotyk, 1997; Weiss et al., 1997). The assumption is that peat with a value lower than, or comparable to, rainwater is ombrotrophic; otherwise, the peat has an additional, non-atmospheric source of Ca²⁺ and is therefore minerotrophic. In the mire, Ca/Mg values (Fig. 2D) were lower than those of rainwater (7.2), which is typical and was followed by stable conditions for the remaining Holocene.

The establishment of bog conditions in Las Conchas began ca. 8000 cal yr BP. Some mires in Northern Spain also started to develop at the same age (cf. Martínez-Cortizas et al., 2009; López-Días et al., 2010b, 2013a; Ortiz et al., 2010). Other studies also support high lake water levels during the early to mid-Holocene, even in the warmer and drier Mediterranean realm of the Iberian Peninsula (Roca and Juliá, 1997; Giralt et al., 1999; Reed et al., 2001). Thus, the end of the Last Glacial Maximum (LGM) and start of the Holocene brought about an improvement in climate (warmer and more humid), which favored the formation of mires in Northern Spain (Pontevedra-Pombal et al., 2006). In fact, based on quantitative climate reconstruction from over 500 pollen sites, Davis et al. (2003) indicated that the final disappearance of residual LGM ice in Europe occurred around 7800 cal BP and was followed by stable conditions for the remaining Holocene.

n-Alkane profiles are used to distinguish the source of OM—agal, aquatic or terrigenous—and each sample can be characterized by the predominant n-alkane chain.

In mire-forming plants, there are clear differences in the n-alkane distribution of Sphagnum species, which are usually linked to more humid conditions, and non-Sphagnum species (Table 2). Coincident with Baas et al. (2000), Nott et al. (2000), Pancost et al. (2002), Nichols et al. (2006) and Ortiz et al. (2011), the predominant n-alkane in most Sphagnum moss was C₂₃, while in other plants, like in the Gramineae, Ulex, Juncus, Erica and Calluna, C₁₇ was the most abundant. Of note, most mosses, with the exception of S. denticulatum, maximized at long chain n-alkanes (Table 2). Also, in some Sphagnum species (e.g. S. capillifolium, S. magellanicum, S. cuspidatum), there was a bimodal distribution, with a second maximum at C₃₁ (Baas et al., 2000; Nott et al., 2000; Pancost et al., 2002). Given that the n-alkane profiles of Sphagnum (maximizing at C₂₃) and other plants (predominance of C₂₉) differ, the predominant n-alkane chain distribution in Las Conchas record (Fig. 5A) could serve as indicator of changes in vegetation and environmental conditions.

Sometimes, even in Sphagnum-dominated peat, the n-alkane distribution may be influenced by other taxa, and the environmental interpretation can be misleading (Schellekens and Buurman, 2011; Andersson et al., 2011). In addition, the n-alkane contributions of the various species differs, as observed in the higher abundance of n-alkanes in erics compared with other peat-forming plants (Pancost et al., 2002; Ortiz et al., 2011; Huang et al., 2012). Moreover, in peat with a relatively low contribution from Sphagnum, some n-alkane indices reflect the degree of decomposition rather than climatic conditions (Schellekens and Buurman, 2011). In Las Conchas, the contribution of non-Sphagnum plants seems to be limited, i.e. the predominance of C₂₃ alkane (typically derived from Sphagnum) in the record suggested that other species did not make a major contribution to peat. Only in some intervals, especially in the upper 40 cm, did other plants seem to have a greater input to the mire.

The mire showed significant and high correlation coefficient values (R > 0.69; Table 6) between long chain n-alkanes (C₂₇-C₂₉, C₂₅-C₂₇, C₂₃-C₂₅ and C₂₁-C₂₃), thereby indicating that these compounds had a related origin, mainly from Ericaceae, Graminaceae and other plants. However, it cannot be ruled out that this good correspondence might be determined by a superimposed process (e.g. decomposition). In contrast, the correlation coefficients between C₂₂ and high molecular weight (HMW) n-alkanes (C₂₇, C₂₉, C₃₁ and C₃₃) were inverse (R < -0.25), indicating a different OM source, mainly Sphagnum.

