Análisis de la precisión en la medida del tiempo de reverberación y de los parámetros asociados

Irene de la Torre Sánchez

Febrero 2016
A aquellas personas que luchan contra gigantes.

Me gustaría dedicar este trabajo a mis padres y a Álvaro, agradecerles todo el apoyo que me han dado y por ser capaces de animarme y aguantarme, en ciertas ocasiones tan necesario. También me gustaría dar las gracias a mi familia y a Noelia por estar ahí. Por último me gustaría agradecerle a Antonio toda su ayuda, dedicación y orientación durante la realización de este TFM.
Resumen

El trabajo fin de master “Análisis de la precisión en la medida del tiempo de reverberación y de los parámetros asociados” tiene como objetivo primordial la evaluación de los parámetros y métodos utilizados para la obtención de estos, a través del tiempo de reverberación, tanto de forma global, conjunto de todos los métodos, como cada uno de ellos por separado.

Un objetivo secundario es la evaluación de la incertidumbre en función del método de medición usado.

Para realizarlo, se van a aprovechar las mediciones realizadas para llevar a cabo el proyecto fin de carrera [1], donde se medía el tiempo de reverberación en dos recintos diferentes usando el método del ruido interrumpido y el método de la respuesta impulsiva integrada con señales distintas. Las señales que han sido utilizadas han sido señales impulsivas de explosión de globos, disparo de pistola, claquetas y, a través de procesado digital, señales periódicas pseudoaleatorias MLS y barridos de tonos puros.

La evaluación que se realizará a cada parámetro ha sido extraída de la norma UNE 89002 [2], [3] y [4]. Se determinará si existen valores aberrantes tanto por el método de Grubbs como el de Cochran, e interesará conocer la veracidad, precisión, repetibilidad y reproducibilidad de los resultados obtenidos.

Los parámetros que han sido estudiados y evaluados son el tiempo de reverberación con caída de 10 dB (T_{10}), con caída de 15 dB (T_{15}), con caída de 20 dB (T_{20}), con caída de 30 dB (T_{30}), el tiempo de la caída temprana (EDT), el tiempo final (T_s), claridad (C_{20}, C_{30}, C_{50} y C_{80}) y definición (D_{50} y D_{80}). Dependiendo de si el parámetro hace referencia al recinto o si varía en función de la relación entre la posición de fuente y micrófono, su estudio estará sujeto a un procedimiento diferente de evaluación.
Abstract

The master thesis called “Analysis of the accuracy in measuring the reverberation time and the associated parameters” has as the main aim the assessment of parameters and methods used to obtain these through reverberation time, both working overall, set of all methods, as each of them separately.

A secondary objective is to evaluate the uncertainty depending on the measurement method used.

To do this, measurements of [1] will be used, where they were carried on in two different spaces using the interrupted noise method and the method of impulse response integrated with several signals. The signals that have been used are impulsive signals such as balloon burst, gunshot, slates and, through digital processing, periodic pseudorandom signal MLS and swept pure tone.

The assessment that will be made to each parameter has been extracted from the UNE 89002 [2], [3] and [4]. It will determine whether there are aberrant values both through Grubbs method and Cochran method, to say so, if a value is inconsistent with the rest of the set. In addition, it is interesting to know the truthfulness, accuracy, repeatability and reproducibility of results obtained from the first part of this rule.

The parameters that are going to be evaluated are reverberation time with 10 dB decay, (T₁₀), with 15 dB decay (T₁₅), with 20 dB decay (T₂₀), with 30 dB decay (T₃₀), the Early Decay Time (EDT), the final time (Tₕ), clarity (C₂₀, C₃₀, C₅₀ y C₈₀) and definition (D₅₀ y D₈₀). Depending on whether the parameter refers to the space or if it varies depending on the relationship between source and microphone positions, the study will be related to a different evaluation procedure.
Índice de contenidos

Resumen .. - 2 -

Abstract .. - 3 -

Índice de contenidos .. - 4 -

Índice de figuras ... - 6 -

Índice de tablas .. - 8 -

Lista de acrónimos ... - 11 -

1 Introducción .. - 12 -
 1.1 Antecedentes ... - 13 -

2 Base teórica ... - 14 -
 2.1 Norma UNE 82009 .. - 14 -
 2.1.1 Descripción y definiciones generales .. - 14 -
 2.1.2 Método para la obtención de la repetibilidad y reproducibilidad - 15 -
 2.1.3 Utilización en la práctica de los valores de exactitud - 19 -
 2.2 Norma UNE-EN ISO 3382 ... - 21 -

3 Descripción experimental ... - 23 -
 3.1 Recintos de medición .. - 23 -
 3.1.1 Aula Magna .. - 23 -
 3.1.2 Laboratorio de acústica ... - 24 -
 3.2 Tratamiento de los parámetros ... - 25 -
 3.3 Parámetros a evaluar ... - 27 -
 3.4 Implementación de la normativa ... - 28 -

4 Resultados .. - 31 -
 4.1 Selección de laboratorios .. - 31 -
 4.2 Tiempo de reverberación .. - 31 -
 4.2.1 T20 .. - 31 -
 4.2.2 T30 .. - 36 -
 4.2.3 T50 .. - 41 -
 4.2.4 T80 .. - 46 -
 4.3 Claridad .. - 51 -
 4.3.1 C20 .. - 51 -
 4.3.2 C40 .. - 57 -
 4.3.3 C50 .. - 63 -
 4.3.4 C80 .. - 69 -
 4.4 Definición ... - 75 -
 4.4.1 Dm10 ... - 75 -
 4.4.2 Dm8 ... - 82 -
 4.5 Tiempo central (Ts) ... - 87 -
 4.6 Early Decay Time (EDT) .. - 93 -
 4.7 Evaluación de la precisión y de la veracidad ... - 99 -
 4.7.1 T20 .. - 100 -
 4.7.2 T30 .. - 101 -
 4.8 Evaluación de la incertidumbre de medición ... - 103 -
4.8.1 \(T_{20} \) ... - 103 -
4.8.2 \(T_{30} \) ... - 106 -
4.9 Evaluación de la repetibilidad de Vörlander.. - 110 -
4.9.1 Repetibilidad \(T_{20} \) ... - 110 -
4.9.2 Repetibilidad \(T_{30} \) ... - 111 -
4.10 Cálculo incertidumbre de medición .. - 111 -
4.10.1 Incertidumbre \(T_{20} \) ... - 111 -
4.10.2 Incertidumbre \(T_{30} \) ... - 113 -
4.11 Análisis de datos: Statgraphics .. - 114 -
5 Conclusiones ... - 121 -
6 Referencias bibliográficas .. - 122 -
Índice de figuras

FIGURA 1: FORMULARIOS PARA LA RECOPILACIÓN DE RESULTADOS. .. 17
FIGURA 2: VISTA EN PLANTA DEL AULA MAGNA CON POSICIONES DE FUENTE Y MICRÓFONO [1]. 24
FIGURA 3: VISTA EN PLANTA DEL LABORATORIO DE ACÚSTICA CON POSICIONES DE MICRÓFONO Y FUENTE [1]. 25
FIGURA 4: PARÁMETROS FACILITADOS POR EL SOFTWARE DIRAC ... 26
FIGURA 5: DATOS PROPORCIONADOS POR QUALIFIER .. 27
FIGURA 6: INTRODUCCIÓN DE LOS DATOS EN MATLAB .. 29
FIGURA 7: LABORATORIO ABERRANTES EN MATLAB. ... 29
FIGURA 8: RESULTADOS OBTENIDOS DE APLICAR LA NORMATIVA A TRAVÉS DE MATLAB 30
FIGURA 9: COMPARACIÓN DE DATOS T20 GLOBAL ... 33
FIGURA 10: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T20 EN EL AULA MAGNA 33
FIGURA 11: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T20 EN EL LABORATORIO DE ACÚSTICA. 34
FIGURA 12: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T20 EN EL AULA MAGNA 35
FIGURA 13: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T20 EN EL LABORATORIO DE ACÚSTICA. 35
FIGURA 14: LÍMITES DE REPRODUCIBILIDAD DE T20 EN FUNCIÓN DEL RECINTO. .. 36
FIGURA 15: COMPARACIÓN DE DATOS T30 GLOBAL ... 38
FIGURA 16: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T30 EN EL AULA MAGNA 38
FIGURA 17: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T30 EN EL LABORATORIO DE ACÚSTICA. 39
FIGURA 18: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T30 EN EL AULA MAGNA 40
FIGURA 19: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T30 EN EL LABORATORIO DE ACÚSTICA. 40
FIGURA 20: LÍMITES DE REPRODUCIBILIDAD DE T30 EN FUNCIÓN DEL RECINTO. .. 41
FIGURA 21: COMPARACIÓN DE DATOS T30 GLOBAL ... 42
FIGURA 22: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T30 EN EL AULA MAGNA 43
FIGURA 23: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T30 EN EL LABORATORIO DE ACÚSTICA. 44
FIGURA 24: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE T30 EN EL AULA MAGNA 45
FIGURA 25: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T30 EN EL LABORATORIO DE ACÚSTICA. 45
FIGURA 26: LÍMITES DE REPRODUCIBILIDAD DE T30 EN FUNCIÓN DEL RECINTO .. 46
FIGURA 27: COMPARACIÓN DE DATOS T35 GLOBAL ... 47
FIGURA 28: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T35 EN EL AULA MAGNA 48
FIGURA 29: COMPARACIÓN DEL TIEMPO DE REVERBERACIÓN T35 EN EL LABORATORIO DE ACÚSTICA. 49
FIGURA 30: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T35 EN EL AULA MAGNA 49
FIGURA 31: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE T35 EN EL LABORATORIO DE ACÚSTICA. 50
FIGURA 32: LÍMITES DE REPRODUCIBILIDAD DE T35 EN FUNCIÓN DEL RECINTO. .. 50
FIGURA 33: COMPARACIÓN DEL LÍMITE DE REPETIBILIDAD DE C50 EN EL AULA MAGNA 56
FIGURA 34: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C50 EN EL LABORATORIO DE ACÚSTICA. 56
FIGURA 35: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C50 EN EL AULA MAGNA 62
FIGURA 36: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C50 EN EL LABORATORIO DE ACÚSTICA. 62
FIGURA 37: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C50 EN EL AULA MAGNA 68
FIGURA 38: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C50 EN EL LABORATORIO DE ACÚSTICA. 69
FIGURA 39: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C80 EN EL AULA MAGNA 74
FIGURA 40: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE C80 EN EL LABORATORIO DE ACÚSTICA 75
FIGURA 41: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE D50 EN EL AULA MAGNA 81
FIGURA 42: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE D50 EN EL LABORATORIO DE ACÚSTICA. 81
FIGURA 43: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE D50 EN EL AULA MAGNA 86
FIGURA 44: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE D80 EN EL LABORATORIO DE ACÚSTICA. 87
FIGURA 45: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE TS EN EL AULA MAGNA 92
FIGURA 46: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE TS EN EL LABORATORIO DE ACÚSTICA. 93
FIGURA 47: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE EDT EN EL AULA MAGNA 98
FIGURA 48: COMPARACIÓN DE LOS LÍMITES DE REPETIBILIDAD DE EDT EN EL LABORATORIO DE ACÚSTICA

FIGURA 49: COMPARACIÓN DE DATOS T\textsubscript{20} PARA RESPUESTA EL IMPULSO Y RUIDO INTERRUMPIDO

FIGURA 50: COMPARACIÓN DE DATOS T\textsubscript{30} PARA RESPUESTA AL IMPULSO Y RUIDO INTERRUMPIDO

FIGURA 51: GRÁFICO DE MEDIAS PARA T\textsubscript{20} EN EL AULA MAGNA A 1 kHz

FIGURA 52: GRÁFICO DE MEDIAS PARA T\textsubscript{20} EN EL LABORATORIO DE ACÚSTICA A 1 kHz

FIGURA 53: GRÁFICO DE MEDIAS PARA T\textsubscript{30} EN EL AULA MAGNA A 1 kHz

FIGURA 54: GRÁFICO DE MEDIAS PARA T\textsubscript{30} EN EL LABORATORIO DE ACÚSTICA A 1 kHz

FIGURA 55: GRÁFICO DE CAJAS Y BIGOTES PARA T\textsubscript{20} EN EL AULA MAGNA A 1 kHz

FIGURA 56: GRÁFICO DE CAJAS Y BIGOTES PARA T\textsubscript{20} EN EL LABORATORIO DE ACÚSTICA A 1 kHz

FIGURA 57: GRÁFICO DE CAJAS Y BIGOTES PARA T\textsubscript{30} EN EL AULA MAGNA

FIGURA 58: GRÁFICO DE CAJAS Y BIGOTES PARA T\textsubscript{30} EN EL LABORATORIO DE ACÚSTICA
Índice de tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLA 1</td>
<td>Selección de laboratorios.</td>
<td>31</td>
</tr>
<tr>
<td>TABLA 2</td>
<td>Datos T_{20} global en Aula Magna</td>
<td>31</td>
</tr>
<tr>
<td>TABLA 3</td>
<td>Valores medios de cada método en la evaluación global de T_{20} en el Aula Magna</td>
<td>32</td>
</tr>
<tr>
<td>TABLA 4</td>
<td>Datos T_{20} global en el laboratorio de acústica.</td>
<td>32</td>
</tr>
<tr>
<td>TABLA 5</td>
<td>Valores medios de cada método en la evaluación global de T_{20} en el laboratorio de acústica</td>
<td>32</td>
</tr>
<tr>
<td>TABLA 6</td>
<td>Datos T_{30} global en Aula Magna</td>
<td>36</td>
</tr>
<tr>
<td>TABLA 7</td>
<td>Valores medios de cada método en la evaluación global de T_{30} en el Aula Magna</td>
<td>37</td>
</tr>
<tr>
<td>TABLA 8</td>
<td>Datos T_{30} global en el laboratorio de acústica.</td>
<td>37</td>
</tr>
<tr>
<td>TABLA 9</td>
<td>Valores medios de cada método en la evaluación global de T_{30} en el laboratorio de acústica</td>
<td>37</td>
</tr>
<tr>
<td>TABLA 10</td>
<td>Datos T_{10} global en el Aula Magna</td>
<td>41</td>
</tr>
<tr>
<td>TABLA 11</td>
<td>Valores medios de cada método en la evaluación global de T_{10} en el Aula Magna</td>
<td>42</td>
</tr>
<tr>
<td>TABLA 12</td>
<td>Datos T_{10} global en el laboratorio de acústica.</td>
<td>42</td>
</tr>
<tr>
<td>TABLA 13</td>
<td>Valores medios de cada método en la evaluación global de T_{10} en el laboratorio de acústica</td>
<td>42</td>
</tr>
<tr>
<td>TABLA 14</td>
<td>Datos T_{15} global en Aula Magna</td>
<td>46</td>
</tr>
<tr>
<td>TABLA 15</td>
<td>Valores medios de cada método en la evaluación global de T_{15} en el Aula Magna</td>
<td>47</td>
</tr>
<tr>
<td>TABLA 16</td>
<td>Datos T_{15} global en el laboratorio de acústica.</td>
<td>47</td>
</tr>
<tr>
<td>TABLA 17</td>
<td>Valores medios de cada método en la evaluación global de T_{15} en el laboratorio de acústica</td>
<td>47</td>
</tr>
<tr>
<td>TABLA 18</td>
<td>Medias de la combinación de la fuente 1 para C_{20} en el Aula Magna</td>
<td>51</td>
</tr>
<tr>
<td>TABLA 19</td>
<td>Medias de la combinación de la fuente 2 para C_{20} en el Aula Magna</td>
<td>52</td>
</tr>
<tr>
<td>TABLA 20</td>
<td>Medias de la combinación de la fuente 3 para C_{20} en el Aula Magna</td>
<td>53</td>
</tr>
<tr>
<td>TABLA 21</td>
<td>Medias de la combinación de la fuente 1 de C_{20} en el laboratorio de acústica</td>
<td>54</td>
</tr>
<tr>
<td>TABLA 22</td>
<td>Medias de la combinación de la fuente 2 de C_{20} en el laboratorio de acústica</td>
<td>55</td>
</tr>
<tr>
<td>TABLA 23</td>
<td>Medias de la combinación de la fuente 1 para C_{30} en el Aula Magna</td>
<td>57</td>
</tr>
<tr>
<td>TABLA 24</td>
<td>Medias de la combinación de la fuente 2 para C_{30} en el Aula Magna</td>
<td>58</td>
</tr>
<tr>
<td>TABLA 25</td>
<td>Medias de la combinación de la fuente 3 para C_{30} en el Aula Magna</td>
<td>59</td>
</tr>
<tr>
<td>TABLA 26</td>
<td>Medias de la combinación de la fuente 1 de C_{30} en el laboratorio de acústica</td>
<td>60</td>
</tr>
<tr>
<td>TABLA 27</td>
<td>Medias de la combinación de la fuente 2 de C_{30} en el laboratorio de acústica</td>
<td>61</td>
</tr>
<tr>
<td>TABLA 28</td>
<td>Medias de la combinación de la fuente 1 de C_{50} en el Aula Magna</td>
<td>63</td>
</tr>
<tr>
<td>TABLA 29</td>
<td>Medias de la combinación de la fuente 2 de C_{50} en el Aula Magna</td>
<td>64</td>
</tr>
<tr>
<td>TABLA 30</td>
<td>Medias de la combinación de la fuente 3 de C_{50} en el Aula Magna</td>
<td>65</td>
</tr>
<tr>
<td>TABLA 31</td>
<td>Medias de la combinación de la fuente 1 de C_{50} en el laboratorio de acústica</td>
<td>66</td>
</tr>
<tr>
<td>TABLA 32</td>
<td>Medias de la combinación de la fuente 2 de C_{50} en el laboratorio de acústica</td>
<td>67</td>
</tr>
<tr>
<td>TABLA 33</td>
<td>Medias de la combinación de la fuente 3 de C_{50} en el Aula Magna</td>
<td>69</td>
</tr>
<tr>
<td>TABLA 34</td>
<td>Medias de la combinación de la fuente 1 de D_{50} en el Aula Magna</td>
<td>70</td>
</tr>
<tr>
<td>TABLA 35</td>
<td>Medias de la combinación de la fuente 2 de D_{50} en el Aula Magna</td>
<td>71</td>
</tr>
<tr>
<td>TABLA 36</td>
<td>Medias de la combinación de la fuente 1 de D_{50} en el laboratorio de acústica</td>
<td>73</td>
</tr>
<tr>
<td>TABLA 37</td>
<td>Medias de la combinación de la fuente 2 de D_{50} en el laboratorio de acústica</td>
<td>73</td>
</tr>
<tr>
<td>TABLA 38</td>
<td>Medias de la combinación de la fuente 1 de D_{50} en el Aula Magna</td>
<td>75</td>
</tr>
<tr>
<td>TABLA 39</td>
<td>Medias de la combinación de la fuente 2 de D_{50} en el Aula Magna</td>
<td>77</td>
</tr>
<tr>
<td>TABLA 40</td>
<td>Medias de la combinación de la fuente 3 de D_{50} en el Aula Magna</td>
<td>78</td>
</tr>
<tr>
<td>TABLA 41</td>
<td>Medias de la combinación de la fuente 1 de D_{50} en el laboratorio de acústica</td>
<td>79</td>
</tr>
<tr>
<td>TABLA 42</td>
<td>Medias de la combinación de la fuente 2 de D_{50} en el laboratorio de acústica</td>
<td>80</td>
</tr>
<tr>
<td>TABLA 43</td>
<td>Medias de la combinación de la fuente 1 de D_{50} en el Aula Magna</td>
<td>82</td>
</tr>
<tr>
<td>TABLA 44</td>
<td>Medias de la combinación de la fuente 2 de D_{50} en el Aula Magna</td>
<td>83</td>
</tr>
<tr>
<td>TABLA 45</td>
<td>Medias de la combinación de la fuente 3 de D_{50} en el Aula Magna</td>
<td>84</td>
</tr>
<tr>
<td>TABLA 46</td>
<td>Medias de la combinación de la fuente 1 de D_{50} en el laboratorio de acústica</td>
<td>85</td>
</tr>
<tr>
<td>TABLA 47</td>
<td>Medias de la combinación de la fuente 2 de D_{50} en el laboratorio de acústica</td>
<td>86</td>
</tr>
</tbody>
</table>

Univ**: Universidad Politécnica de Madrid
TABLA 48: MEDIDAS DE LA COMBINACIÓN DE FUENTE 1 DE Ts EN EL AULA MAGNA. .. - 87 -

TABLA 49: MEDIDAS DE LA COMBINACIÓN DE FUENTE 2 DE Ts EN EL AULA MAGNA. - 89 -

TABLA 50: MEDIDAS DE LA COMBINACIÓN DE FUENTE 3 DE Ts EN EL AULA MAGNA. - 90 -

TABLA 51: MEDIDAS DE LA COMBINACIÓN DE FUENTE 1 DE Ts EN EL LABORATORIO DE ACÚSTICA. - 91 -

TABLA 52: MEDIDAS DE LA COMBINACIÓN DE FUENTE 2 DE Ts EN EL LABORATORIO DE ACÚSTICA. - 91 -

TABLA 53: MEDIDAS DE LA COMBINACIÓN DE FUENTE 1 DE EDT EN EL AULA MAGNA. - 93 -

TABLA 54: MEDIDAS DE LA COMBINACIÓN DE FUENTE 2 DE EDT EN EL AULA MAGNA. - 94 -

TABLA 55: MEDIDAS DE LA COMBINACIÓN DE FUENTE 3 DE EDT EN EL AULA MAGNA. - 95 -

TABLA 56: MEDIDAS DE LA COMBINACIÓN DE FUENTE 1 DE EDT EN EL LABORATORIO DE ACÚSTICA. - 97 -

TABLA 57: MEDIDAS DE LA COMBINACIÓN DE FUENTE 2 DE EDT EN EL LABORATORIO DE ACÚSTICA. - 97 -

TABLA 58: VALORES DE LA INTERCOMPARACIÓN [11]. ... - 99 -

TABLA 59: DATOS T20 PARA RESPUESTA AL IMPULSO Y RUIDO INTERRUMPIDO EN AULA MAGNA - 100 -

TABLA 60: PRECISIÓN Y VERACIDAD DE T20 PARA RESPUESTA AL IMPULSO Y RUIDO INTERRUMPIDO EN AULA MAGNA. .. - 101 -

TABLA 61: DATOS T30 PARA RESPUESTA AL IMPULSO Y RUIDO INTERRUMPIDO EN AULA MAGNA - 101 -

TABLA 62: PRECISIÓN Y VERACIDAD DE T30 PARA RESPUESTA AL IMPULSO Y RUIDO INTERRUMPIDO EN AULA MAGNA. .. - 102 -

TABLA 63: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA LA RESPUESTA IMPULSIVA Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. .. - 103 -

TABLA 64: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA LA RESPUESTA IMPULSIVA Y EL RUIDO INTERRUMPIDO EN EL LABORATORIO DE ACÚSTICA. .. - 104 -

TABLA 65: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA BARRIDOS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 104 -

TABLA 66: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA BARRIDOS Y EL RUIDO INTERRUMPIDO EN EL LABORATORIO DE ACÚSTICA. .. - 104 -

TABLA 67: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA SEÑALES MLS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 104 -

TABLA 68: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA SEÑALES MLS Y EL RUIDO INTERRUMPIDO EN EL LABORATORIO DE ACÚSTICA. ... - 105 -

TABLA 69: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA GLOBOS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 105 -

TABLA 70: COMPARACIÓN DE LA REPETIBILIDAD DE T20 PARA PISTOLA Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 106 -

TABLA 71: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LA RESPUESTA IMPULSIVA Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 107 -

TABLA 72: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LA RESPUESTA IMPULSIVA Y EL RUIDO INTERRUMPIDO EN EL LABORATORIO DE ACÚSTICA. ... - 107 -

TABLA 73: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LOS BARRIDOS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 107 -

TABLA 74: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LOS BARRIDOS Y EL RUIDO INTERRUMPIDO EN EL LABORATORIO DE ACÚSTICA. .. - 108 -

TABLA 75: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LAS SEÑALES MLS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. .. - 108 -

TABLA 76: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LAS SEÑALES MLS Y EL RUIDO INTERRUMPIDO EN EL LABORATORIO DE ACÚSTICA. .. - 108 -

TABLA 77: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LOS GLOBOS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 109 -

TABLA 78: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA LA PISTOLA Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 109 -

TABLA 79: COMPARACIÓN DE LA REPETIBILIDAD DE T30 PARA CLAQUETAS Y EL RUIDO INTERRUMPIDO EN AULA MAGNA. ... - 109 -

TABLA 80: EVALUACIÓN DE LA REPETIBILIDAD R20 EN EL AULA MAGNA. ... - 110 -

TABLA 81: EVALUACIÓN DE LA REPETIBILIDAD R20 EN EL LABORATORIO DE ACÚSTICA. - 111 -

TABLA 82: EVALUACIÓN DE LA REPETIBILIDAD R30 EN EL AULA MAGNA. .. - 111 -

TABLA 83: EVALUACIÓN DE LA REPETIBILIDAD R30 EN EL LABORATORIO DE ACÚSTICA. - 111 -

TABLA 84: INCERTIDUMBRE T20 GLOBAL EN AULA MAGNA POR MÉTODO. .. - 112 -
TABLA 85: INCERTIDUMBRE T_{20} GLOBAL EN EL LABORATORIO DE ACÚSTICA POR MÉTODO ... - 112 -
TABLA 86: COMPARACIÓN ENTRE DESVIACIONES E INCERTIDUMBRES DE T_{20}. .. - 112 -
TABLA 87: INCERTIDUMBRE T_{30} GLOBAL EN AULA MAGNA POR MÉTODO. ... - 113 -
TABLA 88: INCERTIDUMBRE T_{30} GLOBAL EN EL LABORATORIO DE ACÚSTICA POR MÉTODO - 113 -
TABLA 89: COMPARACIÓN ENTRE DESVIACIONES E INCERTIDUMBRES DE T_{30}. ... - 113 -
Lista de acrónimos

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>AENOR</td>
<td>Asociación Española de Normalización y Acreditación</td>
</tr>
<tr>
<td>UNE</td>
<td>Una Norma Española</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
</tbody>
</table>
1 Introducción

El trabajo fin de master “Análisis de la precisión en la medida del tiempo de reverberación y de los parámetros asociados” se basa en el estudio de diferentes parámetros acústicos medidos en recintos heterogéneos. El objetivo de este estudio es la evaluación de la precisión de los métodos utilizados para la obtención del tiempo de reverberación y los parámetros asociados, tanto de forma global, entendida como el conjunto de todos los métodos, como cada uno de ellos por separado.

Para llevarlo a cabo, se ha fundamentado en los parámetros medidos y obtenidos durante la realización del proyecto fin de carrera “Estudio de diferentes metodologías para la medición del tiempo de reverberación” [1] de Beatriz Sanguino, en donde se han seguido diferentes métodos de medida. Estos procedimientos se pueden dividir en dos categorías: método de la respuesta impulsiva integrada y método del ruido interrumpido. Esta última técnica se basa en excitar suficientemente el recinto de manera que el campo sonoro acústico llegue a un estado estacionario antes de que la fuente deje de emitir una señal aleatoria de banda ancha. El método de la respuesta impulsiva integrada se apoya en la obtención de curvas de caída mediante la integración invertida en el tiempo de los cuadrados de las respuestas impulsivas. La sala se excitará con una señal conocida durante un tiempo determinado y se evaluará la respuesta al impulso a través de la respuesta de la sala a esta excitación. Las señales que han sido utilizadas han sido señales impulsivas de explosión de globos, disparo de pistola, claquetas y, a través de procesado digital, señales periódicas pseudoaleatorias MLS y barridos de tonos puros. El tiempo de reverberación y los parámetros asociados ha sido medido en dos salas diferentes, el Aula Magna de la Escuela Técnica Superior de Arquitectura de la Universidad Politécnica de Madrid y el laboratorio de acústica de esta misma escuela. Para llevar a cabo las mediciones se han seguido las directrices dadas en la norma UNE-EN ISO 3382-1 [5] en función de las dimensiones de los recintos. En el Aula Magna la fuente sonora ha sido colocada en 3 posiciones y el micrófono en 12 mientras que en el laboratorio de acústica solo se han utilizado 2 posiciones de fuente y 6 de micrófono.

La evaluación que se realizará a cada parámetro ha sido extraída de la norma UNE 89002 [2], [3] y [4]. Se determinará si existen valores aberrantes tanto por el método de Grubbs como el de Cochran, es decir si algún valor es incoherente con el resto del conjunto, e interesa conocer la veracidad, precisión, repetibilidad y reproducibilidad de los resultados obtenidos a partir de la primera parte de esta norma.

Los parámetros que van a ser estudiados y evaluados son el tiempo de reverberación con caída de 10 dB, (T_{10}), con caída de 15 dB (T_{15}), con caída de 20 dB (T_{20}), con caída de 30 dB (T_{30}), el tiempo de la caída temprana (EDT), el tiempo final (T_{f}), claridad (C_{20}, C_{30}, C_{50} y C_{80}) y definición (D_{50} y D_{80}). Dependiendo de si el parámetro hace referencia al recinto o si varía en función de la relación entre la posición de fuente y micrófono, su estudio estará sujeto a un procedimiento diferente de evaluación.
1. Introducción

1.1 Antecedentes

Han sido muchos los parámetros acústicos definidos para describir y evaluar las propiedades acústicas de un espacio, pero el tiempo de reverberación siempre ha sido el indicador básico del comportamiento acústico.

Los diferentes métodos de medición del tiempo de reverberación ya han sido analizados anteriormente, como por ejemplo en [9]. En esta publicación fueron comparados varios métodos de medición del tiempo de reverberación con el fin de evaluar el límite de repetibilidad que se conseguía. Los métodos utilizados, respuesta impulsiva integrada y ruido interrumpido, son ya conocidos y han sido validados para la estandarización. De acuerdo a [9], los métodos de respuesta impulsiva y los de ruido interrumpido se pueden considerar equivalentes cuando:

- El promedio de 3 a 5 caídas de ruido aleatorio muestra límites de repetibilidad del mismo orden de magnitud respecto al método de la respuesta impulsiva. El límite de repetibilidad del tiempo de reverberación usando la respuesta impulsiva integrada, alcanza unos valores pequeños y visiblemente inferiores en relación a la repetibilidad de la caída de ruido aleatorio.
 - Los límites de repetibilidad con un 95% de nivel de confianza pueden ser estimados por:
 - \[r_{30} = \frac{200\%}{\sqrt{BNT_{30}}} \]
 - \[r_{20} = \frac{370\%}{\sqrt{BNT_{20}}} \] (1)
 - Siendo \(B \) el ancho de banda, \(N \) el número de repeticiones y \(T_{20} \) o \(T_{30} \) el tiempo de reverberación correspondiente.

Cuando se usan señales MLS hay que tener en cuenta la linealidad y la invarianza del tiempo del sistema de medida, incluido el recinto ensayado. A frecuencias muy bajas, el límite de repetibilidad utilizando la técnica de las señales MLS excede el límite de repetibilidad obtenido a través del uso de pulsos individuales de banda filtrada. Supone una indicación del error cometido al suponer el comportamiento del sistema de medida.

El método de medida más rápido y adecuado es el de la respuesta impulsiva integrada usando un sonómetro, obteniéndose repetibilidades más altas con ruido rosa filtrado que con disparos de pistola.

En [10] fueron comparados los métodos de medición respuesta impulsiva integrada con ruido rosa, barridos exponenciales, señales MLS, explosión de globos y ruido rosa interrumpido. El objetivo de esta comparación era averiguar el mejor método de medición del tiempo de reverberación de acuerdo al criterio básico del rango dinámico. Los resultados obtenidos fueron que el método de la respuesta al impulso integrada usando barridos ofrece mejores resultados ya que es capaz de entregar el rango dinámico más amplio. Se ha puesto de manifiesto que el uso de fuentes impulsivas para la medición del tiempo de reverberación, a pesar de estar desaconsejado, ofrecen resultados similares y comparables a cualquier otro método de medición.
2 Base teórica

2.1 Norma UNE 82009

La norma UNE 82009 ha sido elaborada por el comité técnico AEN/CTN 82 Metrología y Calibración, cuya secretaría desempeña AENOR, siendo equivalente a la norma internacional ISO 5725 del año 1994, y se utiliza para describir la exactitud de un método o procedimiento de medición. La exactitud se compone de dos términos: veracidad (grado de concordancia existente entre la media aritmética de un gran número de resultados y el valor de referencia) y la precisión (grado de concordancia existente entre los resultados del ensayo obtenidos).

El propósito general de esta norma es establecer los principios generales para valorar la exactitud de resultados y métodos de medición, y está dividida en diferentes partes cada una con un objeto y campo de aplicación. A continuación se presentan las partes que van a servir para el desarrollo de este trabajo.

2.1.1 Descripción y definiciones generales

La parte 1 de la norma UNE 82009 [2] hace hincapié de forma exclusiva en los métodos de medición que proporcionan resultados simples dentro de una escala de valores, definiendo valores descriptivos de la aptitud de un método de medición para proporcionar resultados correctos (veracidad) o repetibles (precisión). Es decir, se mide la misma cosa, de la misma manera y cuyo proceso está controlado. Las definiciones que interesan son:

- **Resultado de ensayo** → Valor de una característica, obtenido como resultado de una observación única.
- **Valor de referencia aceptado** → Valor que sirve como referencia consensuada para la comparación, obtenido a partir de:
 - Un valor teórico o establecido, basado en principios científicos.
 - Un valor asignado o certificado, basado en trabajos experimentales de alguna organización nacional o internacional.
 - Un valor certificado o consensuado, basado en trabajos de colaboración experimental bajo los auspicios de algún grupo científico o técnico.
 - Cuando no se trata de los casos anteriores, esperanza de la magnitud (medible).
- **Exactitud** → Grado de concordancia existente entre el resultado del ensayo y un valor aceptado como referencia.
- **Veracidad** → Grado de concordancia existente entre el valor medio obtenido de una gran serie de resultados y un valor aceptado como referencia.
- **Sesgo** → Diferencia entre la esperanza matemática de los resultados y un valor aceptado como referencia.
- **Precisión** → Grado de coincidencia existente entre los resultados independientes de un ensayo, obtenidos en condiciones estipuladas.
- **Repetibilidad** → Precisión bajo condiciones de repetibilidad.
- **Condiciones de repetibilidad** → Condiciones bajo las que se obtienen resultados independientes, con el mismo método, sobre idénticas muestras, en el mismo
laboratorio, por el mismo operador, y utilizando los mismo equipos de medición, durante un corto intervalo de tiempo.

- **Límite de repetibilidad** → Valor por debajo del cual se sitúa, con una probabilidad del 95%, el valor absoluto de la diferencia entre dos resultados de ensayo, obtenidos bajo condiciones de repetibilidad. Su símbolo es r.
- **Reproducibilidad** → Precisión bajo condiciones de reproducibilidad.
- **Condiciones de reproducibilidad** → Condiciones bajo las cuales los resultados se obtienen con el mismo método, sobre muestras idénticas, en laboratorios diferentes, con operadores distintos y utilizando equipos diferentes.
- **Límite de reproducibilidad** → Valor por debajo del cual se sitúa, con una probabilidad del 95%, el valor absoluto de la diferencia entre dos resultados de ensayo, obtenidos bajo condiciones de reproducibilidad. Su símbolo es R.
- **Valor aberrante** → Elemento de un conjunto de valores que es incoherente con otros elementos de dicho conjunto.

Las consecuencias prácticas derivadas de estas definiciones son:

- Para realizar las mediciones siempre de la misma manera, el método de medición debe estar normalizado, es decir, tiene que haber un documento escrito donde se detallen los pasos a dar para realizar las mediciones. Preferiblemente también incluirá una descripción de la obtención y preparación del espécimen de medición.
- La exactitud (veracidad y precisión) debería determinarse a partir de una serie de resultados de ensayos realizados por los laboratorios participantes.

2.1.2 Método para la obtención de la repetibilidad y reproducibilidad

La parte 2 de la norma UNE 89002 [3] se centra de manera única en la estimación de las desviaciones típicas de repetibilidad y reproducibilidad, es decir, en los métodos de medición que proporcionan resultados simples dentro de una gama continua de valores. El método fundamental descrito estimará la precisión de un método de medición:

- Cuando se necesite determinar las desviaciones típicas de repetibilidad y reproducibilidad, definidas previamente en la primera parte de la norma.
- Cuando los elementos a estudio sean homogéneos o cuando los efecto debidos a la falta de homogeneidad se puedan incluir en los valores de precisión.
- Cuando el uso de una estrategia de niveles ponderados uniformemente sea aceptable.

Los procedimientos que se describen en esta parte de la norma están basados en el modelo estadístico del capítulo 5 de [2]. El modelo es:

$$y = m + B + e$$ \hspace{1cm} (3)

donde:

- m es la media general (esperanza).
- B es la componente del sesgo debida al laboratorio bajo condiciones de repetibilidad.
- e es el error aleatorio que tiene lugar en cada medición, bajo condiciones de repetibilidad.
En la práctica estadística, donde el verdadero valor de una desviación típica, \(\sigma \), es desconocido y reemplazado por un estimador basado en una muestra, el símbolo \(\sigma \) se sustituye por \(s \) para indicar que se trata de un estimador. De la parte primera de la norma se obtiene:

- \(s_L^2 \) es el valor estimado de la varianza interlaboratorio.
- \(s_W^2 \) es el valor estimado de la varianza intralaboratorio.
- \(s_r^2 \) es la media aritmética de las \(s_W^2 \) y compone el valor estimado de la varianza de repetibilidad. Esta media se obtiene de los laboratorios participantes que permanecen, después de eliminar los aberrantes.
- \(s_R^2 \) es el valor estimado de la varianza de reproducibilidad \(s_R^2 = s_L^2 + s_r^2 \) \((4) \)

El análisis de los datos se puede dividir en tres fases:

- Examen crítico de los datos con el objetivo de identificar y manejar los valores aberrantes o irregularidades y asegurar la idoneidad del modelo.
- Obtener de forma individual para cada nivel los valores preliminares de precisión y valores medios.
- Decretar los valores finales de precisión y valores medios, incluyendo el establecimiento de una relación entre la precisión y el nivel cuando el análisis indica que puede existir tal relación.

Se recomienda que los datos sean agrupados de la siguiente manera para su posterior análisis:
2. Base teórica

En el formulario A se indican el número de resultados de ensayo en la celda correspondiente al laboratorio i, nivel j, \(n_{ij} \), siendo \(y_{ijk} \) cualquiera de los resultados del ensayo y \(P_j \) el número de laboratorios que aportan al menos un resultado de ensayo para el nivel j. El formulario B es llenado con los valores medios \(\bar{y}_{ij} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} y_{ijk} \) (5) con un dígito significativo más que en el formulario A. En el formulario C se incluye la media de la dispersión entre celdas, que para el caso general de uso la desviación típica intracelda \(s_{ij} = \sqrt{\frac{1}{n_{ij}-1} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij})^2} \) (6).

También deberá ser expresada con una cifra significativa más que los datos del formulario A.

Para evaluar si alguno de los laboratorios proporcionan elementos aberrantes se seguirán dos métodos diferentes: Ensayo de Cochran y ensayo de Grubbs.

2.1.2.1 Ensayo de Cochran

Nos indica la validez de que solo existen pequeñas diferencias entre las varianzas interlaboratorios. Este ensayo verifica solo el mayor valor de un conjunto de desviaciones típicas, \(s^2_{max} \), y se aplica sobre el formulario C para cada nivel. Su evaluación hace referencia a la siguiente ecuación:

\[
\text{Figura 1: Formularios para la recopilación de resultados.}
\]
2. Base teórica

\[C = \frac{s_{\text{max}}^2}{\sum_{i=1}^{p} s_i^2} \]

Si el valor C es menor o igual al 5% de su valor crítico el elemento verificado se toma como correcto. Si C es mayor que el 5% del valor crítico y menor o igual al 1% del mismo, el elemento verificado se toma como anómalo. Si C es superior al 1% del valor crítico, el elemento verificado se denomina como incompatible y se debe obviar para el estudio de la repetibilidad y reproducibilidad. Los valores críticos dependen tanto del número de laboratorios por nivel como del número de resultados de ensayo por celda.

2.1.2.2 Ensayo de Grubbs

Se utiliza para determinar si la observación más pequeña es incompatible con el resto a través del valor estadístico de Grubbs, \(G_p \):

\[G_p = \frac{x_p - \bar{x}}{s} \]

\[\bar{x} = \frac{1}{p} \sum_{i=1}^{p} x_i \]

\[s = \sqrt{\frac{1}{p-1} \sum_{i=1}^{p} (x_i - \bar{x})^2} \]

Tal como pasaba en el caso anterior, si el valor estadístico es menor o igual al 5% de su valor crítico el elemento verificado se toma como correcto. Si el valor estadístico es mayor que el 5% del valor crítico y menor o igual al 1% del mismo, el elemento verificado se toma como anómalo. Si el valor estadístico es superior al 1% del valor crítico, el elemento verificado se denomina como incompatible y se debe obviar para el estudio de la repetibilidad y reproducibilidad. En este caso los valores críticos dependen solo del número de laboratorios por nivel.

2.1.2.3 Cálculo de la media general y de las varianzas

Una vez descartados todos los valores aberrantes del conjunto a evaluar, se procede a los cálculos de la media, varianzas y desviaciones.

- Media general para nivel \(j \) \(m_j = \bar{y}_j = \frac{\sum_{i=1}^{p} n_{ij} \bar{y}_{ij}}{\sum_{i=1}^{p} n_{ij}} \)

- Para cada nivel se calculan tres varianzas: varianza de repetibilidad, varianza interlaboratorios y varianza de reproducibilidad.