The predominant n-alkane chain record (Fig. 5A) showed a dominance of C₂₃ along the profile, revealing a major abundance of Sphagnum species and humid conditions, with some intervals with C₂₉ dominant, especially in the uppermost 40 cm, which is linked to the predominance of other taxa, possibly Graminaceae and erics. The upper part of the record indicated changes in the last ca. 200 yr (20 cm), possibly due to anthropogenic influence (change in the use of soil, deforestation, construction of a trail). In fact, at present, the mire is a meadow devoted to livestock grazing, grasses being very abundant.

A similar but more accurate interpretation can be made by considering other n-alkane indices: ACL, Paq index, C₂₃/C₂₉ ratio and modeled C₂₃/C₂₉ n-alkane ratio. The latter proxy is perhaps the one in which transitions are most clearly defined. The use of the

<table>
<thead>
<tr>
<th>Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>General characterization of water samples (all values are an average of 3 measurements on distinct replicas; Samples locations in Fig. 1).</td>
</tr>
<tr>
<td>Rainwater (1)</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Conductivity (μS/cm)</td>
</tr>
<tr>
<td>Ca²⁺ (mg/l)</td>
</tr>
<tr>
<td>Mg²⁺ (mg/l)</td>
</tr>
<tr>
<td>(Ca/Mg)calc</td>
</tr>
<tr>
<td>HCO₃⁻ (mg/l)</td>
</tr>
<tr>
<td>TC (mg/l)</td>
</tr>
<tr>
<td>TIC (mg/l)</td>
</tr>
<tr>
<td>TOC (mg/l)</td>
</tr>
</tbody>
</table>
ACL has been proposed as a better proxy for discriminating between the predominance of low MW (LMW) vs. HMW n-alkanes (Pancost et al., 2002).

Ficken et al. (2000) proposed the Paq index to determine the input of submerged/floating aquatic macrophytes, which maximize at C_{23} and C_{25}, relative to the emergent and terrestrial plant input to lake sediments. Given that the ratio compares the abundance of medium chain n-alkanes with the sum of the abundance of medium and long chain n-alkanes and that Sphagnum species have n-alkane profiles similar to those of aquatic macrophytes (Ficken et al., 2000; Baas et al., 2000; Nott et al., 2000; Pancost et al., 2002; Nichols et al., 2006), Nichols et al. (2006) proposed its use for the determination of the relative abundance of Sphagnum vs. other bog-forming plants.

Nichols et al. (2006) used the C_{23}/C_{29} n-alkane ratio to discriminate between major Sphagnum input vs. other plant inputs, as C_{29} is relatively scarce in Sphagnum but abundant in other species. However, as the ratio does not represent two pure end members, the authors proposed a correction based on the mean n-alkane distribution of Sphagnum and non-Sphagnum plants in order to reduce interference. The modeled C_{23}/C_{29} n-alkane ratio is indicative of the abundance of Sphagnum relative to that of other plants in peat.

Good inverse correspondence was observed between ACL and Paq, C_{23}/C_{29}, and modeled C_{23}/C_{29} (Fig. 5E), and it was possible to identify distinct Sphagnum vs. other plant inputs and thus paleoenvironmental episodes related to alternating drier (D) and more humid (H) conditions in the record (cf. Ficken et al., 2000; Baas et al., 2000; Nott et al., 2000; Pancost et al., 2002; Nichols et al., 2006; Ortiz et al., 2010). Castro et al. (2015) described the ecological characteristics of typical peat-forming plants in NW Spain and identified 3 groups of taxa on the basis of their behavior: (a) species of waterlogged ecotopes (Sphagnum spp., including mainly S. denticulatum, and one species of sedge and another of rushes), (b) species adapted to fluctuating water table level but with a preference for damp habitats (many Sphagnum, some sedges and grasses) and (c) indicator species of drier heath conditions (mainly Ericaceae).

Thus, three main episodes, interpreted as periods of increasing humidity because of predominance of C_{23}, linked to the increase in Sphagnum-like species (mainly S. denticulatum), were established (270–190 cm [6000–4000 cal yr BP], 175–150 cm [3700–3300 cal yr BP], 145–40 cm [3200–1000 cal yr BP]). These alternated with another 4 dominated by C_{31}, which were associated with the development of other plants (316–270 cm, 190–175 cm, 150–145 cm, and 40–0 cm) and would indicate drier conditions.