 - Repetibilidad \(s_{rj}^2 = \frac{\sum_{i=1}^{p} (n_{ij}-1)s_{ij}^2}{\sum_{i=1}^{p} n_{ij}^2} \)

 - Interlaboratorio \(s_{lj}^2 = \frac{s_{dij}^2 - s_{rj}^2}{n_{ij}} \)

\[s_{dij}^2 = \frac{1}{p-1} \sum_{i=1}^{p} n_{ij} (\bar{y}_{ij} - \bar{y})^2 = \frac{1}{p-1} \left[\sum_{i=1}^{p} n_{ij} \bar{y}_{ij}^2 - \bar{y}^2 \sum_{i=1}^{p} n_{ij} \right] \]

\[\bar{n}_j = \frac{1}{p-1} \left[\sum_{i=1}^{p} n_{ij} - \frac{\sum_{i=1}^{p} n_{ij}^2}{\sum_{i=1}^{p} n_{ij}} \right] \]

- Reproducibilidad \(s_{rj}^2 = s_{rj}^2 + s_{lj}^2 \)

- Se obtienen dos desviaciones
2. Base teórica

- Repetibilidad $\sigma_r = \sqrt{s_{rj}^2}$ (17)
- Reproducibilidad $\sigma_R = \sqrt{s_{Rj}^2}$ (18)

2.1.3 Utilización en la práctica de los valores de exactitud

El objetivo de la sexta parte de la norma [4] es dar ciertas indicaciones sobre la forma en que los datos de exactitud pueden ser utilizados en diversas situaciones prácticas, en nuestro caso interesa saber cómo comparar métodos de medición alternativos.

A la hora de evaluar dos resultados individuales de ensayo, obtenidos en condiciones de repetibilidad o de reproducibilidad, la comparación debe realizarse respecto al límite de repetibilidad, $r = 2,8 \cdot \sigma_r$ (19), o al límite de reproducibilidad $R = 2,8 \cdot \sigma_R$ (20).

Un método internacional normalizado es un método de medida que ha sido sometido a un proceso de normalización, con el fin de satisfacer diferentes exigencias como por ejemplo:

- Aplicación a un amplio campo de niveles o variantes de características, con el fin de cubrir la mayor parte de los materiales comercializados internacionalmente.
- Disponibilidad de equipamiento, reactivos y personal, a nivel internacional.
- Coste de ejecución de la medición aceptable.
- Precisión y veracidad del método de medición aceptable por los usuarios de los resultados.

Los resultados de ensayo deben evaluarse por un estadístico cualificado, utilizando el procedimiento descrito en [3]. Habiéndose calculado para cada muestra las magnitudes siguientes:

- S_{rA} estimación de la desviación típica de repetibilidad para el método A.
- S_{rB} estimación de la desviación típica de repetibilidad para el método B.
- S_{RA} estimación de la desviación típica de reproducibilidad para el método A.
- S_{RB} estimación de la desviación típica de reproducibilidad para el método B.
- \bar{y}_A media general para el método A.
- \bar{y}_B media general para el método B.
2.1.3.1 Método A normalizado

- Precisión intralaboratorio

Si \(\frac{s_B^2}{\sigma_A^2} \leq \frac{\chi^2_{(1-\alpha)}(v_{rB})}{v_{rB}} \) (21) no queda probado que la precisión intralaboratorio del método B no sea tan buena como la del método A.

Si \(\frac{s_B^2}{\sigma_A^2} > \frac{\chi^2_{(1-\alpha)}(v_{rB})}{v_{rB}} \) (22) queda probado que la precisión intralaboratorio del método B no es tan buena como la del método A.

Siendo \(\chi^2_{(1-\alpha)}(v_{rB}) \) el percentil (1-\(\alpha \)) de la distribución \(\chi^2 \), con \(v_{rB} \) grados de libertad, y \(v_{rB} = p_B(n_B - 1) \) (23), con \(p_B \) el número de laboratorios del método B y \(n_B \) el número de análisis en cada laboratorio.

- Precisión general

Si \(\frac{s_B^2}{\sigma_A^2} - \frac{1 - 1/n_B}{s_A^2} \leq \frac{\chi^2_{(1-\alpha)}(v_{LB})}{v_{LB}} \) (24) no queda probado que la media cuadrática del método B sea tan buena como la del método A.

Si \(\frac{s_B^2}{\sigma_A^2} - \frac{1 - 1/n_B}{s_A^2} > \frac{\chi^2_{(1-\alpha)}(v_{LB})}{v_{LB}} \) (25) queda probado que la media cuadrática del método B no es tan buena como la del método A.

Siendo \(\chi^2_{(1-\alpha)}(v_{LB}) \) el percentil (1-\(\alpha \)) de la distribución \(\chi^2 \), con \(v_{LB} \) grados de libertad, y \(v_{LB} = p_B - 1 \) (26), con \(p_B \) el número de laboratorios del método B.

2.1.3.2 Ambos métodos candidatos a ser métodos normalizados

- Precisión intralaboratorio

Se necesita primero la relación entre las estimaciones de la desviación de repetibilidad entre ambos métodos: \(F_r = \frac{s_B^2}{s_A^2} \) (27)

Si \(F_{\alpha/2}(v_{rA}, v_{rB}) \leq F_r \leq F_{(1-\alpha/2)}(v_{rA}, v_{rB}) \) (28) no queda probado que los métodos tengan precisiones intralaboratorio diferentes.

Si \(F_r < F_{\alpha/2}(v_{rA}, v_{rB}) \) (29) queda probado que el método B tiene una precisión intralaboratorio mejor que el método A.

Si \(F_r > F_{(1-\alpha/2)}(v_{rA}, v_{rB}) \) (30) queda probado que el método B tiene una precisión intralaboratorio más pequeña que el método A.

Siendo \(F_{\alpha/2}(v_{rA}, v_{rB}) \) y \(F_{(1-\alpha/2)}(v_{rA}, v_{rB}) \) los percentiles \(\alpha/2 \) y \((1-\alpha/2) \) de la distribución \(F \), con \(v_{rA} \) grados de libertad en el numerador y \(v_{rB} \) grados de libertad en el denominador, y \(v_{rA} = p_A(n_A - 1) \) (31), con \(p_A \) el número de laboratorios del método A y \(n_A \) el número de análisis en cada laboratorio. El mismo funcionamiento se da para \(v_{rB} = p_B(n_B - 1) \) (32).
2. Base teórica

- Precisión general

También se necesita primeramente la relación entre las estimaciones de la desviación de reproducibilidad entre ambos métodos:

$$F_R = \frac{s_{RB}^2 - \left(1 - \frac{1}{n_B}\right)s_{rB}^2}{s_{RA}^2 - \left(1 - \frac{1}{n_A}\right)s_{rA}^2}.$$

(33)

Si $F_{\alpha/2}(v_{RB}, v_{RA}) \leq F_R \leq F_{(1-\alpha/2)}(v_{RB}, v_{RA})$ (34) no queda probado que los métodos tengan precisiones interlaboratorios diferentes.

Si $F_R < F_{\alpha/2}(v_{RB}, v_{RA})$ (35) queda probado que el método B tiene una precisión general mejor que el método A.

Si $F_R > F_{(1-\alpha/2)}(v_{RB}, v_{RA})$ (36) queda probado que el método B tiene una precisión general más pequeña que el método A.

Siendo $F_{\alpha/2}(v_{RB}, v_{RA})$ y $F_{(1-\alpha/2)}(v_{RB}, v_{RA})$ los percentiles $\alpha/2$ y $(1-\alpha/2)$ de la distribución F, con v_{RB} grados de libertad en el numerador y v_{RA} grados de libertad en el denominador, y $v_{RB} = p_B - 1$ (37), con p_B el número de laboratorios del método B. El mismo funcionamiento se da para $v_{RA} = p_A - 1$ (38).

- Comparación de la veracidad

Comparación entre las medias de los métodos A y B:

Si $\left|\frac{\bar{y}_A - \bar{y}_B}{s}\right| \leq 2.0$ (39) la diferencia entre la media de los métodos A y B no es estadísticamente significativa.

Si $\left|\frac{\bar{y}_A - \bar{y}_B}{s}\right| > 2.0$ (40) la diferencia entre las medias de los métodos A y B es estadísticamente significativa.

Donde:

$$s = \sqrt{s_A^2 + s_B^2}$$

(41)

$$s_A^2 = \frac{s_{RA}^2 - \left(1 - \frac{1}{n_A}\right)s_{rA}^2}{p_A}; s_B^2 = \frac{s_{RB}^2 - \left(1 - \frac{1}{n_B}\right)s_{rB}^2}{p_B}$$

(42)

2.2 Norma UNE-EN ISO 3382

La norma UNE-EN ISO 3382 Medición de parámetros acústicos en recintos, parte 1: Salas de espectáculos [5], establece un método de medición para la obtención de los tiempos de reverberación partir de respuestas impulsivas y ruido interrumpido. El objetivo de la misma es el de poder comparar las mediciones de los tiempos de reverberación con una mayor precisión y el de llegar a un consenso con respecto al uso de métodos de medición más nuevos. Esta ha sido la norma seguida en [1] a la hora de realizar las mediciones.

La parte que interesa para este trabajo es la correspondiente a la incertidumbre de medición.

Universidad Politécnica de Madrid
• Método del ruido interrumpido

Debido al origen aleatorio de la señal de excitación, la incertidumbre de medición del método de ruido interrumpido depende mucho del número de promedios realizados. El promedio de conjunto y el promediado de los tiempos de reverberación individuales tienen la misma sensibilidad frente al número de promedios. La desviación típica del resultado de medición, \(\sigma(T_{20}) \) o \(\sigma(T_{30}) \), se puede estimar a partir de las siguientes ecuaciones:

\[
\sigma(T_{20}) = 0.88T_{20} \sqrt{\frac{1 + 1.907}{n} \frac{1}{NB T_{20}}} \quad (43)
\]

\[
\sigma(T_{30}) = 0.55T_{30} \sqrt{\frac{1 + 1.527}{n} \frac{1}{NB T_{30}}} \quad (44)
\]

Donde:

- \(B \) es el ancho de banda en Hz.
- \(n \) es el número de decrecimientos medidos en cada posición.
- \(N \) es el número de posiciones de medición independientes (combinaciones de posiciones de fuente y micrófono).
- \(T_{20} \) es el tiempo de reverberación en segundos, en función del rango de evaluación de 20 dB.
- \(T_{30} \) es el tiempo de reverberación en segundos, en función del rango de evaluación de 30 dB.

Para un filtro de octava, \(B=0.71f_c \) (45), y para un filtro de tercio de octava, \(B=0.23f_c \) (46), donde \(f_c \) es la frecuencia media del filtro en Hz. Las mediciones en banda de octava dan una mejor precisión de medición que las mediciones en un tercio de octava con el mismo número de posiciones de medición.

• Método de respuesta impulsiva integrada

Teóricamente, la respuesta impulsiva integrada corresponde al promediado de un número infinito de excitaciones del ruido interrumpido. Para una evaluación práctica de la incertidumbre de medición que utiliza el método de la respuesta impulsiva integrada, se puede considerar el mismo grado de magnitud que la producida por un promedio de \(n=10 \) mediciones en cada posición con el método del ruido interrumpido. No es necesario ningún promediado adicional para aumentar la precisión de medición estadística para cada posición.
3 Descripción experimental

3.1 Recintos de medición

Los dos recintos donde las medidas fueron realizadas son:

3.1.1 Aula Magna

El Aula Magna de la Escuela Técnica Superior de Arquitectura de la Universidad Politécnica de Madrid se encuentra situada en la Avenida Juan Herrera número 4, en el sótano del edificio con desempeños tanto de aula como de sala de reuniones. Tiene un volumen de 910 m3 y se encuentra dividida en dos partes, la primera está destinada al conferenciante o profesor, y la segunda se corresponde a la audiencia con 211 butacas [1].

Las medidas realizadas en este recinto han seguido métodos diversos como ruido interrumpido y respuesta al impulso: disparos de pistola, explosión de globos, señales MLS y barridos de tonos puros.

Para este recinto se eligieron 3 posiciones de fuente diferentes y 12 posiciones de micrófono. En cada posición de micrófono se repitió la medición 10 veces.
3. Descripción experimental

3.1.2 Laboratorio de acústica

El segundo recinto donde han sido realizadas las mediciones es la sala receptora del Laboratorio de acústica ArquiLav ubicado en la Escuela Técnica Superior de Arquitectura de la Universidad Politécnica (en este TFM se denominará Laboratorio de acústica). También se encuentra en el sótano del edificio y su objetivo es la realización de diferentes ensayos acústicos. Su volumen es de 61,5 m3 y esta sala se caracteriza debido a que sus parámetros son acústicamente reflectantes.

En esta ocasión se han utilizado dos posiciones de fuente y 6 de micrófono, con los métodos del ruido interrumpido y de la respuesta al impulso: explosión de globos, señales MLS y barridos de tonos puros. En cada posición de micrófono la medición fue repetida 10 veces.

Figura 2: Vista en planta del Aula Magna con posiciones de fuente y micrófono [1].
3. Descripción experimental

La otra posición de fuente es en la esquina superior izquierda de la Figura 3.

3.2 Tratamiento de los parámetros

Con el fin de poder evaluar los parámetros comentados anteriormente, en primer lugar se tiene que realizar un procesado de los datos adquiridos en [1] para poder transformar la información archivada en los parámetros a estudio.

Desde [1] se han obtenido dos clases de archivos donde está registrado el tiempo de reverberación medido por ambos métodos, método del ruido interrumpido y método de la respuesta impulsiva integrada.

- Dirac

Los archivos con extensión .wav son el fruto del uso del método de la respuesta impulsiva integrada cuando se usan señales MLS o barridos. Para su tratamiento se ha utilizado el software Dirac, el cual es una herramienta de cálculo que permite medir respuestas impulsivas a partir de las cuales entrega un amplio rango de parámetros. Se introduce el archivo correspondiente y Dirac ofrece la opción de aplicar diferentes normativas a la hora de trabajar con las mediciones. En este caso se elige la norma [5] y se obtienen los siguientes parámetros:
3. Descripción experimental

Como se puede ver en la Figura 4, Dirac nos ofrece una gran variedad de parámetros entre los que se encuentran el tiempo de reverberación con diferentes caídas, claridad y definición de la sala. En función del ancho de banda elegido durante el análisis de la respuesta, se tendrán valores por octava o tercio de octava, y también parámetros globales que no dependen de la frecuencia.

- Qualifier de Bruël & Kjaer

Este programa extrae datos del sonómetro procedentes de archivos .bap y es capaz de procesarlos. En este caso fueron registrados los datos por tercio de octava desde 63 Hz a 8 kHz y sólo se pueden ver los valores a estas frecuencias para T_{20} y T_{30} de los diferentes métodos de ruido interrumpido, globos, claquetas y pistola.
3.3 Parámetros a evaluar

Los parámetros sobre los que se va a trabajar, que se obtienen a través de los software mencionados, y que ya han sido presentados en la introducción son:

- Tiempo de reverberación → Es el tiempo en el que la señal sonora tarda en decaer 60 dB desde que la fuente deja de emitir. Los parámetros a evaluación son los correspondientes a las caídas de 10 (T₁₀), 15 (T₁₅), 20 (T₂₀) y 30 dB (T₃₀). El tiempo de reverberación es característico del recinto y no varía con la posición.

- Claridad → Es la cualidad que permite al oyente la apreciación de cada detalle de una ejecución, haciendo que sea posible la comprensión de los detalles. Este parámetro depende del tipo de sala, la zona de la misma y la posición de la fuente.

 - Claridad de la voz → \(C_{50} = 10 \log \left(\frac{\int_{0}^{0.05} p^2(t)dt}{\int_{0}^{0.05} p^2(t)dt} \right) \) (47)

 Orientado para salas dedicadas a la palabra, midiendo la relación entre la energía sonora percibida durante los primeros 50 ms después de recibir el sonido directo, y la energía sonora posterior. Este índice debe tener un valor superior a 2 dB ya que está relacionado con el límite admisible para tener una buena inteligibilidad de la palabra.

 - Claridad musical → \(C_{80} = 10 \log \left(\frac{\int_{0}^{0.08} p^2(t)dt}{\int_{0}^{0.08} p^2(t)dt} \right) \) (48)

 Orientado para salas musicales, midiendo la relación entre la energía sonora percibida durante los primeros 80 ms después de recibir el sonido directo, y la energía sonora posterior. Cuanto mayor sea este índice, más dominará el sonido inicial y más alta será la impresión de la claridad. Lo aconsejable para
tener una buena inteligibilidad musical es no sobrepasar los 8 dB en diferentes puntos de la sala.

- También interesa estudiar los siguientes parámetros de claridad con los que se obtiene la relación de energías en los primeros instantes, 20 ms y 30 ms: C_{20} y C_{30}

- Definición → También denominado como Razón de energía temprana a total. Describe la inteligibilidad del discurso usando la relación entre las partes tempranas y totales de la respuesta impulsaiva. Si se obtiene un índice muy pequeño en un recinto, se percibe como poco íntimo, conllevando un tiempo de reverberación excesivo. Si por el contrario se obtiene un valor mayor, se puede decir que la sala está preparada para la expresión hablada.

 - Definición de la voz → $D_{50} = \frac{\int_{0}^{0.05} p^2(t)dt}{\int_{0}^{\infty} p^2(t)dt}$
 - Definición musical → $D_{80} = \frac{\int_{0}^{0.08} p^2(t)dt}{\int_{0}^{\infty} p^2(t)dt}$

- Tiempo central (T_s) → Es el tiempo en milisegundos donde el nivel de energía integrado, antes del tiempo central, coincide con la energía recibida después de este tiempo. Un tiempo central corto indica una mayor claridad, mientras que un tiempo central largo advierte de una mayor reverberación en el recinto. También se denomina centro de gravedad. Se recomienda un tiempo central inferior a 140 ms [8].

 - $T_s = \frac{\int_{0}^{\infty} t\cdot p^2(t)dt}{\int_{0}^{\infty} p^2(t)dt}$

- Early decay time (EDT) → Se basa en el tiempo que el sonido tarda en decaer los primeros 10 dB multiplicado por un factor de 6 para relacionarlo con la definición original del tiempo de reverberación. La percepción subjetiva de reverberación es mayor en la caída inicial de la cola reverberante [6], de ahí que se use este parámetro.

3.4 Implementación de la normativa

A la hora de aplicar los criterios descritos en la norma UNE 82009 se van a asimilar cada una de las disposiciones de medida a un laboratorio hipotético que interviene en el ejercicio de precisión. Es decir, cada método de medición del tiempo de reverberación será considerado como un método diferente promediando los valores obtenidos por cada fuente y micrófono, si la evaluación es global. En cambio si es individual, la evaluación se hará por el conjunto de posición fuente – posición micrófono de todos los diferentes métodos existentes.

Para llevar a cabo la evaluación de los laboratorios aberrantes y obtener la media general, repetibilidad y reproducibilidad, según las directrices de [3], de los laboratorios aptos se ha implementado una función en Matlab con el fin de facilitar la manejabilidad de los datos.

En primer lugar se necesita combinar los valores obtenidos en cada repetición de la medición para calcular el valor promedio de una cierta posición para cada frecuencia y laboratorio. En pestañas individuales de un mismo archivo Excel se incluyen los datos de cada octava (pestaña 1– 125 Hz, pestaña 2 – 250 Hz, pestaña 3 – 500 Hz, pestaña 4 – 1000 Hz, pestaña 5 – 2000 Hz, pestaña 6 – 4000 Hz). Desde Matlab se pide que se indique el archivo donde están los datos.

- 28 -

Universidad Politécnica de Madrid
3. Descripción experimental

Para cada frecuencia se evalúa, en primer lugar, la coherencia entre los datos y se obtienen los laboratorios aberrantes.

Figura 6: Introducción de los datos en Matlab.

Figura 7: Laboratorio aberrantes en Matlab.
3. Descripción experimental

Con los laboratorios aptos se procede a calcular la media general, desviaciones, repetibilidad y reproducibilidad y esos datos se archivan en un Excel que el usuario nombra y guarda donde estime oportuno.

Figura 8: Resultados obtenidos de aplicar la normativa a través de Matlab.

Tal como está programado, en la primera fila se han guardado las medias generales, en la segunda las desviaciones de repetibilidad, en la tercera los límites de repetibilidad, en la cuarta las desviaciones de reproducibilidad y en la quinta los límites de reproducibilidad (Figura 8).
4. Resultados

En este apartado van a ser comentados los resultados obtenidos a partir de las diferentes evaluaciones a las que han sido sometidos los diferentes parámetros.

4.1 Selección de laboratorios

Tal como se comentó anteriormente, los resultados se dividirán de forma global que se utilizará para aquellos parámetros que no varían en función de la posición, e individual para los parámetros que sí dependen de la ubicación. La diferencia entre global e individual es que cuando es global, se promediando los valores obtenidos por posición de fuente y micrófono, en cambio si es individual, se evaluará el comportamiento del parámetro en función de la relación posición fuente – posición micrófono. Se han considerado como laboratorio cada uno de los sistemas usados tanto por el método del ruido interrumpido como el método de la respuesta impulsiva integrada. Los laboratorios se presentan en la siguiente Tabla 1.

<table>
<thead>
<tr>
<th>Laboratorio</th>
<th>Método medición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratorio 1</td>
<td>Barridos</td>
</tr>
<tr>
<td>Laboratorio 2</td>
<td>Señales MLS</td>
</tr>
<tr>
<td>Laboratorio 3</td>
<td>Ruido interrumpido</td>
</tr>
<tr>
<td>Laboratorio 4</td>
<td>Globos</td>
</tr>
<tr>
<td>Laboratorio 5</td>
<td>Pistola</td>
</tr>
<tr>
<td>Laboratorio 6</td>
<td>Claquetas</td>
</tr>
</tbody>
</table>

4.2 Tiempo de reverberación

4.2.1 T_{20}

El primer parámetro a evaluar es el tiempo de reverberación a partir de la caída de los primeros 20 decibeles. Su comportamiento ha sido estudiado tanto en el Aula Magna como en el laboratorio de acústica.

Al ser una parámetro que no depende de la posición de medición, se realizará una evaluación global promediando los diferentes datos.

- Aula Magna → A continuación de presentan los laboratorios implicados, si alguno de ellos es aberrante y los valores obtenidos tanto de forma gráfica como en tabla (Tabla 2).

| T_{20}: Barridos, MLS, Globos, Ruido interrumpido, Pistola |
|--------|--------------------------|
| Frecuencia (Hz) | 125 | 250 | 500 | 1000 | 2000 | 4000 |
| μ | 1,00650 | 0,92942 | 0,95901 | 1,06703 | 1,10574 | 1,04597 |
| σ_r | 0,06492 | 0,04851 | 0,03304 | 0,02167 | 0,03570 | 0,04938 |
| σ_R | 0,06833 | 0,05896 | 0,04344 | 0,02751 | 0,03829 | 0,07466 |

Aberrantes: Cochran, Grubbs
No se ha obtenido ningún valor incoherente.

Los valores medios de cada uno de los métodos que conforman la evaluación global (barridos, señales MLS, globos, ruido interrumpido y disparos de pistola) se presentan en la Tabla 3:

<table>
<thead>
<tr>
<th>Método</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>0,96843</td>
<td>0,88901</td>
<td>0,92872</td>
<td>1,06064</td>
<td>1,11804</td>
<td>1,10885</td>
</tr>
<tr>
<td>MLS</td>
<td>1,01841</td>
<td>0,94579</td>
<td>0,95505</td>
<td>1,07484</td>
<td>1,11837</td>
<td>1,09909</td>
</tr>
<tr>
<td>Globos</td>
<td>1,04389</td>
<td>0,91083</td>
<td>0,94556</td>
<td>1,05056</td>
<td>1,09167</td>
<td>1,02444</td>
</tr>
<tr>
<td>R Interr</td>
<td>0,99262</td>
<td>0,98262</td>
<td>1,00778</td>
<td>1,09435</td>
<td>1,11710</td>
<td>1,02114</td>
</tr>
<tr>
<td>Pistola</td>
<td>1,00939</td>
<td>0,91788</td>
<td>0,95788</td>
<td>1,05364</td>
<td>1,08152</td>
<td>0,97000</td>
</tr>
</tbody>
</table>

- Laboratorio de acústica: Se procede de la misma manera, introduciendo los datos del laboratorio de acústica en la Tabla 4:

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>1,02478</td>
<td>1,37747</td>
<td>1,57754</td>
<td>1,69210</td>
<td>1,63652</td>
<td>1,34831</td>
</tr>
<tr>
<td>MLS</td>
<td>0,04989</td>
<td>0,07351</td>
<td>0,05120</td>
<td>0,02342</td>
<td>0,01498</td>
<td>0,00827</td>
</tr>
<tr>
<td>R Interr</td>
<td>0,09027</td>
<td>0,07521</td>
<td>0,05184</td>
<td>0,03941</td>
<td>0,02718</td>
<td>0,01606</td>
</tr>
</tbody>
</table>

Tampoco hay valores aberrantes en este caso. Los valores medios de los barridos, señales MLS y ruido interrumpido en el laboratorio de acústica para este parámetro son:

<table>
<thead>
<tr>
<th>Método</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>1,07764</td>
<td>1,35229</td>
<td>1,55903</td>
<td>1,67748</td>
<td>1,62426</td>
<td>1,35008</td>
</tr>
<tr>
<td>MLS</td>
<td>1,06142</td>
<td>1,36400</td>
<td>1,57110</td>
<td>1,66881</td>
<td>1,62170</td>
<td>1,36151</td>
</tr>
<tr>
<td>R Interr</td>
<td>0,93528</td>
<td>1,41611</td>
<td>1,60250</td>
<td>1,73000</td>
<td>1,66361</td>
<td>1,33333</td>
</tr>
</tbody>
</table>

La comparación de forma gráfica de los valores medios globales se puede ver a continuación:
4. Resultados

Como se puede ver, tanto las desviaciones como la media general son superiores en el laboratorio de acústica respecto a los valores obtenidos en el Aula Magna. A altas frecuencias, las desviaciones en el Aula Magna crecen mientras que en el laboratorio de acústica caen de forma constante.

Gráficamente se va a comparar el resultado de la evaluación global con cada uno de los valores medios obtenidos para cada método.
4. Resultados

El tiempo de reverberación en el Aula Magna decae desde 125 Hz hasta los 250Hz, para crecer hasta, aproximadamente, los 2 kHz donde vuelve a disminuir. El método con el que se obtiene un tiempo de reverberación T_{20} más alto a casi todas las frecuencias es el método de las señales MLS, mientras que aquel se produce valores menores a bajas frecuencias es el de los barridos, a través de la respuesta impulsiva. Gráficamente, los valores globales se aprecian en el medio de todos los métodos, como si fuese un promedio. A bajas y altas frecuencias se puede distinguir que los métodos producen valores más espaciados en relación al comportamiento mostrado a medias frecuencias.

![Gráfica de comparación del tiempo de reverberación T_{20} en el laboratorio de acústica.](image)

Figura 11: Comparación del tiempo de reverberación T_{20} en el laboratorio de acústica.

En la Figura 11 se presenta el comportamiento del tiempo de reverberación T_{20} en el laboratorio de acústica. En este caso se puede ver que los dos métodos de la respuesta impulsiva consiguen valores muy similares en todas las frecuencias de estudio y asemejándose al tiempo de reverberación global. En general, el método del ruido interrumpido obtiene valores ligeramente superiores a los de la respuesta impulsiva.

4.2.1.1 Repetibilidad T_{20}

Para evaluar la repetibilidad, se va a obtener la desviación típica de las 10 mediciones en cada combinación de fuente receptor y calcular el promedio de todas las mediciones realizadas por un mismo método. De esta manera se pretende conseguir datos fiables los cuales poder ser comparados entre sí. Desde la desviación típica se obtienen los límites de repetibilidad.

- Aula Magna → En la siguiente Figura 12 se muestran los diferentes límites de repetibilidad, por cada método utilizado, el límite de repetibilidad global calculado y el dado a través de la evaluación de la norma.
Como se puede observar, el método del ruido interrumpido consigue los mayores valores para el límite de repetibilidad, excepto a 4 kHz que le supera el valor global obtenido a través de la norma UNE (19). Los método de la respuesta impulsiva basada en señales electrónicas, barridos y señales MLS, adoptan valores muy similares cercanos a 0, comportamiento que indica que son bastante precisos. Entre el límite global calculado, siguiendo el procedimiento explicado en este apartado, y el obtenido de la norma UNE, se ve que tienen valores afines hasta 1 kHz.

- Laboratorio de acústica → Se procede de la misma manera, obteniéndose la Figura 13:

Para este recinto se repite que el método del ruido interrumpido es el que ofrece mayores valores, y los métodos de los barridos y señales MLS son aquellos más cercanos a 0, coincidiendo a altas frecuencias. En este caso, los valores globales concuerdan a partir de 1
4. Resultados

kHz, y antes de esta frecuencia son superiores los valores globales calculados. Entre ambos recinto se puede comentar que en el Aula Magna se alcanzan mayores valores en general, por lo tanto los métodos en el laboratorio de acústica son más precisos.

4.2.1.2 Reproducibilidad T_{20}

Para poder evaluar la reproducibilidad del tiempo de reverberación T_{20}, se presentan los distintos límites obtenidos en los dos recintos, Aula Magna y laboratorio de acústica, y así poder apreciar las diferencias existentes.

![Figura 14: Límites de reproducibilidad de T_{20} en función del recinto.](image)

En la Figura 14 se presentan los límites de reproducibilidad del parámetro T_{20}. La reproducibilidad en el laboratorio de acústica decrece constantemente a medida que aumenta la frecuencia, desde un valor de 0,25 hasta 0,05. El límite correspondiente al Aula Magna también va disminuyendo desde 0,19 hasta 1 kHz, donde alcanza un mínimo y remonta hasta sobrepasar el valor 0,2. El límite del laboratorio es superior hasta 1 kHz y a partir de 2 kHz lo es el del Aula Magna.

4.2.2 T_{30}

El siguiente parámetro a evaluar es el tiempo de reverberación a través de la caída de 30 dB.

También se hace una evaluación global por no depender de la posición de la fuente y micrófono. Los laboratorios disponibles que entran en juego son: Barridos, MLS, Ruido interrumpido, Pistola, Globos y Claquetas.

- Aula Magna → Los datos obtenidos para este recinto con los laboratorios mencionados son (Tabla 6):

<table>
<thead>
<tr>
<th>T_{30}: Barridos, MLS, Globos, Ruido interrumpido, Pistola, Claquetas</th>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td></td>
<td>0,98305</td>
<td>0,93914</td>
<td>0,95790</td>
<td>1,06563</td>
<td>1,11199</td>
<td>1,05921</td>
</tr>
<tr>
<td>σ_r</td>
<td>0,03607</td>
<td>0,03651</td>
<td>0,02307</td>
<td>0,01450</td>
<td>0,002705</td>
<td>0,004598</td>
<td></td>
</tr>
<tr>
<td>σ_R</td>
<td>0,03762</td>
<td>0,04257</td>
<td>0,03076</td>
<td>0,02053</td>
<td>0,03082</td>
<td>0,07197</td>
<td></td>
</tr>
</tbody>
</table>
4. Resultados

A 125 Hz se obtienen valores incoherentes usando claquetas, por Cochran, y globos, pistola y señales MLS por Grubbs. Tanto a 250 Hz como a 500 Hz siguen siendo aberrantes las claquetas por Cochran.

Los valores medios de cada uno de los métodos que conforman la evaluación global se presentan en la Tabla 7:

<table>
<thead>
<tr>
<th>F(Hz) Método</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>0,97250</td>
<td>0,90540</td>
<td>0,93500</td>
<td>1,05420</td>
<td>1,12410</td>
<td>1,11840</td>
</tr>
<tr>
<td>MLS</td>
<td>1,00700</td>
<td>0,95650</td>
<td>0,96730</td>
<td>1,07970</td>
<td>1,13380</td>
<td>1,12340</td>
</tr>
<tr>
<td>Globos</td>
<td>1,05000</td>
<td>0,93780</td>
<td>0,94310</td>
<td>1,04530</td>
<td>1,10000</td>
<td>1,04640</td>
</tr>
<tr>
<td>R Interr</td>
<td>0,99360</td>
<td>0,96690</td>
<td>0,98900</td>
<td>1,08170</td>
<td>1,11550</td>
<td>1,03930</td>
</tr>
<tr>
<td>Pistola</td>
<td>1,03480</td>
<td>0,92820</td>
<td>0,95480</td>
<td>1,06480</td>
<td>1,09210</td>
<td>0,99180</td>
</tr>
<tr>
<td>Claquetas</td>
<td>1,28170</td>
<td>0,99730</td>
<td>1,07130</td>
<td>1,09470</td>
<td>0,99000</td>
<td></td>
</tr>
</tbody>
</table>

- Laboratorio de acústica. En la Tabla 8 están los datos correspondientes al laboratorio de acústica:

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>1,03546</td>
<td>1,38552</td>
<td>1,58906</td>
<td>1,68612</td>
<td>1,63336</td>
<td>1,35269</td>
</tr>
<tr>
<td>σr</td>
<td>0,04801</td>
<td>0,04219</td>
<td>0,02688</td>
<td>0,01371</td>
<td>0,00823</td>
<td>0,00966</td>
</tr>
<tr>
<td>σR</td>
<td>0,09891</td>
<td>0,04395</td>
<td>0,02937</td>
<td>0,01998</td>
<td>0,01542</td>
<td>0,02839</td>
</tr>
</tbody>
</table>

En esta sala solo se han obtenido valores aberrantes para 4 kHz con el método de barridos.

Los valores medios de barridos, señales MLS y ruido interrumpido en el laboratorio de acústica están en la Tabla 9:

<table>
<thead>
<tr>
<th>F(Hz) Método</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>1,09292</td>
<td>1,37164</td>
<td>1,59638</td>
<td>1,67373</td>
<td>1,62491</td>
<td>1,40370</td>
</tr>
<tr>
<td>MLS</td>
<td>1,08013</td>
<td>1,39324</td>
<td>1,60024</td>
<td>1,68103</td>
<td>1,62628</td>
<td>1,37178</td>
</tr>
<tr>
<td>R Interr</td>
<td>0,93333</td>
<td>1,39167</td>
<td>1,57056</td>
<td>1,70361</td>
<td>1,64889</td>
<td>1,33361</td>
</tr>
</tbody>
</table>
4. Resultados

El comportamiento de la media general es muy similar a las medias vistas en T_{20}. Respecto a las desviaciones, para el Aula Magna están muy próximas entre sí y cercanas a 0, mientras que en el laboratorio la repetibilidad está muy cercana a 0 (sobre todo a altas frecuencias), la reproducibilidad es muy superior llegando a valores de 0,10. Esta gran diferencia indica la presencia de una gran varianza Interlaboratorio.

La comparación gráfica de los diferentes valores del tiempo de reverberación en ambas salas se presenta a continuación:

Como se puede ver, a través de los diferentes métodos se obtienen valores muy similares exceptuando el uso de las claquetas que presenta un comportamiento diferente al resto, principalmente porque a 125Hz no se midió el tiempo de reverberación a través de este método.
El tiempo de reverberación en el laboratorio de acústica se presenta en la Figura 17. Tal como pasaba en el caso anterior de T_{20}, los valores obtenido a través de los 3 métodos diferentes y el global coinciden prácticamente a todas las frecuencias, a 125 Hz el método del ruido interrumpido ofrece un valor ligeramente inferior al resto y a 4 kHz también existe cierta diferencia entre los valores, pero es mínima.

4.2.2.1 Repetibilidad T_{30}

La evaluación de la repetibilidad se va a llevar a cabo de la misma manera comentada para el caso del T_{20}, y así también será para el resto de parámetros.

- Aula Magna → En la siguiente Figura 18 se presenta la comparación de los límites de repetibilidad a través de los diferentes métodos usados, como los valores globales calculados y el valor global obtenido a través de la norma UNE 82009 (19).
4. Resultados

Como se puede ver, los valores de los límites de casi todos los métodos están por debajo del valor 0,1 lo cual indica buena precisión. Solo destacarían las claquetas, con un gran valor a 250 Hz, y el ruido interrumpido que es ligeramente superior al resto, a todas las frecuencias. Los valores globales son muy similares.

- Laboratorio de acústica → Se procede de manera idéntica para el laboratorio de acústica.

Para este recinto en comparación con el Aula Magna, se obtienen valores menores de forma general para cada método por separado. El método del ruido interrumpido es aquel que adquiere mayores valores seguido de los valores obtenidos a través de la evaluación global de
la norma 82009 (19), la cual solo coincide con los valores globales calculados a altas frecuencias. Los métodos de la respuesta impulsiva permanecen muy cercanos a 0.

4.2.2.2 Reproducibilidad T_{30}

A continuación se presentan los límites de reproducibilidad para el tiempo de reverberación T_{30}.

![Figura 20: Límites de reproducibilidad de T_{30} en función del recinto.](image)

Como se puede ver en la Figura 20, existen diferencias considerables entre los límites de reproducibilidad de T_{20} y T_{30}. La reproducibilidad del laboratorio de acústica adopta valores ligeramente superiores de los visto para T_{20}, empezando en 0,28 a 125 Hz hasta un mínimo a 2 kHz y subir discretamente hasta 0,08 en 4 kHz. En el Aula Magna se aprecia menores valores a bajas frecuencias (0,1), se repite el mínimo a 1 kHz y crece hasta 4 kHz tal como pasaba en T_{20}. A medias frecuencias, prácticamente, ambos límites de reproducibilidad comparten valores.

4.2.3 T_{10}

El tiempo de reverberación también se puede estimar a través de la caída de los 10 primeros dB. En esta situación solo se ha obtenido la valoración global utilizando el método de barridos y señales MLS, y por lo tanto no se ha podido evaluar la coherencia de los resultados al ser tan pocos laboratorios.

- Aula Magna → Para el Aula Magna se han conseguido los siguientes resultados (Tabla 10):

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>1,00424</td>
<td>0,93580</td>
<td>0,94563</td>
<td>1,07814</td>
<td>1,10353</td>
<td>1,09141</td>
</tr>
<tr>
<td>σ_r</td>
<td>0,11388</td>
<td>0,07630</td>
<td>0,04762</td>
<td>0,03969</td>
<td>0,04995</td>
<td>0,06526</td>
</tr>
<tr>
<td>σ_R</td>
<td>0,11758</td>
<td>0,07915</td>
<td>0,04955</td>
<td>0,04110</td>
<td>0,05157</td>
<td>0,06752</td>
</tr>
</tbody>
</table>

Aberrantes:

- Cochran
- Grubbs

No se ha podido realizar el estudio de laboratorios aberrantes.

Tabla 10: Datos T_{10} global en el Aula Magna.
4. Resultados

Los valores medios de los métodos de barridos y MLS están en la Tabla 11:

<table>
<thead>
<tr>
<th>Método</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>0,97311</td>
<td>0,94033</td>
<td>0,94476</td>
<td>1,06706</td>
<td>1,10821</td>
<td>1,09664</td>
</tr>
<tr>
<td>MLS</td>
<td>1,03537</td>
<td>0,93126</td>
<td>0,94651</td>
<td>1,08922</td>
<td>1,09885</td>
<td>1,08618</td>
</tr>
</tbody>
</table>

- Laboratorio de acústica → Los datos obtenidos en el laboratorio de acústica se presentan en la Tabla 12:

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>1,08581</td>
<td>1,31176</td>
<td>1,49218</td>
<td>1,68399</td>
<td>1,60133</td>
<td>1,35293</td>
</tr>
<tr>
<td>σ_r</td>
<td>0,10244</td>
<td>0,10015</td>
<td>0,04191</td>
<td>0,05722</td>
<td>0,02698</td>
<td>0,03443</td>
</tr>
<tr>
<td>σ_R</td>
<td>0,11058</td>
<td>0,10152</td>
<td>0,04279</td>
<td>0,06031</td>
<td>0,02807</td>
<td>0,03516</td>
</tr>
</tbody>
</table>

Aberrantes: Cochran, Grubbs

En este caso tampoco se ha podido estudiar si había valores aberrantes.

Los valores medios de los diferentes métodos en el laboratorio de acústica son:

<table>
<thead>
<tr>
<th>Método</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>1,08856</td>
<td>1,28534</td>
<td>1,47862</td>
<td>1,69356</td>
<td>1,59579</td>
<td>1,34437</td>
</tr>
<tr>
<td>MLS</td>
<td>1,08307</td>
<td>1,33818</td>
<td>1,50574</td>
<td>1,67443</td>
<td>1,60687</td>
<td>1,36149</td>
</tr>
</tbody>
</table>

![Figura 21: Comparación de datos T10 global.](image)
En la figura anterior se puede ver la comparación del comportamiento del parámetro T_{10} a través de los métodos de barridos y señales MLS. Se obtiene una media superior en el laboratorio de acústica en todas las frecuencias de estudio. A frecuencias bajas las desviaciones son superiores respecto a las obtenidas a mayores frecuencias. El promedio de las desviaciones indican que es superior la obtenida en el Aula Magna.

A continuación se presenta una comparación del parámetro T_{10} con los resultados obtenidos para la valoración global y para los valores medios de cada uno de los métodos (Tabla 11):

![Figura 22: Comparación del tiempo de reverberación T_{10} en el Aula Magna.](image)

Como se puede ver en la Figura 22, los valores que presenta este parámetro son muy similares a los vistos para los casos del T_{20} y T_{30}, y el tiempo de la evaluación global se mantiene entre las evaluaciones independientes de los barridos y las señales MLS, como si fuese un promedio.
4. Resultados

Figura 23: Comparación del tiempo de reverberación T_{10} en el laboratorio de acústica.