5.3.2.1. Geomorphological control

Surprisingly, humid conditions were common in most of the record, covering mainly from 6000 cal yr BP to ca. 1000 cal yr BP, although with some drier episodes and with the exception of the last 1000 yr. This interpretation does not correlate with the paleoenvironmental conditions interpreted for the neighboring Roñanzas peat bog (Ortiz et al., 2010; López-Días et al., 2013a), located only 3 km west of Las Conchas.

In our view, the geomorphological characteristics of Las Conchas mire arose from a continuous input of water from the Cueria Range, even during drier periods. In fact, there is evidence of surface runoff in the mire (Fig. 1): some streams begin at the hinge of the steep slope of the Cueria Range with the flat surface of the mire. In contrast, the Roñanzas peat bog is separated from the Cueria Range by a steep valley (Fig. 1) and rainfall is therefore the sole source of water for that mire.

Despite the continuous input of water derived not only from rainfall but from the Cueria Range, no significant modification in ash content or TOC occurred along Las Conchas record. This observation can be explained by the fact that water comes from superficial runoff and an epikarst, with short residence time and therefore does not become enriched in dissolved ions, which would have precipitated in the mire.

This hypothesis was confirmed by the hydrochemistry of rainwater, groundwater from the Cueria Range aquifer and water from Tornu river, which passes through carboniferous calcareous formations, Las Conchas mire and Roñanzas peat bog (Table 5). It seems that groundwater from the Cueria Range does not feed Las Conchas, as it showed higher concentrations than water from the mire, the lower TC and TIC values for the latter being particularly notable. In contrast, runoff water from the contact of the Cueria Range and Las Conchas mire showed similar concentrations to those of the mire.

Furthermore, hydrochemistry differed between Las Conchas mire and Roñanzas ombrotrophic bog, in spite of both being located over quartzite of the same formation (Fig. 1), i.e. inorganic carbon was present in Las Conchas water, but was absent from Roñanzas; concordantly, Ca and HCO₃ were higher in the former mire, thereby indicating input of water from runoff, in addition to rainfall. However, the total concentration of ions was low and did not make a significant contribution to the mineral content of Las Conchas record.

On the whole, we consider that Las Conchas mire cannot be considered an ombrotrophic bog sensu stricto (as the ash content, TOC and Ca/Mg values would suggest), because water input does not derive exclusively from rainfall, in spite of the low mineral content along the record.

5.3. Degradation of OM

The loss and degradation of OM is discussed on the basis of n-alkanoic acids and n-alkan-2-ones concentration and atomic C/N values.
5.3.1. n-Alkanoic acids

Almost all samples from 312 to 20 cm peaked at C_{24} and C_{26} (Fig. 5G). Given that C_{24} or C_{26} predominates in Sphagnum species (Baas et al, 2000; Pancost et al, 2002) and that the C_{24} alkanolic acid is also the most abundant homolog in other plants (Table 4), such as heather, rush, sedge and other mosses (Pancost et al., 2002; Ortiz et al., 2011), we cannot draw any conclusion about the origin of these compounds on the basis of the predominant n-alkanoic acid chain log.