Tal como se veía en el Aula Magna, para este recinto también se produce que la evaluación global parece un promediado del resto de métodos, al encontrarse entre sus valores siempre. En relación a los parámetros T_{20} y T_{30}, se observa que el crecimiento desde 250Hz hasta 1 kHz es más acusado, casi constante, anteriormente se contempló que el crecimiento era más suavizado.

4.2.3.1 Repetibilidad T_{10}

La evaluación de la repetibilidad se va a hacer de la misma manera comentada anteriormente, obteniendo la desviación típica de las 10 repeticiones en cada punto y promediando.

- Aula Magna → El límite de repetibilidad en el Aula Magna se presenta en la Figura 24:
4. Resultados

Como se puede observar en la figura anterior, el límite de repetibilidad obtenido a través de la evaluación de la norma 82009 (19) es mucho mayor que los límites de repetibilidad calculados a través de las desviaciones típicas de las medidas, las cuales permaneces muy cercanas a 0.

- Laboratorio de acústica → En el laboratorio de acústica se han utilizado los mismo métodos, veamos si existen diferencias.

En este recinto se repite el comportamiento de los valores globales a través de la norma UNE (19), son muy superiores a todas las frecuencias. Respecto a los límites calculados, se aprecia que a bajas frecuencias existe una dispersión de los valores que a partir de 250 Hz es mitigada. El nivel que alcanzan los límites en ambos recintos son similares.
4. Resultados

4.2.3.2 Reproducibilidad T_{10}
En la Figura 26 está la reproducibilidad correspondiente al tiempo de reverberación T_{10}.

![Graph showing limits of reproducibility for T_{10}](image)

Figura 26: Límites de reproducibilidad de T_{10} en función del recinto.

A simple vista se puede comentar que los valores adquiridos por los distintos límites de reproducibilidad son los más altos vistos hasta ahora. La reproducibilidad del laboratorio de acústica adopta una valor de 0,3 a 125 Hz para sufrir dos mínimos a 500 Hz y 2 kHz, y crecer hasta 0,1 en 4 kHz. En cambio el comportamiento del límite del Aula Magna es más lineal. Forma una ligera curva desde 0,33 a 125 Hz hasta 0,19 a 4 kHz, teniendo un mínimo a 1 kHz.

4.2.4 T_{15}
Tal como pasaba en el caso anterior, solo se ha evaluado el parámetro T_{15} de forma global con los métodos de barridos y señales MLS. Este tiempo de reverberación se corresponde a la caída de los 15 primeros dB.

- **Aula Magna**: Los resultados obtenidos en el Aula Magna para este parámetro de forma global están en la Tabla 14:

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0,993697</td>
<td>0,917386</td>
<td>0,939715</td>
<td>1,073563</td>
<td>1,114543</td>
<td>1,093515</td>
</tr>
<tr>
<td>σ_r</td>
<td>0,084391</td>
<td>0,058007</td>
<td>0,034205</td>
<td>0,027162</td>
<td>0,041520</td>
<td>0,055984</td>
</tr>
<tr>
<td>σ_R</td>
<td>0,086519</td>
<td>0,060351</td>
<td>0,035430</td>
<td>0,027337</td>
<td>0,043211</td>
<td>0,057406</td>
</tr>
</tbody>
</table>

Tabla 14: Datos T_{15} global en Aula Magna.

No ha sido viable el estudio de los valores aberrantes por lo comentado anteriormente.

Los valores medios de los métodos de barridos y MLS en el Aula Magna están en la Tabla 15:
4. Resultados

Tabla 15: Valores medios de cada método de la evaluación global T₁₅ en el Aula Magna.

<table>
<thead>
<tr>
<th>Método</th>
<th>F(Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>125</td>
<td>0,97182</td>
<td>0,90069</td>
<td>0,93016</td>
<td>1,06760</td>
<td>1,11410</td>
<td>1,10058</td>
</tr>
<tr>
<td>MLS</td>
<td>125</td>
<td>0,10558</td>
<td>0,93409</td>
<td>0,94928</td>
<td>1,07952</td>
<td>1,11499</td>
<td>1,08645</td>
</tr>
</tbody>
</table>

- Laboratorio de acústica → Para este recinto se han obtenido los siguientes datos (Tabla 16):

Tabla 16: Datos T₁₅ global en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>T₁₅: Barridos, MLS</th>
<th>μ</th>
<th>σₕ</th>
<th>σₐ</th>
<th>Aberrantes</th>
<th>Cochran</th>
<th>Grubbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>1,055688</td>
<td>1,334467</td>
<td>1,534600</td>
<td>1,676646</td>
<td>1,611988</td>
<td>1,346446</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0,076762</td>
<td>0,087944</td>
<td>0,053731</td>
<td>0,029570</td>
<td>0,021472</td>
<td>0,015056</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0,082871</td>
<td>0,091796</td>
<td>0,053960</td>
<td>0,032296</td>
<td>0,029494</td>
<td>0,016447</td>
<td></td>
</tr>
</tbody>
</table>

De nuevo no ha sido posible realizar el estudio de valores incoherentes.

Los valores medios de los métodos de barridos y señales MLS en el laboratorio de acústica están en la Tabla 17:

Tabla 17: Valores medios de cada método en al evaluación global T₁₅ en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Método</th>
<th>F(Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barridos</td>
<td>125</td>
<td>1,05753</td>
<td>1,31719</td>
<td>1,51949</td>
<td>1,68918</td>
<td>1,60962</td>
<td>1,34006</td>
</tr>
<tr>
<td>MLS</td>
<td>125</td>
<td>1,05384</td>
<td>1,35174</td>
<td>1,54971</td>
<td>1,66411</td>
<td>1,61436</td>
<td>1,35283</td>
</tr>
</tbody>
</table>

Figura 27: Comparación de datos T₁₅ global.
4. Resultados

En la Figura 27 se presenta la comparación del comportamiento global de T_{15} entre el Aula Magna y el laboratorio de acústica. Si se coteja está gráfica con la equivalente del parámetro T_{10}, se puede ver que son prácticamente idénticas exceptuando las desviaciones a 125 Hz, que aquí son ligeramente inferiores. No es de extrañar que se parezcan, al ser parámetros que sirven para medir el tiempo de reverberación de un recinto, solo diferir en los decibelios de caída.

A continuación se presenta la comparación gráfica de los valores de la media general y los valores medios de cada método de medición:

Figura 28: Comparación del tiempo de reverberación T_{15} en el Aula Magna.

El comportamiento del parámetro T_{15} en el Aula Magna se puede ver en la Figura 28. Los valores se mantienen iguales según lo visto anteriormente y en este caso, la evaluación global y cada una de las individuales son muy similares entre ellas. Solo difieren levemente a bajas frecuencias.
4. Resultados

Para el laboratorio de acústica, se repite el comportamiento visto anteriormente, el valor global permanece entre los valores medios de los diferentes métodos, como si actuase como un promedio de ambos.

4.2.4.1 Repetibilidad T_{15}

Se procede de manera idéntica para evaluar la repetibilidad de este tiempo de reverberación.

- Aula Magna → En la Figura 30 están los límites de repetibilidad para el Aula Magna.

![Figura 29: Comparación del tiempo de reverberación T_{15} en el laboratorio de acústica.](image)

![Figura 30: Comparación del límite de repetibilidad de T_{15} en el Aula Magna.](image)

Tal como se ve en la figura anterior, el valor global del límite de repetibilidad para este parámetro en el Aula Magna usando la evaluación de la norma 82009 (19) es bastante
superior a los límites calculados, los cuales no son idénticos pero sí muy similares entre los métodos usados y el global.

- Laboratorio de acústica → Los límites de repetibilidad de este recinto están en la Figura 31:

![Figura 31: Comparación del límite de repetibilidad de T_{15} en el laboratorio de acústica.](image)

Como se aprecia en la última figura, el valor global (19) del límite de repetibilidad es bastante superior a los diferentes límites calculados, comportamiento que ya se ha visto en el parámetro T_{10}. A bajas frecuencias, los límites de repetibilidad calculados difieren pero a partir de 250 Hz ofrecen valores similares.

4.2.4.2 Reproducibilidad T_{15}

A continuación se visualizan los límites de reproducibilidad del tiempo de reverberación T_{15}.

![Figura 32: Límites de reproducibilidad de T_{15} en función del recinto.](image)
En este caso, el límite de reproducibilidad del laboratorio consigue un valor de 0,24 a 125 Hz, llega a un máximo en 250 Hz de 0,26 y se ve reducido hasta 0,05 en 4 kHz. Por su parte la reproducibilidad del Aula Magna, a 125 Hz tiene un valor de 0,245, vuelve a tener un mínimo a 1 kHz de 0,07 y crece hasta 0,16 a 4 kHz.

4.3 Claridad

La claridad es la cualidad que permite al oyente identificar cada parte de una ejecución. Existen diferentes tipos de claridades en función del tipo de ejecución, como la musical o vocal, y también en función de donde se encuentre el límite entre la energía inicial y final. Este parámetro, al depender de una posición particular dentro de los recintos, los datos obtenidos han sido estudiados en función de la relación posición fuente – posición micrófono.

4.3.1 \(C_{20} \)

La claridad \(C_{20} \) es la relación entre la energía que llega en los primeros 20 ms y el resto de energía a partir de estos 20 ms.

Para cada combinación de fuente-micrófono se ha realizado la evaluación de la norma UNE 82009, aunque sin poder evaluar los laboratorios aberrantes, al solo haber dos, barridos y señales MLS. Los datos obtenidos de esta evaluación van a ser presentados como una tabla de gráficos, al ser más fácil su comprensión.

- Aula Magna → Los datos obtenidos para el Aula Magna se presentan en tres tablas diferentes, una por cada posición de fuente (Tabla 18, Tabla 19 y Tabla 20):

Tabla 18: Media de la combinación de la fuente 1 para \(C_{20} \) en el Aula Magna.
Como se puede ver en este conjunto de imágenes, la media general es el valor global de la evaluación utilizando los métodos de los barridos y las señales MLS, cuyos valores medios se suelen entrelazar dejando en medio a la media general. Para todas las posiciones de micrófono excepto en la segunda y cuarta, a bajas frecuencias es superior la media de las señales MLS mientras que a altas frecuencias suelen coincidir todas las medias.

Tabla 19: Medias de la combinación de la fuente 2 para C20 en el Aula Magna.
En esta última tabla se presenta la media global/general para cada combinación de fuente – receptor y los valores medios del método de la respuesta impulsiva a través de barridos y señales MLS. Para las 8 primeras posiciones de micrófono los valores medios y la media global del parámetro C_{20} son prácticamente idénticas, excepto para Mic2 a partir de 500 Hz; para la primera posición de la fuente no ocurría este comportamiento.

Tabla 20: Medias de la combinación de la fuente 3 para C_{20} en el Aula Magna.
Para esta tercera posición de fuente sonora se ven en la Tabla 20 los diferentes valores que adquiere el parámetro C_{20} en función de la relación de posiciones fuente – micrófono, siendo el global el que se encuentra entre los valores medios de los barridos y señales MLS.

- Laboratorio de acústica → Los valores obtenidos para este segundo recinto se presentan en una tabla de gráficos, indicando las diferentes relaciones de posiciones (Tabla 21 y Tabla 22):

Tabla 21: Medias de la combinación de la fuente 1 de C_{20} en el laboratorio de acústica..
Como se puede ver, para cada combinación de fuente – receptor se obtienen diferentes valores que se van transformando en función de la posición del micrófono.

Tabla 22: Medias de la combinación de la fuente 2 de C20 en el laboratorio de acústica.

Tal como pasaba en el caso anterior, para cada combinación se produce un comportamiento diferente de la media de la claridad C20. A veces coinciden los valores, como en el Mic 1 y Mic 6, otras se entrelazan los valores medios de barridos y MLS, como para el Mic 2 y 3, y en otros casos es una composición de los comportamiento comentados. (Mic 4).

4.3.1.1 Repetibilidad C20

Para evaluar la repetibilidad de la claridad se obtendrá la desviación típica de las 10 repeticiones en cada posición de micrófono y se calculará el promedio de las desviaciones de cada método de medición. En este caso, como se ha ido evaluando cada combinación de
4. Resultados

fuente receptor, no existe como tal un valor global del resultado de la evaluación de norma UNE 82009, así que solo se mostrarán los límites de repetibilidad calculados.

- **Aula Magna** ➔ En la Figura 33 se presentan los límites de repetibilidad calculados para el Aula Magna.

![Figura 33: Comparación del límite de repetibilidad de C_{20} en el Aula Magna.](image)

Desde 125 Hz hasta 250 Hz los límites decrecen para remontar a partir de este punto hasta 4 kHz pero sin llegar al mismo valor. Los límites de repetibilidad más altos son los obtenidos a través del uso de barridos.

- **Laboratorio de acústica** ➔ Los límites de repetibilidad están en la siguiente figura.

![Figura 34: Comparación de los límites de repetibilidad de C_{20} en el laboratorio de acústica.](image)
Entre el Aula Magna y este recinto se ven comportamientos similares, produciéndose un mínimo a 250 Hz y para volver a crecer hasta 1 kHz. Mientras que en el Aula Magna el método que ofrece mayores valores es el de los barridos, en el laboratorio de acústica también se produce esta pauta excepto a 500 Hz que lo hacen las señales MLS.

4.3.2 C_{30}
La claridad C_{30} es la relación entre la energía que llega en los primeros 30 ms y la que lo hace después de ese tiempo. Se procede de la misma manera que para el parámetro C_{20}.

- **Aula Magna** → En las siguientes Tabla 23, Tabla 24 y Tabla 25 se presenta la información de la media de la claridad C_{30} en el Aula Magna en función de la combinación fuente – receptor.

Tabla 23: Medias de la combinación de la fuente 1 para C_{30} en el Aula Magna.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Media general</th>
<th>Media Barridos</th>
<th>Media MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>250</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>500</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>1000</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>2000</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 24: Medias de la combinación de la fuente 2 para C_{30} en el Aula Magna.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Media general</th>
<th>Media Barridos</th>
<th>Media MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>250</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>500</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>1000</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>2000</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 25: Medias de la combinación de la fuente 3 para C_{30} en el Aula Magna.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Media general</th>
<th>Media Barridos</th>
<th>Media MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>250</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>500</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>1000</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>2000</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
La media global, como es lógico, se encuentra entre los valores medios de los dos métodos de medición usados. En general, a bajas frecuencias es superior la media de las señales MLS y a altas lo es lo de los barridos. A medias frecuencias existen diferentes comportamiento en función de la posición del micrófono.

Tabla 24: Medias de la combinación de la fuente 2 para C\textsubscript{30} en el Aula Magna.
Para la segunda posición de fuente sonora se puede observar un comportamiento bastante repetido para las diferentes ubicaciones de micrófono y es que la media, global como valores medios, decaen a medida que aumenta la frecuencia. En varios de estos casos, a 500 Hz o 1 kHz existe una alteración que hace que el comportamiento no se cumpla.

Tabla 25: Medias de la combinación de la fuente 3 para C30 en el Aula Magna.
4. Resultados

Para la claridad C_{30} en el Aula Magna usando la tercera posición de fuente sonora, se observa que para las posiciones de micrófono 3, 4, 8, 10, 11 y 12, la media global calculada a través de la norma Une 82009 coincide en gran mayoría de frecuencias con los valores medios de los métodos de la respuesta impulsiva usando barridos y señales MLS.

- Laboratorio de acústica: De la misma manera se estudia el comportamiento de la media de este parámetro de claridad en el laboratorio de acústica (Tabla 26 y Tabla 27):

Tabla 26: Medias de la combinación de la fuente 1 de C_{30} en el laboratorio de acústica.

Para este recinto se aprecia que la media global y los valores medios de los métodos de medición concuerdan a través de los cambios de las diferentes frecuencias para todas las posiciones de micrófono de este recinto. Este comportamiento aún no ha sido visto en el Aula Magna.
4. Resultados

Tabla 27: Medias de la combinación de la fuente 2 de C\textsubscript{30} en el laboratorio de acústica.

El comportamiento visto para la primera posición de la fuente sonora se repite para la combinación de la fuente 2 y los micrófonos 1, 2, 4 y 6. Para la tercera posición de micrófono, a bajas frecuencias es superior el valor medio de las señales MLS y a partir de 500 Hz lo es la de los barridos. En la quinta posición siempre es superior la media de las señales MLS.

4.3.2.1 Repetibilidad C\textsubscript{30}

La evaluación de la repetibilidad se realizará de la misma manera explicada para el parámetro C\textsubscript{20}. Obteniendo las desviaciones de las medidas y promediando y se compararán solo los valores calculados, no hay una valor global de repetibilidad sacado de la norma.

- Aula Magna → La Figura 35 representa los límites de repetibilidad en el Aula Magna.
4. Resultados

Figura 35: Comparación de los límites de repetibilidad de C_{30} en el Aula Magna.

Para este recinto es superior el límite de repetibilidad correspondiente al uso de barridos como método de medición. A 4 kHz parece invertirse los valores de los métodos.

- Laboratorio de acústica → Los límites de repetibilidad en el laboratorio de acústica se presentan a continuación (Figura 36):

Figura 36: Comparación de los límites de repetibilidad de C_{30} en el laboratorio de acústica.

El límite de repetibilidad correspondiente a la claridad C_{30} tiene diferentes comportamientos en cada recinto de estudio. En el laboratorio cada método tiene su propia pauta (en el Aula Magna tenían la misma con diferentes valores) y a partir de 2 kHz coinciden los valores de los dos métodos de la respuesta impulsiva.
4.3.3 C_{50}
La claridad C_{50}, también conocida como claridad de la voz, indica la inteligibilidad del mensaje oral mostrando la separación entre los diferentes sonidos del mensaje. Las pautas que se han seguido para su estudio han sido las mismas que para los anteriores casos de claridad.

- Aula Magna → Las medias obtenidas para este recinto están en la Tabla 28, Tabla 29 y Tabla 30:

Tabla 28: Medias de la combinación de la fuente 1 de C_{50} en el Aula Magna.
4. Resultados

Para la combinación de la fuente 1 con el resto de posiciones de micrófono, se puede apreciar que prácticamente en ninguna posición, la media global obtenida de la evaluación de la norma UNE 82009 coincide con los valores medios de los métodos usando barridos y señales MLS. Cada método tiene un comportamiento diferente por frecuencia en cada ubicación. Se obtiene buena inteligibilidad en el Mic 1 con las señales MLS a bajas frecuencias y a 250 Hz con los barridos, en el Mic 2 a 125 Hz y 500 Hz con las señales MLS y en el Mic5 a 250 Hz con esta misma señal. Para la posición del micrófono 8 a 250 Hz y 500 Hz también se tiene buena inteligibilidad de palabra así como a 500 Hz en el Mic 9 con ambas señales, y en el Mic 10 a 4 kHz con los barridos.

Tabla 29: Medias de la combinación de la fuente 2 de C50 en el Aula Magna.
Para las combinaciones de fuente – receptor de la segunda fuente sonora se han cosechado las gráficas que han sido presentadas en la última tabla. Como se puede ver, para cada posición de micrófono se muestra un comportamiento diferente. Para la primera posición de micrófono existe buena inteligibilidad de la palabra a todas las frecuencias con ambas señales ya que los valores medios son cercanos y superiores a 2 dB, así como en la posición 8 de micro. En el Mic 2 hay buena inteligibilidad a 500 Hz con barridos y señales MLS, en el Mic 7 a 250 Hz y 500 Hz con barridos y solo a 500 Hz en el Mic 9, y a 125 Hz y 250 Hz con las señales MLS. En el Mic 11 y 12 solo hay buena inteligibilidad de palabra con los barridos a 250 Hz y bajas frecuencias, respectivamente.

Tabla 30: Medias de la combinación de la fuente 3 de C30 en el Aula Magna.
4. Resultados

Utilizando la tercera posición de fuente se produce cierta correspondencia de valores medios, sobre todo en la última posición de micrófono y parcialmente para bajas y medias frecuencias en los micrófonos 10 y 8 respectivamente. Hasta 500 Hz se tiene buena inteligibilidad de palabra con ambas señales excepto a 125 Hz que no se cumple con los barridos en la primera posición de micrófono. También se produce buena inteligibilidad en el Mic 6 a 250 Hz con los barridos, y con las dos señales a 250 Hz en el Mic 7 y 500 Hz en el Mic 8. Para el micrófono 9 y 12 desde 125 Hz hasta 500 Hz se tiene buena inteligibilidad de palabra con las ambas señales.

- Laboratorio de acústica → A continuación se presentan las medias obtenidas para este parámetro a través de la evaluación de la norma y los valores medios de la misma (Tabla 31 y Tabla 32).

Tabla 31: Medias de la combinación de la fuente 1 de C50 en el laboratorio de acústica.
En el laboratorio de acústica, con la fuente sonora en la primera posición se obtienen valores muy similares para la media global y los valores medios de la misma de los diferentes métodos de medición en todas las posiciones. Solo en la posición 2 y 4 de micrófono a altas frecuencias y en la quinta a medias, no se cumple este comportamiento. Se produce buena inteligibilidad de palabra en el micrófono 2 y en el micrófono 5 a 125 Hz tanto con barridos como con señales MLS.