The predominance of C_{16} in the uppermost 20 cm, in which C_{31} was the most abundant n-alkane, might be attributable to microbial synthesis of secondary FAs from primary OM, leading to the production of short chain homologs (cf. Kawamura et al., 1987). In fact, a bimodal distribution was observed for these samples, thereby indicating a certain degree of degradation. According to Zheng et al. (2007) climate can influence the n-alkanoic acid signal, as microbial activity increases during warm and wet periods, while under a cold and dry climate microbial degradation and diageneis of OM are slowed (Kuder and Kruege, 1998). In the upper 20 cm (ca. last 200 yr), LMW n-alkanoic acids prevailed, coinciding with global warming that started in the second half of the 19th century (Jones et al., 2001, 2009). However, if climate was the main driving force of the concentration of LMW n-alkanoic acids, this would have been reflected in other parts of the profile, since important paleoenvironmental changes have been recorded during the last 8000 cal yr in the northern Iberian Peninsula (cf. Martinez-Cortizas et al., 1995, 2009; Ortiz et al., 2010; López-Días et al., 2013b). This was not the case as the predominant n-alkanoic acid chain did not show significant variation. The acr boiling-cation-exchange boundary is located at this depth and may support a richer bacterial community grazing on OM during the more oxidizing periods. Changes in land use as a result of livestock farming and deforestation, which were particularly important in the 19th and 20th centuries in the region (Suárez Antuña et al., 2005), and the construction of a trail may have favored recent drainage of the bog, permitting oxidation of OM. In fact, at present, Las Conchas mire is a meadow in which grass is very abundant, thus producing a predominance of C_{18} alkane in the upper part of the record. Likewise, the decrease in TOC at the top of the record might be attributable to carbon loss linked to the oxidation of OM (Sternberg et al., 2007). However, abundant livestock that grazes on the mire may have also influenced this parameter, together with the increase in TN in this part of the record. Furthermore, the ash content increased from around 2.5% to 9.6% in the upper 20 cm. All these features may contribute to the slowing down of peat development in the last 20 cm, which may also cause this part of the record to be seasonally exposed, thereby subjecting OM to greater degradation.

Given that n-alkanoic acids are more sensitive to alteration and degradation than n-alkanes (cf. Meyers and Ishiwatari, 1993) and that we did not observe parallel changes in the n-alkane profiles, we deduced that no significant degradation of n-alkanoic acids occurred from the bottom of the record to 20 cm.

5.3.2. n-Alkan-2-ones

n-Alkan-2-ones provide information about OM sources and its preservation in sediments. HMW n-alkan-2-ones between C_{23} and C_{31} are present in all species of Sphagnum, maximizing at C_{27} (Morrison and Bick, 1967; Baas et al., 2000; Nichols and Huang, 2007; Ortiz et al., 2011). Although these compounds have been cited only in Sphagnum moss, here (Table 3) and previously (Ortiz et al., 2011), we observed other peat forming plants with n-alkan-2-ones peaking at C_{25}, C_{27}, C_{29} and C_{31}.

However, according to Ambiéls et al. (1993), Jansen and Nierop (2009) and Ortiz et al. (2011), direct input of n-alkan-2-ones from plants is not the dominant contributor to the distributions in certain soils and peatlands. Thus, long chain alkane-2-ones have other possible sources, including microbial oxidation of the corresponding n-alkanes (Ambiéls et al., 1993; van Bergen et al., 1998) and microbial β-oxidation and decarboxylation of FAs (Püttmann and Bracke, 1995), especially in peatlands, in which microbial activity can be significant (cf. Lehtonen and Ketola, 1990; Zheng et al., 2007). On the basis of the higher δ^{13}C values of n-alkane-2-ones compared with n-alkanes, López-Díaz et al. (2013b) suggested that bacterial activity could be a greater contributor of alkane-2-ones to peat than the other two sources. In fact, some taxa of bacteria produce alkane-2-ones via the metabolism of FAs (Lawrence, 1966), fatty alcohols (Hou et al., 1983) and alkanes (Forney and Markovets, 1971). Many taxa of fungi, which also produce alkane-2-ones via an abortive β oxidation sequence (Forney and Markovets, 1971), could be responsible for the predominance of C_{16}. Recently, Schellekens et al. (2015c) indicated that C_{19} was the dominant homologue in the moss Hypnum cupressiforme, suggesting that non-Sphagnum moss could be the source of this compound.

In Las Conchas, there was a predominance of C_{19}, from the bottom to 94 cm, whereas in the upper part of the record, alkane-2-ones maximized mainly at C_{27}, although with a bimodal distribution, with the other maximum centered around C_{19} (Fig. 5F).

Morrison and Bick (1967) found alkane-2-ones in peat extending over the C_{17}-C_{35} range, with C_{25} and C_{27} the most abundant. According to Xie et al. (2004), n-alkane-2-ones in the peat of Bolton Fell Moss (Northern England) range from C_{25} to C_{33}, with a maximum at either C_{29} or C_{31}. Moreover, C_{23} has been reported to be the most abundant alkane-2-one in Zoigé-Hongyuan peat bog in West China (Zheng et al., 2007). A similar predominance of LMW alkane-2-ones as that found in the mire has been reported in other Asturian mires (López-Díaz et al., 2010a; Arboleya, 2011; López-Díaz et al., 2013a; Ortiz et al., 2010), including the nearby Roñanzas peat bog (only 1 km from Las Conchas), in the region of Galicia (Schellekens et al., 2011), the Hani peat bog in northeastern China (Zheng et al., 2011) and mires in Sweden (Lehtonen and Ketola, 1990), in which the shorter chain C_{17}-C_{22} homologs greatly increased in abundance with increasing humification.

The n-alkane and n-alkanoic acid distributions differed from those of n-alkane-2-ones. Accordingly, this observation does not support the predominant origin from n-alkane oxidation or from microbial β-oxidation and decarboxylation of FAs. Bacteria could therefore be the main source of alkane-2-ones, at least between 312 and 94 cm, as López-Díaz et al. (2013b) inferred for the neighboring Roñanzas mire based on stable carbon isotope measurements of peat n-alkane-2-ones. Furthermore, although the contribution from H. cupressiforme moss to C_{19} homolog to peat (Schellekens et al., 2015c) cannot be totally ruled out, in our view this was unlikely to occur as this species was not observed in Las Conchas. Moreover, OM appeared to be dominated by Sphagnum, as inferred from the n-alkane distribution.

Despite being significant, bacterial activity is not expected to be the main source of alkane-2-ones in the upper 94 cm, as C_{27} was the most abundant n-alkane-2-one, with samples maximizing also at C_{25}, C_{31} and C_{21}. This composition could be attributed to Sphagnum-rich horizons or other kinds of plants (Table 3; cf. Ortiz et al., 2011) and/or the microbial oxidation of n-alkanes (cf. Ambiéls et al., 1993; van Bergen et al., 1998).

5.3.3. C/N

C/N is an indicator of the type of OM input since N is found mainly in proteins (Müller and Mathesius, 1999). Bacteria typically have lower atomic C/N values (around 4.2 and 4.1; Bordovsky, 1965) than vascular land plants (> 20; Erel and Hedges, 1985; Hedges et al., 1986; Meyers, 1994), which are protein-poor (1–10%) and cellulose-rich. Generally, the content of TN is low in Sphagnum spp. (0.5%) and higher in vascular plants (5%; Crum,
vascular plants), decomposition, and atmospheric deposition. Verhoeven, 1992). Moreover, a greater contribution of Sphagnum values of peat. Asturias (López-Días et al., 2013a) and the Netherlands vs. Netherlands. According to Kuhry and Vitt (1996), Hornibrook et al. (2000), the use of the C/N as a proxy for mass loss is useful for mires, as increasing peat humification and decomposition produce low values. However, the C/N ratio does not always follow the same decomposition pattern, and the original vegetation inputs have been proposed to exert considerable control over this proxy (Yeloff and Mauquoy, 2006; Hansson et al., 2013). In fact, changes in C/N values with depth are highly influenced by plant species (Sphagnum vs. vascular plants), decomposition, and atmospheric deposition.

The C/N ratio in graminoid-dominated peatlands shows a much lesser variation than in Sphagnum-dominated mires, which is explained by the low contribution of Sphagnum to these peats (Schellekens and Buurman, 2011; Schellekens et al., 2015a,b). Thus, the variation of C/N can be strongly influenced by vegetation type.

In this regard, we detected lower atomic C/N values only at the bottom and top of the record (Fig. 2B). This could be attributable to a distinct OM input in the lowermost 20 cm, in which the lithology (gray and light silt), low TOC values and high ash content indicated that peat forming conditions were not fully established. In fact, the N content was low in this part.