La combinación de la segunda fuente sonora con las diferentes posiciones de micrófono en el laboratorio de acústica presenta diferentes comportamiento, aunque se repite la pauta (Mic1, Mic2, Mic5 y Mic6) de disminuir la media desde 125 Hz hasta 1 kHz para recuperarse hasta 4 kHz. Se produce buena inteligibilidad de palabra en 4 posiciones de micrófono: 1 \rightarrow 125 Hz con...
barridos y señales MLS; 2 → 125 Hz con señales MLS; 5 → 125 Hz con señales MLS; 6 → 125 Hz con ambas señales.

4.3.3.1 Repetibilidad C_{50}
Le evaluación de la repetibilidad del parámetro C_{50} se realiza de la misma manera comentada para los otros casos de claridad, obteniendo las desviaciones típicas de las 10 mediciones de cada posición, promediando y calculando el límite de repetibilidad.

- Aula Magna → En la Figura 37 están los límites de repetibilidad de este primer recinto.

![Figura 37: Comparación de los límites de repetibilidad de C_{50} en el Aula Magna.](image)

Para este recinto se pueden apreciar dos comportamientos diferentes de cada señal de medición usada a través del método de la respuesta impulsiva. Los barridos producen mayores valores, hundiéndose a 500 Hz, mientras que las señales MLS generan valores que decrecen hasta 250 Hz para después remontar, pero sin llegar a coincidir con los valores de los barridos.

- Laboratorio de acústica → A continuación se presenta la repetibilidad en esta sala.
4. Resultados

Figura 38: Comparación de los límites de repetibilidad de C_{50} en el laboratorio de acústica.

En la Figura 38 se aprecia que el límite de repetibilidad correspondiente a las señales MLS es muy próximo a 0 y por lo tanto el límite global tiene el mismo comportamiento que el proporcionado por los barridos, el cual a bajas frecuencias adopta una gran valor.

4.3.4 C_{80}
La claridad C_{80}, también llamada claridad musical, informa del grado de separación que se aprecia en una composición musical.

Para cada combinación de fuente-micrófono se ha realizado la evaluación de la norma UNE 82009 sin evaluar los laboratorios aberrantes, por falta de ellos. Los datos obtenidos de esta evaluación van a ser presentados como una tabla de gráficos.

- Aula Magna → La información de las medias de este parámetro se presentan en la Tabla 33, Tabla 34 y Tabla 35:

Tabla 33: Medias de la combinación de la fuente 1 de C_{80} en el Aula Magna.
El comportamiento percibido de la combinación de la primera posición de fuente con las posiciones de micrófono, muestra que no hay pautas de comportamiento repetidas en las diferentes posiciones de micrófono. En general, la media crece desde bajas frecuencias hasta un máximo en torno a 250 Hz para reducir valores hasta 2 kHz. En todas las posiciones los valores de las medias del parámetro se encuentran por debajo de 8 dB y por lo tanto hay buena inteligibilidad musical.

Tabla 34: Medias de la combinación de la fuente 2 de C40 en el Aula Magna.
La segunda posición de fuente en el Aula Magna provoca diferentes pautas de comportamiento en cada posición de micrófono, los cuales se pueden observar en la tabla de gráficas anterior. Al ser tan diferente entre sí, es complicado sacar similitudes entre los mismos. En todas las posiciones hay buena inteligibilidad musical excepto en el micrófono 8 a 125 Hz con los barridos.

Tabla 35: Medias de la combinación de la fuente 3 de C30 en el Aula Magna.
Para esta combinación de la fuente número 3 junto con las diferentes posiciones de micrófono, solo en dos de ellas (Mic 8 y Mic 12) los métodos de la respuesta impulsiva, barridos y señales MLS, ofrecen valores muy similares haciendo que las curvas de las medias sean prácticamente idénticas. El resto de posiciones ofrecen distintos comportamientos pero se repiten máximos en torno a 250 Hz y mínimos de la media a 1 kHz. En todas las posiciones de micrófono se obtiene buena inteligibilidad musical.

- Laboratorio de acústica → A continuación de presentan los valores obtenidos para el parámetro C_{40} en este recinto (Tabla 36 y Tabla 37):
4. Resultados

Tabla 36: Medias de la combinación de la fuente 1 de C_{60} en el laboratorio de acústica.

Para el laboratorio de acústica con la combinación de la primera fuente con los distintos micrófonos se obtiene que el comportamiento de los valores medios de cada señal son muy similares entre sí para las posiciones de micrófono 1, 2, 4 y 6. Se produce buena inteligibilidad musical en todas las posiciones de micrófono.

Tabla 37: Medias de la combinación de la fuente 2 de C_{60} en el laboratorio de acústica.
4. Resultados

Tal como pasaba en el caso anterior, en las posiciones de micrófono 1, 2, 4 y 5 se obtienen valores medios muy similares y para todas las posiciones se obtienen inteligibilidad musical buena.

4.3.4.1 Repetibilidad C_{60}
El estudio de la repetibilidad de la claridad C_{60} se realizará de la misma manera comentada para los casos anteriores.

- Aula Magna → En la Figura 39 se presentan los límites de repetibilidad calculados a través de la desviación típica en el Aula Magna.

A bajas frecuencias hasta 500 Hz es mayor el límite de repetibilidad de los barridos y desde este punto los valores de ambas señales del método de la respuesta impulsiva son muy similares excepto a 2 kHz que se distancian ligeramente.

- Laboratorio de acústica → Los límites de repetibilidad calculados para este recinto están en la Figura 40.
4. Resultados

Figura 40: Comparación de los límites de repetibilidad de C\textsubscript{80} en el laboratorio de acústica.

Para este recinto también son superiores los valores alcanzados a través del uso de los barridos en relación a las señales MLS a todas las frecuencias de interés. A 4 kHz parece que los valores de ambas señales confluyen hacia el mismo punto. La repetibilidad de la señales MLS se mantiene muy cerca del 0, y por lo tanto presenta muy buena repetibilidad.

4.4 Definición

La definición se define como la relación de energía primaria que llega al oyente desde la fuente directa y la energía total recibida. Este parámetro está relacionado con la claridad que un sonido parece al oyente. A mayor valor, mayor claridad.

4.4.1 \(D_{50} \)

La definición \(D_{50} \) indica la relación entre la energía directa en los primeros 50 ms y la energía total.

- Aula Magna → Los datos de las medias global y por métodos están en la Tabla 38, Tabla 39 y Tabla 40:

<table>
<thead>
<tr>
<th>Tabla 38: Medias de la combinación de la fuente 1 de (D_{50}) en el Aula Magna.</th>
<th>Tabla 39: Medias de la combinación de la fuente 1 de (D_{50}) en el Aula Magna.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
En este último tabla se puede visualizar el comportamiento que adopta la media global, y de cada método, a través de la evaluación de la norma UNE 82009 en función de la combinación fuente – receptor. Se puede observar que cada relación de posiciones produce pautas de comportamiento diferentes entre sí, siendo complejo la extracción de conclusiones. La media global se mantiene entre los valores 0,3 y 0,7.
Tabla 39: Medias de la combinación de la fuente 2 de D50 en el Aula Magna.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Media general</th>
<th>Media Barridos</th>
<th>Media MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>0.9</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>250</td>
<td>0.8</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>500</td>
<td>0.7</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>1000</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>2000</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>4000</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

F2 – Mic1
F2 – Mic2
F2 – Mic3
F2 – Mic4
F2 – Mic5
F2 – Mic6
F2 – Mic7
F2 – Mic8
F2 – Mic9
F2 – Mic10
F2 – Mic11
F2 – Mic12
4. Resultados

Tal como pasaba en el caso anterior, no se pueden obtener conclusiones de los comportamientos obtenidos para cada posición de fuente. La media global de la definición D_{50} estaría entre 0,2 y 0,8, un rango más amplio del que se producía con la fuente 1.

Tabla 40: Medias de la combinación de la fuente 3 de D_{50} en el Aula Magna.

![Gráficas de Medias de la combinación de la fuente 3 de D_{50} en el Aula Magna.](image)
En este caso se puede apreciar que, de forma general los valores de las medias sí que coinciden, entre la global y las diferentes señales excitadores, o algo menos son muy similares. El valor de la media global se encuentra entre 0,35 y 0,8.

- Laboratorio de acústica → En las siguientes tablas de gráficas se presentan los valores medios de D_{50} en el laboratorio de acústica (Tabla 41 y Tabla 42):

Tabla 41: Medias de la combinación de la fuente 1 de D_{50} en el laboratorio de acústica.

Para la combinación de la fuente 1 con las 6 posiciones de micrófonos en el laboratorio de acústica se observa que, mayoritariamente, los valores de la media global coinciden con los valores medios obtenidos a través del uso de barridos y señales MLS. La media global se encuentra entre 0,2 y 0,75.
4. Resultados

Tabla 42: Medias de la combinación de la fuente 2 de D\textsubscript{50} en el laboratorio de acústica.

Para esta segunda posición de micro también se produce el comportamiento de coincidencia de medias excepto en el Mic 3 y Mic 5. La media global varía entre 0,25 y 0,75.

4.4.1.1 Repetibilidad D\textsubscript{50}
La evaluación de la repetibilidad se realizará de la siguiente manera:

- Cálculo de la desviación típica de las 10 mediciones en cada posición de micrófono.
- Obtener el promedio de las desviaciones de todas las combinaciones de fuente – receptor. Nos indicaría la desviación de repetibilidad.
- Cálculo del límite de repetibilidad, multiplicando la desviación por 2,8.
- Aula Magna → En la Figura 41 se presentan los límites de repetibilidad de este parámetro en el Aula Magna.
4. Resultados

El límite de repetibilidad en este recinto es superior a bajas frecuencias para el uso de barridos, de 500 Hz a 2 kHz ambas señales producen los mismo valores y a 4 kHz está por encima el límite de las señales MLS. Los valores que alcanza los límites son muy bajos y por lo tanto muestran que estas medidas tienen buena repetibilidad.

- **Laboratorio de acústica** → En la siguiente figura se pueden ver los límites de repetibilidad en el laboratorio de acústica.

![Figura 41: Comparación de los límites de repetibilidad de D50 en el Aula Magna.](image)

![Figura 42: Comparación de los límites de repetibilidad de D50 en el laboratorio de acústica.](image)

En este recinto se obtiene mayores valores en relación al Aula Magna, aunque sigue estando presente la buena repetibilidad. A todas las frecuencias los barridos producen un límite de repetibilidad mayor al de las señales MLS.
4. Resultados

4.4.2 \(D_{80} \)
La definición \(D_{80} \) indica la relación entre la energía directa en los primeros 80 ms y la energía total recibida.

- Aula Magna → En la Tabla 43, Tabla 44 y Tabla 45 se presentan las medias globales y valores medios obtenidos de cada posición de micrófono cuando es excitado el recinto con la fuente en diferentes posiciones.

Tabla 43: Medias de la combinación de la fuente 1 de \(D_{80} \) en el Aula Magna.

<table>
<thead>
<tr>
<th>Mic</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

- Tabla 44:

- Tabla 45:
A la vista de las gráficas presentadas, se puede decir que aunque los valores adoptados por las medias y valores medios de las señales no sean idénticos, sí que se mantienen en un rango de valores bastante similar. El valor de la media global se sitúa entre 0,5 y 0,82.

Tabla 44: Medias de la combinación de la fuente 2 de D80 en el Aula Magna.
Tal como pasaba en el caso anterior, los valores obtenidos de forma global como solo usando una de las señales, son muy similares entre sí, pero no llegan a coincidir en ninguna de las posiciones de micrófono con la combinación de la fuente 2. La media global de la definición D_{\text{80}} varía entre 0,5 y 0,85, prácticamente como para la primera posición de fuente.

Tabla 45: Medias de la combinación de la fuente 3 de D_{\text{80}} en el Aula Magna.
En esta ocasión sí que existen combinaciones de fuente – receptor donde existe coincidencia entre los valores medio de las señales excitadores, y por tanto correspondencia con la media global. Estas posiciones son la Mic 8, Mic 10 y Mic 12. La media global adopta unos valores entre 0,5 y 0,85, como en los casos anteriores.

- Laboratorio de acústica → A continuación se muestran las medias del parámetro \(D_{50}\) en este recinto (Tabla 46 y Tabla 47):

Tabla 46: Medias de la combinación de la fuente 1 de \(D_{50}\) en el laboratorio de acústica.

Para la combinación de la fuente 1 con las 6 posiciones en el laboratorio de acústica se obtiene que en la primera, tercera y sexta los valores medios coinciden con la media global. La media global oscila entre 0,3 y 0,8, un rango más amplio de lo visto en el Aula Magna.
4. Resultados

Tabla 47: Medias de la combinación de la fuente 2 de D_{80} en el laboratorio de acústica.

Con la combinación de la segunda fuente para las posiciones de micrófono 1, 2 y 6 se observa que los valores medios se igualan y de esta manera también coinciden con la media global. Entre 0,45 y 0,8 se encuentra la media global.

4.4.2.1 Repetibilidad D_{80}

El estudio de la repetibilidad del parámetro D_{80} es igual al de la evaluación del D_{50}.

- Aula Magna → En la Figura 43 se presenta los límites de repetibilidad obtenidos:

![Figura 43: Comparación de los límites de repetibilidad de D_{80} en el Aula Magna.](image-url)
4. Resultados

En el Aula Magna se obtiene que desde 125 Hz hasta 500 Hz y a altas frecuencias el límite de repetibilidad que adquiere mayores valores es el correspondiente al uso de barridos. A 1 kHz se cambia el comportamiento y el límite más alto es el de las señales MLS.

- Laboratorio de acústica → A continuación se muestran los límites de repetibilidad en el laboratorio de acústica (Figura 44):

![Figura 44](image)

Figura 44: Comparación de los límites de repetibilidad de D_{00} en el laboratorio de acústica.

En este recinto se puede ver que el límite de repetibilidad correspondiente a los barridos es prácticamente nulo. El de las señales MLS también es muy bajo en sus valores, obteniendo un mínimo a 500 Hz.

4.5 Tiempo central (Ts)

El tiempo central, T_s, nos indica la distancia (en ms) desde el origen temporal, $t = 0$, hasta el centro de gravedad de la curva de decaimiento. Indica el grado de nitidez del sonido.

- Aula Magna → En las siguientes tablas se presenta el tiempo central en el Aula Magna con las diferentes combinaciones de fuente – receptor:

<table>
<thead>
<tr>
<th>Tabla 48: Medias de la combinación de la fuente 1 de T_s en el Aula Magna.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Media general</th>
<th>Media Barridos</th>
<th>Media MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Media general</th>
<th>Media Barridos</th>
<th>Media MLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>90</td>
<td>100</td>
<td>110</td>
</tr>
</tbody>
</table>
La combinación de la fuente 1 con las 12 posiciones de micrófonos en el Aula Magna se presentan en la Tabla 48. Como se puede observar, en ninguna de ellas coinciden los valores medios de las señales excitadoras con la media global (media general) calculadas a través de la evaluación de la norma UNE 82009. El promedio global estaría entre 50 ms y 100 ms.
Para la segunda posición de la fuente tampoco existe concordancia entre barridos y señales MLS. En la posición 10 de micrófono los valores medios se mantienen casi constantes a medida que aumenta la frecuencia, existiendo dos ligeras crecidas a 250 Hz y 2 kHz. La media global está entre 40 ms y 100 ms.
Para la única combinación de fuente – receptor donde existe concordancia entre los valores medios de las señales usadas y la media global es en la F3 – Mic12. El promedio global del tiempo central tiene un rango de 40 ms a 100 ms.
4. Resultados

- Laboratorio de acústica → En las siguientes Tabla 51 y Tabla 52 de gráficas se presentan las medias del tiempo central en el laboratorio de acústica.

Tabla 51: Medias de la combinación de la fuente 1 de Ts en el laboratorio de acústica.

En el laboratorio de acústica se obtiene que existe coincidencia entre los valores medios de las señales excitadoras y la media globales en las posiciones de micrófono 1, 3 y 6. En general el valor promedio se encuentra entre 55 ms y 135 ms, rango bastante más amplio respecto al Aula Magna.

Tabla 52: Medias de la combinación de la fuente 2 de Ts en el laboratorio de acústica.
En esta ocasión, se aprecia que para todas las combinaciones de la fuente 2 en el laboratorio, existe un máximo en torno a 1 kHz y sigue manifestándose la concordancia de valores pero solo en el Mic 1 y Mic 6. La media global adopta valores entre 55 ms y 125 ms.

4.5.1.1 Repetibilidad T_s

La repetibilidad del tiempo central, T_s, se hará de la misma manera comentada anteriormente. Se calculará la desviación típica de las 10 mediciones de cada posición de micrófono y se obtiene el promedio de todas las combinaciones de fuente – receptor. Por último se multiplica por 2,8 para obtener el límite de repetibilidad.

- Aula Magna → En la Figura 45 se tiene los límites de repetibilidad calculados.

![Figura 45: Comparación de los límites de repetibilidad de T_s en el Aula Magna.](image)

El límite de repetibilidad correspondiente a los barridos es superior al de las señales MLS a todas las frecuencias, excepto a 125 Hz y 4 kHz que se cruzan los valores de los límites. En esta figura se puede apreciar que el comportamiento de los límites difieren bastante.

- Laboratorio de acústica → En la siguiente figura se pueden observar los límites de repetibilidad del laboratorio de acústica (Figura 46):
4. Resultados

Figura 46: Comparación de los límites de repetibilidad de Ts en el laboratorio de acústica.

Para este recinto, el límite de repetibilidad que tiene valores más altos es el correspondiente al uso de los barridos. Desde 125 Hz hasta 250 Hz, desciende ambos límites y crecen hasta un máximo a 1 kHz. Vuelven a decrecer y se cruzan a 4 kHz.

4.6 Early Decay Time (EDT)

El Early decay time es el tiempo que transcurre desde que la fuente deja de emitir hasta que el nivel de presión sonora decrece 10 dB.

- Aula Magna → En la Tabla 53, Tabla 54 y Tabla 55 se presentan los datos medios del Early Decay Time (EDT):

<table>
<thead>
<tr>
<th>Tabla 53: Medias de la combinación de la fuente 1 de EDT en el Aula Magna.</th>
<th>Tabla 54: Medias de la combinación de la fuente 2 de EDT en el Aula Magna.</th>
<th>Tabla 55: Medias de la combinación de la fuente 3 de EDT en el Aula Magna.</th>
<th>Tabla 56: Medias de la combinación de la fuente 4 de EDT en el Aula Magna.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 – Mic1</td>
<td>F1 – Mic2</td>
<td>F1 – Mic3</td>
<td>F1 – Mic4</td>
</tr>
<tr>
<td>Media general</td>
<td>Media Barridos</td>
<td>Media MLS</td>
<td>Media general</td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
</tbody>
</table>

- Media Barridos | Media MLS | Media general |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- Media general | Media Barridos | Media MLS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- Media Barridos | Media MLS | Media general |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- Media general | Media Barridos | Media MLS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- Media Barridos | Media MLS | Media general |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>
4. Resultados

Para la primera combinación de fuente- receptor en el Aula Magna se puede ver que solo en la posición del micrófono 10 se obtiene valores iguales de las medias de barridos, señales MLS y global.

Tabla 54: Medias de la combinación de la fuente 2 de EDT en el Aula Magna.
En este caso no se produce ninguna concordancia entre las medias obtenidas según la norma UNE 82009. En general, parece que para todas las frecuencias la media de las señales MLS es superior a la media correspondiente a los barridos.

Tabla 55: Medias de la combinación de la fuente 3 de EDT en el Aula Magna.
Para esta última combinación de la fuente 3 con las 12 posiciones de micrófono se pueden ver congruencias entre las medias en el Mic 4, Mic 6, Mic 9, Mic 11 y Mic 12.

- Laboratorio de acústica ➔ A continuación se pueden visualizar los resultados del parámetro T_s para el laboratorio de acústica.
4. Resultados

Tabla 56: Medias de la combinación de la fuente 1 de EDT en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>F1 – Mic1</th>
<th>F1 – Mic2</th>
<th>F1 – Mic3</th>
<th>F1 – Mic4</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Media general</td>
<td>Media Barridos</td>
<td>Media MLS</td>
<td></td>
</tr>
</tbody>
</table>

Para la combinación de la primera posición de fuente con las del micrófono, se visualiza que para las posiciones Mic 1, Mic 2, Mic 4 y Mic 6 se obtiene valores de la media equivalentes entre las diferentes señales del método de la respuesta impulsiva, y así como con la media global. En general, en torno a 1 kHz existe un máximo en todas las posiciones.