The main part of the record (290–20 cm) showed atomic C/N values between 25 and 48, coinciding with those of the graminoid-dominated peat bog of Penido Vello in NW Spain (Schellekens et al., 2015a). On the basis of the atomic C/N values measured in peat-forming plants (Aerts et al., 1999; Hornibrook et al., 2000; Biester et al., 2003; Schellekens et al., 2015a,2015b), those of Las Conchas record may indicate a mixed contribution of Sphagnum, vascular plants and probably bacteria to peat, the latter probably being predominant, at least at present. However, similar atomic C/N values were also observed in the neighboring Sphagnum-dominated Roñanzas peat bog and other mires in Asturias (López-Días et al., 2013a) and the Netherlands (cf. Verhoveen, 1992). Moreover, a greater contribution of Sphagnum was inferred from the n-alkane indices along the record. This can be explained because C/N values are affected by aerobic decomposition, and a small increase in vascular plants may strongly influence variation of the C/N ratio (Schellekens et al., 2015a). Furthermore, although vascular plants are more easily degraded, a mass loss greater than 30% during the first stage of decay has been reported for Sphagnum litter (Asada et al., 2005). In fact, Schellekens et al. (2015a) observed a decrease of between 30% and 50% in C/N values in Sphagnum peat. This observation thus confirms the rapid degradation of Sphagnum polyphenols under aerobic conditions, with a preferential anaerobic decay of polysaccharides. In vascular plants, although the rates of polyphenol and polysaccharide degradation differ, they also contribute to the C/N values of peat.

In the uppermost 20 cm, lower atomic C/N values showed good correspondence with the predominance of short chain n-alkanoic acids, thereby indicating a certain degree of microbial activity and peat decomposition. TOC values were lower than in the rest of the record, whereas TN reached the highest values at this depth. According to Kuhry and Vitt (1996), Hornibrook et al. (2000), Sternberg et al. (2007) and Schellekens et al. (2015a), among others, lower TOC values in the acrotelm reflects the loss of organic compounds during initial decay. In contrast, high values of N in the upper part of the core probably reflect the rapid recycling of this nutrient by plants in the aerobic layer (cf. Heijmans et al., 2002; Schellekens et al., 2015b). Moreover, livestock may contribute to a higher input of N.

Therefore, atomic C/N values can be indicative of mixed input of vegetation and degree of OM degradation.

6. Conclusions

Inorganic and organic geochemical proxies provide useful information for reconstructing paleoenvironmental conditions in mires; however, their interpretation can be influenced by geomorphology, which in some cases may arise from a continuous input of water, even during drier periods.

The profile of n-alkanoic acids in the record of Las Conchas mire indicated good preservation of OM, with the exception of the uppermost 20 cm, in which microbial activity and/or oxidation produced a dominance of short chain homologs. n-Alkan-2-ones would indicate bacterial influence from the bottom to 94 cm, whereas in the upper part of the record their distribution can be attributed mainly to plant input and/or the microbial oxidation of n-alkanes.

The development of bog conditions in Las Conchas mire occurred in the bottom 20 cm of the profile, where the ash content decreased from 80% to <5% and TOC increased from 7% to 55%. The n-alkane proxies (predominant chain, ACL, Paq index, C23/C29, modeled C23/C29) showed variation, which we interpret in terms of changes in vegetation (Sphagnum-dominated vs. non-Sphagnum-dominated phases) along the last 8000 cal yr BP. The initial phase of peat development and the upper part of the profile were characterized by the dominance of C31 alkane, whereas C23 was the most abundant homolog along most of the record. This observation could be interpreted in terms of humid conditions not linked to paleoclimatic variation, i.e. the Cuera Range produced continuous runoff to the mire, even during drier periods.

In the uppermost 20 cm, the ash content increased and TOC diminished. Furthermore, C17 was the predominant alkane in this part of the record, and the ACL reached its highest values, coinciding with very low Paq values and a low C23/C29 ratio. We propose that these observations indicate significant change in the mire over the last ca. 200 yr, namely its drainage and transformation into a meadow.

Acknowledgements

The study was made possible by funding from the Spanish Inter-Ministry Commission of Science and Technology (CICYT), projects CGL2013-46458-C1-1-R, and CGL2013-46458-C2-2-R. L. D. acknowledges a PICATA postdoctoral fellowship of the UCM-UPM, Moncloa Campus of International Excellence (Spain) and a Juan de la Cierva postdoctoral fellowship (MINECO, Spanish Government) and J.U. a FPU fellowship from MEC (Spain). We thank three anonymous reviewers for helpful comments.

Associate Editor—P.A. Meyers

References