Tabla 57: Medias de la combinación de la fuente 2 de EDT en el laboratorio de acústica.
Con esta combinación de la segunda posición de fuente también se produce la concordancia vista pero solo para 3 posiciones de micrófono, Mic 1, Mic 4 y Mic 6. El máximo a 1 kHz también está presente en ciertas posiciones.

4.6.1.1 Repetibilidad EDT

La evaluación de la repetibilidad se realiza de la misma manera comentada anteriormente:

- **Aula Magna** → En la siguiente figura se muestran los límites de repetibilidad calculados del parámetro EDT

![Figura 47: Comparación de los límites de repetibilidad de EDT en el Aula Magna.](image)

A bajas frecuencias las dos señales utilizadas para la medición producen distintos límites de repetibilidad pero a partir de 500 Hz se entrelazan los valores adquiridos, aumentando a medida que lo hace la frecuencia.

- **Laboratorio de acústica** → En la Figura 48 se presentan los límites de repetibilidad de este recinto:
4. Resultados

Figura 48: Comparación de los límites de repetibilidad de EDT en el laboratorio de acústica.

Para este recinto, el límite de repetibilidad que tiene valores más altos es el correspondiente al uso de los barridos. Desde 125 Hz hasta 500 Hz, desciende ambos límites para mantenerse constantes y tender hacia un mismo valor en 4kHz.

4.7 Evaluación de la precisión y de la veracidad

En este apartado se ha estudiado la precisión y la veracidad para el tiempo de reverberación T_{20} y T_{30} usando las directrices de [2.1.3]. La evaluación se ha realizado desde el enfoque en el cual se considera el método del ruido interrumpido como método normalizado y será comparado con el método de la respuesta impulsiva formado por los barridos, señales MLS, explosión de globos, disparos de pistola y claquetas. La media del ruido interrumpido se ha cogido de los valores medios de la evaluación global del parámetro T_{20} y las desviaciones de repetibilidad y reproducibilidad se han cogido de un ejercicio intercomparación de laboratorios [11]. Los valores de la intercomparación que han servido para realizar este apartado son:

<table>
<thead>
<tr>
<th>Frec (Hz)</th>
<th>Valor asignado (p=7)</th>
<th>Desviación típica de repetibilidad (Sr)</th>
<th>Desviación típica de reproducibilidad (SR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0,74</td>
<td>0,212</td>
<td>0,778</td>
</tr>
<tr>
<td>125</td>
<td>0,69</td>
<td>0,112</td>
<td>0,201</td>
</tr>
<tr>
<td>160</td>
<td>0,69</td>
<td>0,079</td>
<td>0,085</td>
</tr>
<tr>
<td>200</td>
<td>0,61</td>
<td>0,060</td>
<td>0,066</td>
</tr>
<tr>
<td>250</td>
<td>0,62</td>
<td>0,090</td>
<td>0,122</td>
</tr>
<tr>
<td>315</td>
<td>0,65</td>
<td>0,064</td>
<td>0,094</td>
</tr>
<tr>
<td>400</td>
<td>0,62</td>
<td>0,045</td>
<td>0,045</td>
</tr>
<tr>
<td>500</td>
<td>0,64</td>
<td>0,069</td>
<td>0,086</td>
</tr>
<tr>
<td>600</td>
<td>0,66</td>
<td>0,068</td>
<td>0,071</td>
</tr>
<tr>
<td>800</td>
<td>0,68</td>
<td>0,040</td>
<td>0,061</td>
</tr>
<tr>
<td>1000</td>
<td>0,70</td>
<td>0,047</td>
<td>0,072</td>
</tr>
<tr>
<td>1250</td>
<td>0,70</td>
<td>0,035</td>
<td>0,061</td>
</tr>
</tbody>
</table>
4. Resultados

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>1,0100</td>
<td>0,9158</td>
<td>0,9466</td>
<td>1,0601</td>
<td>1,1028</td>
<td>1,0523</td>
</tr>
<tr>
<td>σᵣ</td>
<td>0,0711</td>
<td>0,0507</td>
<td>0,0313</td>
<td>0,0231</td>
<td>0,0354</td>
<td>0,0529</td>
</tr>
<tr>
<td>σᵣ</td>
<td>0,0750</td>
<td>0,0539</td>
<td>0,0327</td>
<td>0,0246</td>
<td>0,0386</td>
<td>0,0523</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>0,9926</td>
<td>0,9826</td>
<td>1,0078</td>
<td>1,0944</td>
<td>1,1171</td>
<td>1,0211</td>
</tr>
<tr>
<td>σᵣ</td>
<td>0,1343</td>
<td>0,0713</td>
<td>0,0607</td>
<td>0,0407</td>
<td>0,0377</td>
<td>0,0353</td>
</tr>
<tr>
<td>σᵣ</td>
<td>0,1880</td>
<td>0,0940</td>
<td>0,0673</td>
<td>0,0647</td>
<td>0,0590</td>
<td>0,0520</td>
</tr>
</tbody>
</table>

4.7.1 \(T_{20} \)
El método A es el método del ruido interrumpido y el método B el de la respuesta impulsiva. A la hora de conformar los datos de la respuesta impulsiva se ha hecho la evaluación de la norma UNE 82009 con todas las señales que conforman la respuesta impulsiva como su fuesen laboratorios.

Tabla 59: Datos \(T_{20} \) para respuesta al impulso y ruido interrumpido en Aula Magna.

La comparación gráfica se puede ver en la Figura 49:

La comparación entre los métodos del ruido interrumpido y la respuesta al impulso en el Aula Magna nos indica que la media el ruido interrumpido es superior a la de la respuesta impulsiva hasta altas frecuencias. Este comportamiento también se produce es las desviaciones, siendo mayores las diferencias a 125 Hz.

Los resultados de la evaluación de la precisión y la veracidad de comentan a continuación:
4. Resultados

| Tabla 60: Precisión y veracidad de T_{30} para respuesta al impulso y ruido interrumpido en Aula Magna. |
|---|---|---|---|---|---|---|
| **Recinto: Aula Magna** |
Método A	**Ruido interrumpido**	**Método B**	**Respuesta Impulsiva**	**Veracidad**		
Precisión intralaboratorio	**Precisión general**					
Frecuencia (Hz)	125	250	500	1000	2000	4000
Precisión intralaboratorio	$B \sim A$	$B \not\equiv A$				
Precisión general	$B \sim A$	$B \not\equiv A$	$B \not\equiv A$	$B \sim A$	$B \not\equiv A$	$B \not\equiv A$
Veracidad	$A \not\equiv B$					

Glosario

$B \sim A$	No queda probado que la precisión del método B no sea tan buena como la del método A
$B \not\equiv A$	Queda probado que la precisión del método B no es tan buena como la del método A
$A \not\equiv B$	Diferencia estadísticamente significativa
$A \approx B$	Diferencia no estadísticamente significativa

Para todas las frecuencias menos 4 kHz no queda probado que la precisión intralaboratorio de la respuesta impulsiva no sea tan buena como la del ruido interrumpido y para esta última frecuencia queda probado que la precisión intralaboratorio de la respuesta impulsiva no es tan buena como la del ruido interrumpido. Para 125 Hz y 1 kHz no queda probado que la media cuadrática de la respuesta impulsiva no sea tan buena como la del ruido interrumpido. Para el resto de frecuencias queda probado que la media cuadrática de la respuesta impulsiva no es tan buena como la del ruido interrumpido. Para todas las frecuencias queda probado que la diferencia entre las medias de la respuesta impulsiva y ruido interrumpido es estadísticamente significativa, es decir, son dos métodos diferentes.

4.7.2 T_{30}

El método A es el método del ruido interrumpido y el método B es el de la respuesta impulsiva.

En la Tabla 61 están los datos obtenidos en el Aula Magna. Los datos del ruido interrumpido se han completado de la misma manera comentada anteriormente.

| Tabla 61: Datos T_{30} para respuesta al impulso y ruido interrumpido en Aula Magna. |
|---|---|---|---|---|---|---|
| **Aula Magna: Respuesta al impulso** |
Frecuencia (Hz)	125	250	500	1000	2000	4000
μ	0,989750	0,932038	0,949970	1,061929	1,111187	1,063258
σ_r	0,045110	0,037481	0,023235	0,014624	0,027006	0,046896
σ_R	0,049605	0,041804	0,026384	0,019951	0,032017	0,077253

Aula Magna: Ruido interrumpido

Frecuencia (Hz)	125	250	500	1000	2000	4000
μ	0,993600	0,966900	0,989000	1,081700	1,115500	1,039300
σ_r	0,134333	0,071333	0,060667	0,040667	0,037667	0,035333
σ_R	0,188000	0,094000	0,067333	0,064667	0,059000	0,052000

A continuación se presenta el comportamiento de cada uno de estos métodos en el Aula Magna:
4. Resultados

Figura 50: Comparación de datos T_{30} para respuesta al impulso y ruido interrumpido.

Tal como sucedía para el parámetro T_{20}, las medias generales y desviaciones típicas del ruido interrumpido son superiores hasta 4 kHz, donde se invierte el comportamiento.

La evaluación de la precisión y veracidad están en la Tabla 62:

<table>
<thead>
<tr>
<th>Recinto: Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método A</td>
</tr>
<tr>
<td>Frecuencia (Hz)</td>
</tr>
<tr>
<td>Método B</td>
</tr>
<tr>
<td>Respuesta impulsiva</td>
</tr>
<tr>
<td>Precisión intralaboratorio</td>
</tr>
<tr>
<td>Precisión general</td>
</tr>
<tr>
<td>Veracidad</td>
</tr>
</tbody>
</table>

Para bajas y medias frecuencias no queda probado que la precisión intralaboratorio de la respuesta impulsiva no sea tan buena como la del ruido interrumpido. Para 4 kHz queda probado que la precisión intralaboratorio de la respuesta impulsiva no es tan buena como la del ruido interrumpido. De 125 Hz a 2 kHz no queda probado que la media cuadrática de la respuesta impulsiva no sea tan buena como la del ruido interrumpido, para 4 kHz queda probado que la media cuadrática de la respuesta impulsiva no es tan buena como la del ruido interrumpido. Para todas las frecuencias queda probado que la diferencia entre las medias del ruido interrumpido y la respuesta impulsiva es estadísticamente significativa, es decir, son dos
métodos diferentes, excepto a 125 Hz que la diferencia entre los dos métodos no es estadísticamente significativa

4.8 Evaluación de la incertidumbre de medición

Para la realización de la evaluación de la incertidumbre se han seguido los pasos indicados en [2.2] y se ha comparado el método del ruido interrumpido versus el método de la respuesta impulsiva, tal cual indica la norma. Para ir más allá y conocer el comportamiento de cada uno de los métodos que componen la respuesta impulsiva, también se ha procedido a realizar esta evaluación entre el ruido interrumpido y los barridos, las señales MLS, los globos, la pistola o las claquetas. Este cálculo se ha realizado para el tiempo de reverberación T_{20} y T_{30}. Lo que se pretende conseguir a través de este apartado es saber si se obtienen repetibilidades similares entre diferentes métodos.

4.8.1 T_{20}

Los valores a los que se van hacer referencia en las próximas tablas son la media general del tiempo de reverberación y valores medios, T_{20}, y la repetibilidad de la respuesta impulsiva, $\sigma \ R \ \text{Impuls}$. A través de la ecuación vista para este parámetro, se calcula la repetibilidad del ruido interrumpido, $\sigma(T_{20}) \ \text{R \ Int}$, y se compara con la de la respuesta impulsiva. En aquellos casos donde existan varios señales que formen un método, se obtendrá el promedio de los valores para esta evaluación.

4.8.1.1 Ruido interrumpido vs Respuesta impulsiva

Se va a realizar la comparación tanto en el Aula Magna como en el laboratorio de acústica.

- Aula Magna → En la Tabla 63 se puede ver la comparación de la respuesta impulsiva global respecto del ruido interrumpido en el Aula Magna:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Resp Impulsiva</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125 250 500 1000 2000 4000</td>
<td>0,99262 0,98262 1,00778 1,09435 1,11710 1,02114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{20} (s)</td>
<td>0,01692 0,01190 0,00852 0,00628 0,00449 0,00303</td>
<td>0,02755 0,01481 0,01562 0,01491 0,01330 0,01142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(T_{20}) \ R \ \text{Int}$</td>
<td>1,63 1,24 1,83 2,37 2,96 3,76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de la respuesta impulsiva integrada no coincide con la desviación del método del ruido interrumpido. Es superior la desviación de la respuesta impulsiva integrada, cuando debería ser superior la del ruido interrumpido.

- Laboratorio de acústica → Se obtienen los mismo datos comentados, pero en este caso en el laboratorio de acústica (Tabla 64):
4. Resultados

Tabla 64: Comparación de la repetibilidad de T_{20} para la respuesta impulsiva y el ruido interrumpido en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Resp Impulsiva</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Lab Acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{20} (s)</td>
<td>0,93528</td>
<td>1,41611</td>
<td>1,60250</td>
<td>1,73000</td>
</tr>
<tr>
<td>$\sigma(T_{20})$ R Int</td>
<td>0,02845</td>
<td>0,02475</td>
<td>0,01862</td>
<td>0,01368</td>
</tr>
<tr>
<td>σ R Impuls</td>
<td>0,00621</td>
<td>0,00297</td>
<td>0,00488</td>
<td>0,00149</td>
</tr>
<tr>
<td>σ R Impuls > $\sigma(T_{20})$ (veces)</td>
<td>0,22</td>
<td>0,12</td>
<td>0,26</td>
<td>0,11</td>
</tr>
</tbody>
</table>

El resultado obtenido es que la desviación de la respuesta impulsiva integrada no coincide con la desviación del método del ruido interrumpido. Es inferior la desviación del método de la respuesta impulsiva.

4.8.1.2 Ruido interrumpido vs Barridos

- Aula Magna → Ahora se realiza la comparación entre uno de los métodos que conforman la respuesta impulsiva, barridos y el ruido interrumpido. Su resultado en el Aula Magna se presenta en la Tabla 65:

Tabla 65: Comparación de la repetibilidad de T_{20} para barridos y el ruido interrumpido en Aula Magna.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Barridos</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{20} (s)</td>
<td>0,99262</td>
<td>0,98262</td>
<td>1,00778</td>
<td>1,09435</td>
</tr>
<tr>
<td>$\sigma(T_{20})$ R Int</td>
<td>0,01692</td>
<td>0,01190</td>
<td>0,00852</td>
<td>0,00628</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,01209</td>
<td>0,00589</td>
<td>0,00400</td>
<td>0,00388</td>
</tr>
<tr>
<td>σ Barridos > $\sigma(T_{20})$ (veces)</td>
<td>0,71</td>
<td>0,50</td>
<td>0,47</td>
<td>0,62</td>
</tr>
</tbody>
</table>

El resultado obtenido es que la desviación de los barridos no coincide con la desviación del método del ruido interrumpido. Es inferior la respuesta impulsiva de los barridos de 125 Hz a 1 kHz, en 2 kHz el comportamiento mencionado en [5] se cumple y a 4 kHz que es ligeramente superior.

- Laboratorio de acústica → Para el laboratorio de acústica, los datos resultantes están en la Tabla 66:

Tabla 66: Comparación de la repetibilidad de T_{20} para barridos y el ruido interrumpido en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Barridos</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Lab Acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{20} (s)</td>
<td>0,93528</td>
<td>1,41611</td>
<td>1,60250</td>
<td>1,73000</td>
</tr>
<tr>
<td>$\sigma(T_{20})$ R Int</td>
<td>0,02845</td>
<td>0,02475</td>
<td>0,01862</td>
<td>0,01368</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,00286</td>
<td>0,00439</td>
<td>0,00863</td>
<td>0,00197</td>
</tr>
<tr>
<td>σ Barridos > $\sigma(T_{20})$ (veces)</td>
<td>0,10</td>
<td>0,18</td>
<td>0,46</td>
<td>0,14</td>
</tr>
</tbody>
</table>

El resultado conseguido es que la desviación de los barridos no coincide con la desviación del método del ruido interrumpido. Es inferior la respuesta impulsiva de los barridos, pero en este caso no se corresponde con la norma al ser valores muy pequeños, se deberían obtener valores similares de repetibilidad.
4.8.1.3 Ruido interrumpido vs MLS

- Aula Magna ➔ En la Tabla 67 se pueden ver los resultados de la comparación entre las señales MLS y ruido interrumpido en el Aula Magna:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Señales MLS</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20 (s)</td>
<td>0,99262</td>
<td>1,00778</td>
<td>1,09435</td>
<td>1,11710</td>
</tr>
<tr>
<td>σ(T20) R Int</td>
<td>0,01692</td>
<td>0,00852</td>
<td>0,00628</td>
<td>0,00449</td>
</tr>
<tr>
<td>σ MLS</td>
<td>0,01417</td>
<td>0,0258</td>
<td>0,0319</td>
<td>0,00396</td>
</tr>
<tr>
<td>σ MLS > σ(T20) (veces)</td>
<td>0,84</td>
<td>0,30</td>
<td>0,51</td>
<td>0,88</td>
</tr>
</tbody>
</table>

El resultado que se ha obtenido es que la desviación de las señales MLS no coincide con la desviación del método del ruido interrumpido. Es inferior la respuesta impulsiva de las señales MLS, excepto a 4 kHz que es ligeramente superior casi cumpliendo lo que dice la norma.

- Laboratorio de acústica ➔ A continuación se presentan los resultados del cotejo entre estos métodos en el laboratorio de acústica (Tabla 68):

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Señales MLS</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Lab Acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20 (s)</td>
<td>0,93528</td>
<td>1,00250</td>
<td>1,09435</td>
<td>1,11710</td>
</tr>
<tr>
<td>σ(T20) R Int</td>
<td>0,02845</td>
<td>0,01862</td>
<td>0,01368</td>
<td>0,00949</td>
</tr>
<tr>
<td>σ MLS</td>
<td>0,00956</td>
<td>0,00114</td>
<td>0,00134</td>
<td>0,00184</td>
</tr>
<tr>
<td>σ MLS > σ(T20) (veces)</td>
<td>0,34</td>
<td>0,06</td>
<td>0,07</td>
<td>0,14</td>
</tr>
</tbody>
</table>

El resultado que se ha obtenido es que la desviación de las señales MLS no coincide con la desviación del método del ruido interrumpido. Es inferior la respuesta impulsiva de las señales MLS.

4.8.1.4 Ruido interrumpido vs Globos

Esta evaluación solo se ha realizado en el Aula Magna.

- Aula Magna ➔ Los resultados entre los globos y el ruido interrumpido en el Aula Magna están en la Tabla 69:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Globos</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T20 (s)</td>
<td>0,99262</td>
<td>1,00778</td>
<td>1,09435</td>
<td>1,11710</td>
</tr>
<tr>
<td>σ(T20) R Int</td>
<td>0,01692</td>
<td>0,00852</td>
<td>0,00628</td>
<td>0,00449</td>
</tr>
<tr>
<td>σ Globos</td>
<td>0,05259</td>
<td>0,03119</td>
<td>0,02874</td>
<td>0,02342</td>
</tr>
<tr>
<td>σ Globos > σ(T20) (veces)</td>
<td>3,11</td>
<td>3,66</td>
<td>4,58</td>
<td>5,22</td>
</tr>
</tbody>
</table>
4. Resultados

El resultado obtenido es que la desviación de la respuesta impulsiva de los globos no coincide con la desviación del método del ruido interrumpido. Es superior la desviación de la respuesta impulsiva de los globos, cuando deberían ser iguales.

4.8.1.5 Ruido interrumpido vs Pistola

En este caso también solo entra en juego el Aula Magna.

- Aula Magna → La comparación en el Aula Magna entre Pistola y ruido interrumpido está en la Tabla 70:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Pistola</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{20} (s)</td>
<td>0,99262</td>
<td>0,98262</td>
<td>1,00778</td>
<td>1,09435</td>
</tr>
<tr>
<td>$\sigma(T_{20})$ R Int</td>
<td>0,01692</td>
<td>0,01190</td>
<td>0,00852</td>
<td>0,00628</td>
</tr>
<tr>
<td>σ Pistola</td>
<td>0,03134</td>
<td>0,02045</td>
<td>0,02471</td>
<td>0,02382</td>
</tr>
<tr>
<td>σ Pistola > $\sigma(T_{20})$ (veces)</td>
<td>1,85</td>
<td>1,72</td>
<td>2,90</td>
<td>3,79</td>
</tr>
</tbody>
</table>

El resultado obtenido es que la desviación de la respuesta impulsiva de la pistola no coincide con la desviación del método del ruido interrumpido. Es superior la desviación de la respuesta impulsiva de la pistola.

Para este parámetro T_{30} se puede resumir en función de cada recinto:

- Aula Magna → Los globos y la pistola tienen mucha influencia sobre la respuesta impulsiva integrada ya que la relación de repetibilidad con respecto a la del ruido interrumpido, para los resultados individuales de estos dos métodos coinciden con los resultados globales. Para los métodos de barridos y señales MLS se obtienen unos resultados más acordes a los visto en la norma 3381 [5].

- Laboratorio de acústica → En este recinto, de forma global, se obtiene que la repetibilidad de la respuesta impulsiva integrada es inferior a la repetibilidad del método del ruido interrumpido. Este comportamiento se ve reforzado al cosechar que los métodos de forma individual también tienen repetibilidades inferiores a la del ruido interrumpido.

4.8.2 T_{30}

Se procede de manera idéntica para este apartado, incluyendo los promediados de las diferentes señales.

4.8.2.1 Ruido interrumpido vs Respuesta impulsiva

La comparación de la incertidumbre entre estos métodos se hará tanto para el Aula Magna como para el laboratorio de acústica.

- Aula Magna → En la Tabla 71 se puede ver la comparación de la respuesta impulsiva global respecto del ruido interrumpido en el Aula Magna:
4. Resultados

Tabla 71: Comparación de la repetibilidad de T_{30} para la respuesta impulsiva y el ruido interrumpido en Aula Magna.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>R Impulsiva</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{30} (s)</td>
<td>0,99360</td>
<td>0,96690</td>
<td>0,98900</td>
<td>1,08170</td>
</tr>
<tr>
<td>$\sigma(T_{30})$ R Int</td>
<td>0,01041</td>
<td>0,00726</td>
<td>0,00519</td>
<td>0,00384</td>
</tr>
<tr>
<td>σ R Impuls</td>
<td>0,03114</td>
<td>0,05936</td>
<td>0,01703</td>
<td>0,01248</td>
</tr>
<tr>
<td>$\sigma R Impuls > \sigma(T_{30})$ (veces)</td>
<td>2,99</td>
<td>8,17</td>
<td>3,28</td>
<td>3,25</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de la respuesta impulsiva integrada no coincide con la desviación del método del ruido interrumpido. Es superior la desviación de la respuesta impulsiva integrada, cuando debería ser superior la del ruido interrumpido.

- Laboratorio de acústica → Para el laboratorio de acústica se ven los resultados en la Tabla 72:

Tabla 72: Comparación de a repetibilidad de T_{30} para la respuesta impulsiva y el ruido interrumpido en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>R Impulsiva</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Lab Acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{30} (s)</td>
<td>0,93333</td>
<td>1,39167</td>
<td>1,57056</td>
<td>1,70361</td>
</tr>
<tr>
<td>$\sigma(T_{30})$ R Int</td>
<td>0,01748</td>
<td>0,01509</td>
<td>0,01133</td>
<td>0,00835</td>
</tr>
<tr>
<td>σ R Impuls</td>
<td>0,00282</td>
<td>0,00156</td>
<td>0,00294</td>
<td>0,00153</td>
</tr>
<tr>
<td>$\sigma R Impuls > \sigma(T_{30})$ (veces)</td>
<td>0,16</td>
<td>0,10</td>
<td>0,26</td>
<td>0,18</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de la respuesta impulsiva integrada no coincide con la desviación del método del ruido interrumpido. Es inferior la desviación de la respuesta impulsiva integrada.

4.8.2.2 Ruido interrumpido vs Barridos

La evaluación también se realizará en los dos recintos de interés.

- Aula Magna → Los resultados de la comparación entre barridos y ruido interrumpido en el Aula Magna se pueden estudiar en la Tabla 73:

Tabla 73: Comparación de la repetibilidad de T_{30} para los barridos y el ruido interrumpido en Aula Magna.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Barridos</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>125</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>T_{30} (s)</td>
<td>0,99360</td>
<td>0,96690</td>
<td>0,98900</td>
<td>1,08170</td>
</tr>
<tr>
<td>$\sigma(T_{30})$ R Int</td>
<td>0,01041</td>
<td>0,00726</td>
<td>0,00519</td>
<td>0,00384</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,01918</td>
<td>0,00768</td>
<td>0,00407</td>
<td>0,00507</td>
</tr>
<tr>
<td>σ Barridos > $\sigma(T_{30})$ (veces)</td>
<td>1,84</td>
<td>1,06</td>
<td>0,78</td>
<td>1,32</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de los barridos no coincide con la desviación del método del ruido interrumpido. La respuesta impulsiva de los barridos es inferior a 500 Hz mientras que al resto de frecuencias se asemejan mucho a la del ruido interrumpido, cumpliéndose lo que dice la norma.
4. Resultados

- Laboratorio de acústica → A continuación se ven los datos de la comparación en el laboratorio de acústica (Tabla 74):

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Barridos</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Lab Acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>T<sub>30</sub> (s)</td>
<td>σ(T<sub>30</sub>) R Int</td>
<td>σ Barridos</td>
<td>σ MLS > σ(T<sub>30</sub>) (veces)</td>
</tr>
<tr>
<td>125</td>
<td>0,93333</td>
<td>0,01748</td>
<td>0,00247</td>
<td>0,14</td>
</tr>
<tr>
<td>250</td>
<td>1,39167</td>
<td>0,01509</td>
<td>0,00104</td>
<td>0,07</td>
</tr>
<tr>
<td>500</td>
<td>1,57056</td>
<td>0,01133</td>
<td>0,00456</td>
<td>0,40</td>
</tr>
<tr>
<td>1000</td>
<td>1,70361</td>
<td>0,00835</td>
<td>0,00183</td>
<td>0,22</td>
</tr>
<tr>
<td>2000</td>
<td>1,64889</td>
<td>0,00581</td>
<td>0,00213</td>
<td>0,37</td>
</tr>
<tr>
<td>4000</td>
<td>1,33361</td>
<td>0,00369</td>
<td>0,00237</td>
<td>0,64</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de los barridos no coincide con la desviación del método del ruido interrumpido. Es bastante inferior la desviación de la respuesta impulsiva de los barridos.

4.8.2.3 Ruido interrumpido vs MLS

- Aula Magna → En la Tabla 75 se presenta el comportamiento de las señales MLS respecto del ruido interrumpido:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Señales MLS</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>T<sub>30</sub> (s)</td>
<td>σ(T<sub>30</sub>) R Int</td>
<td>σ MLS</td>
<td>σ MLS > σ(T<sub>30</sub>) (veces)</td>
</tr>
<tr>
<td>125</td>
<td>0,99360</td>
<td>0,01041</td>
<td>0,03352</td>
<td>3,22</td>
</tr>
<tr>
<td>250</td>
<td>0,96690</td>
<td>0,00726</td>
<td>0,00700</td>
<td>0,96</td>
</tr>
<tr>
<td>500</td>
<td>0,98900</td>
<td>0,00519</td>
<td>0,00424</td>
<td>0,82</td>
</tr>
<tr>
<td>1000</td>
<td>1,08170</td>
<td>0,00384</td>
<td>0,00413</td>
<td>1,08</td>
</tr>
<tr>
<td>2000</td>
<td>1,11550</td>
<td>0,00276</td>
<td>0,00563</td>
<td>2,04</td>
</tr>
<tr>
<td>4000</td>
<td>1,03930</td>
<td>0,00188</td>
<td>0,00963</td>
<td>5,12</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de las señales MLS no coincide con la desviación del método del ruido interrumpido. En general es superior la respuesta impulsiva de las señales MLS, excepto a 250 Hz y 500 Hz que es inferior.

- Laboratorio de acústica → La comparación entre señales MLS y ruido interrumpido en el laboratorio de acústica está en la Tabla 76:

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Señales MLS</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Lab Acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>T<sub>30</sub> (s)</td>
<td>σ(T<sub>30</sub>) R Int</td>
<td>σ MLS</td>
<td>σ MLS > σ(T<sub>30</sub>) (veces)</td>
</tr>
<tr>
<td>125</td>
<td>0,93333</td>
<td>0,01748</td>
<td>0,00316</td>
<td>0,18</td>
</tr>
<tr>
<td>250</td>
<td>1,39167</td>
<td>0,01509</td>
<td>0,00208</td>
<td>0,14</td>
</tr>
<tr>
<td>500</td>
<td>1,57056</td>
<td>0,01133</td>
<td>0,00132</td>
<td>0,12</td>
</tr>
<tr>
<td>1000</td>
<td>1,70361</td>
<td>0,00835</td>
<td>0,00123</td>
<td>0,15</td>
</tr>
<tr>
<td>2000</td>
<td>1,64889</td>
<td>0,00581</td>
<td>0,00111</td>
<td>0,19</td>
</tr>
<tr>
<td>4000</td>
<td>1,33361</td>
<td>0,00369</td>
<td>0,00194</td>
<td>0,52</td>
</tr>
</tbody>
</table>

El resultado obtenido es que la desviación de las señales MLS no coincide con la desviación del método del ruido interrumpido. Es inferior la respuesta impulsiva de las señales MLS.
4.8.2.4 Ruido interrumpido vs Globos
Esta evaluación solo se lleva a cabo en el Aula Magna debido a que no se realizaron mediciones con este método en el laboratorio de acústica.

- Aula Magna → A continuación representan los resultados de comparar el comportamiento de los globos y el ruido interrumpido (Tabla 77):

Tabla 77: Comparación de la repetibilidad de T₃₀ para los globos y el ruido interrumpido en Aula Magna.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Globos</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₃₀ (s)</td>
<td>1.25</td>
<td>250</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>σ(T₃₀) R Int</td>
<td>0.01041</td>
<td>0.00726</td>
<td>0.00519</td>
<td>0.00384</td>
</tr>
<tr>
<td>σ Globos</td>
<td>0.04295</td>
<td>0.02030</td>
<td>0.02123</td>
<td>0.01734</td>
</tr>
<tr>
<td>σ(P < σ(T₃₀)) (veces)</td>
<td>4.13</td>
<td>2.80</td>
<td>4.09</td>
<td>4.51</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de los globos no coincide con la desviación del método del ruido interrumpido. Es superior la respuesta impulsiva de los globos, cuando debería serlo la del ruido interrumpido.

4.8.2.5 Ruido interrumpido vs Pistola
Solo se realizaron mediciones para el Aula Magna.

- Aula Magna → La comparación entre los datos del uso de la pistola y el ruido interrumpido se presenta en la Tabla 78:

Tabla 78: Comparación de la repetibilidad de T₃₀ para la pistola y el ruido interrumpido en Aula Magna.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Pistola</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₃₀ (s)</td>
<td>0.99360</td>
<td>0.96690</td>
<td>0.98900</td>
<td>1.08170</td>
</tr>
<tr>
<td>σ(T₃₀) R Int</td>
<td>0.01041</td>
<td>0.00726</td>
<td>0.00519</td>
<td>0.00384</td>
</tr>
<tr>
<td>σ Pistola</td>
<td>0.02560</td>
<td>0.01313</td>
<td>0.01503</td>
<td>0.01596</td>
</tr>
<tr>
<td>σ(P < σ(T₃₀)) (veces)</td>
<td>2.46</td>
<td>1.81</td>
<td>2.89</td>
<td>4.16</td>
</tr>
</tbody>
</table>

El resultado que se obtiene es que la desviación de la pistola no coincide con la desviación del método del ruido interrumpido. Es superior la respuesta impulsiva de la pistola, cuando debería serlo la del ruido interrumpido.

4.8.2.6 Ruido interrumpido vs Claquetas
A 125 Hz no se realizó la medición así que a esa frecuencia no se puede evaluar.

- Aula Magna → A continuación se puede ver la comparación de las claquetas respecto al ruido interrumpido en el Aula Magna (Tabla 79):

Tabla 79: Comparación de la repetibilidad de T₃₀ para claquetas y el ruido interrumpido en Aula Magna.

<table>
<thead>
<tr>
<th>Métodos</th>
<th>Claquetas</th>
<th>R Interrumpido</th>
<th>Recinto</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T₃₀ (s)</td>
<td>0.96606</td>
<td>0.98859</td>
<td>1.08191</td>
<td>1.11476</td>
</tr>
<tr>
<td>σ(T₃₀) R Int</td>
<td>0.00726</td>
<td>0.00519</td>
<td>0.00384</td>
<td>0.00276</td>
</tr>
</tbody>
</table>

Universidad Politécnica de Madrid
4. Resultados

<table>
<thead>
<tr>
<th>σ Claquetas</th>
<th>0,24867</th>
<th>0,04056</th>
<th>0,01989</th>
<th>0,01285</th>
<th>0,01470</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ Claquetas > σ(T₃₀) (veces)</td>
<td>34,26</td>
<td>7,81</td>
<td>5,18</td>
<td>4,66</td>
<td>7,81</td>
</tr>
</tbody>
</table>

El resultado obtenido es que la desviación de las claquetas no coincide con la desviación del método del ruido interrumpido. Es superior la respuesta impulsiva de las claquetas, cuando debería serlo la del ruido interrumpido.

Para este parámetro T₃₀ se puede resumir los resultados obtenidos en función de cada recinto:

- **Aula Magna** → Los globos, la pistola y las claquetas tienen mucha influencia sobre la respuesta impulsiva integrada ya que la relación de repetibilidad con respecto a la del ruido interrumpido, para los resultados individuales de estos métodos coinciden con los resultados globales. Para los métodos de barridos y señales MLS, en función de la frecuencia, se obtienen unos resultados más acordes a los visto en la norma 3381 [5] para todas las frecuencias excepto a 125 Hz y 4 kHz.

- **Laboratorio de acústica** → En este recinto, de forma global, se obtiene que la repetibilidad de la respuesta impulsiva integrada es inferior a la repetibilidad del método del ruido interrumpido. Este comportamiento se ve reforzado con los resultados obtenidos usando barridos y señales.

4.9 Evaluación de la repetibilidad de Vörlander

De acuerdo a lo visto en el apartado de antecedentes [1.1], en [9] se llega a la conclusión de que los límites de repetibilidad, con un 95% de nivel de confianza, pueden ser estimados a través de las siguientes ecuaciones:

- \(r_{30} = \frac{200\%}{\sqrt{BNT_{30}}} \)
- \(r_{20} = \frac{370\%}{\sqrt{BNT_{20}}} \)

Siendo \(B \) el ancho de banda, \(N \) el número de repeticiones y \(T_{20} \) o \(T_{30} \) el tiempo de reverberación correspondiente. Se va a estudiar si esta conclusión se cumple en nuestras medidas.

4.9.1 Repetibilidad \(r_{20} \)

La repetibilidad \(r_{20} \) va a ser analizada tanto en el Aula Magna (Tabla 80) como en el laboratorio de acústica (Tabla 81). Para poder llevar a cabo estas ecuaciones, se han obtenido los valores de evaluación de los valores medios de la norma UNE y la repetibilidad calculada de los apartados anteriores

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (Hz)</td>
<td>88,75</td>
<td>177,5</td>
<td>355</td>
<td>710</td>
<td>1420</td>
<td>2840</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>T₂₀</td>
<td>0,99262</td>
<td>0,98262</td>
<td>1,00778</td>
<td>1,09435</td>
<td>1,11710</td>
<td>1,02114</td>
</tr>
<tr>
<td>r₂₀</td>
<td>0,12466</td>
<td>0,08859</td>
<td>0,06186</td>
<td>0,04198</td>
<td>0,02938</td>
<td>0,02173</td>
</tr>
<tr>
<td>σ; R Int</td>
<td>0,43778</td>
<td>0,31702</td>
<td>0,26265</td>
<td>0,18860</td>
<td>0,14336</td>
<td>0,09269</td>
</tr>
<tr>
<td>σ; > r₂₀</td>
<td>3,51183</td>
<td>3,57835</td>
<td>4,24587</td>
<td>4,49322</td>
<td>4,87997</td>
<td>4,26618</td>
</tr>
</tbody>
</table>
Tabla 81: Evaluación de la repetibilidad r_{20} en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (Hz)</td>
<td>88,75</td>
<td>177.5</td>
<td>355</td>
<td>710</td>
<td>1420</td>
<td>2840</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>T_{20}</td>
<td>0,9353</td>
<td>1,4161</td>
<td>1,6025</td>
<td>1,7300</td>
<td>1,6636</td>
<td>1,3333</td>
</tr>
<tr>
<td>r_{20}</td>
<td>0,1284</td>
<td>0,0738</td>
<td>0,0491</td>
<td>0,0334</td>
<td>0,0241</td>
<td>0,0190</td>
</tr>
<tr>
<td>$\sigma_{r_{20}}$</td>
<td>0,1861</td>
<td>0,2921</td>
<td>0,2760</td>
<td>0,1062</td>
<td>0,0785</td>
<td></td>
</tr>
<tr>
<td>$\sigma_{>r_{20}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Como se puede ver por el resultado de ambas tablas, es mayor el límite de repetibilidad a través de la evaluación de la norma UNE 82009 que la estimación del límite de r_{20}, triplicándolo o superándolo más en casi todas las frecuencias.

4.9.2 Repetibilidad r_{30}

Se procede de la misma manera que para la repetibilidad r_{20}. Los resultados del Aula Magna está en la Tabla 82 y los del laboratorio de acústica están en la Tabla 83:

Tabla 82: Evaluación de la repetibilidad r_{30} en el Aula Magna.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (Hz)</td>
<td>88,75</td>
<td>177.5</td>
<td>355</td>
<td>710</td>
<td>1420</td>
<td>2840</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>T_{30}</td>
<td>0,9936</td>
<td>0,9690</td>
<td>0,9890</td>
<td>1,08170</td>
<td>1,11550</td>
<td>1,03930</td>
</tr>
<tr>
<td>r_{30}</td>
<td>0,06735</td>
<td>0,04828</td>
<td>0,03375</td>
<td>0,02282</td>
<td>0,01589</td>
<td>0,01164</td>
</tr>
<tr>
<td>$\sigma_{r_{30}}$</td>
<td>0,32372</td>
<td>0,14804</td>
<td>0,11450</td>
<td>0,08982</td>
<td>0,06159</td>
<td>0,04139</td>
</tr>
<tr>
<td>$\sigma_{>r_{30}}$</td>
<td>4,80653</td>
<td>3,06649</td>
<td>3,9216</td>
<td>3,93566</td>
<td>3,87578</td>
<td>3,55532</td>
</tr>
</tbody>
</table>

Tabla 83: Evaluación de la repetibilidad r_{30} en el laboratorio de acústica.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (Hz)</td>
<td>88,75</td>
<td>177.5</td>
<td>355</td>
<td>710</td>
<td>1420</td>
<td>2840</td>
</tr>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>T_{30}</td>
<td>0,93333</td>
<td>1,39167</td>
<td>1,57056</td>
<td>1,70361</td>
<td>1,64889</td>
<td>1,33361</td>
</tr>
<tr>
<td>r_{30}</td>
<td>0,06344</td>
<td>0,03673</td>
<td>0,02445</td>
<td>0,01660</td>
<td>0,01193</td>
<td>0,00938</td>
</tr>
<tr>
<td>$\sigma_{r_{30}}$</td>
<td>0,13483</td>
<td>0,20804</td>
<td>0,12522</td>
<td>0,09383</td>
<td>0,06616</td>
<td>0,04552</td>
</tr>
<tr>
<td>$\sigma_{>r_{30}}$</td>
<td>2,12539</td>
<td>5,66347</td>
<td>5,12137</td>
<td>5,65226</td>
<td>5,54511</td>
<td>4,85260</td>
</tr>
</tbody>
</table>

En este caso, se repite el mismo comportamiento visto para la repetibilidad r_{20}. Los valores del límite de repetibilidad obtenidos a través de la evaluación de la norma UNE 82009 son mayores que la repetibilidad estimada a través de [9]. Comparando los valores en función del recinto, se ve que para el Aula Magna la superioridad del σ es ligeramente inferior, en cambio para el laboratorio de acústica se invierte el comportamiento.

4.10 Cálculo incertidumbre de medición

De forma complementaria al apartado [4.8], se ha calculado la incertidumbre de medición en relación al tiempo de reverberación T_{20} y T_{30}. Se va a obtener la incertidumbre de tipo A que es la procedente de las mediciones realizadas. La incertidumbre de tipo B, y por consiguiente, la incertidumbre expandida no han sido calculadas al no tener los registros necesarios de las incertidumbres asociadas al uso de los métodos de medición.

4.10.1 Incertidumbre T_{20}

La incertidumbre de tipo A, a través de la desviación de las medidas llevadas a cabo, tanto en el Aula Magna (Tabla 84) como en el laboratorio de acústica (Tabla 85), se puede ver en a
4. Resultados

continuación. Estos resultados se han obtenido de la evaluación global y están diferenciados por método.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Aula Magna</th>
<th>Laboratorio de acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barridos</td>
<td>MLS</td>
</tr>
<tr>
<td>125</td>
<td>0,0198</td>
<td>0,0197</td>
</tr>
<tr>
<td>250</td>
<td>0,0078</td>
<td>0,0155</td>
</tr>
<tr>
<td>500</td>
<td>0,0088</td>
<td>0,0098</td>
</tr>
<tr>
<td>1000</td>
<td>0,0052</td>
<td>0,0042</td>
</tr>
<tr>
<td>2000</td>
<td>0,0259</td>
<td>0,0163</td>
</tr>
<tr>
<td>4000</td>
<td>0,0152</td>
<td>0,0163</td>
</tr>
</tbody>
</table>

A simple vista se puede observar que a bajas y medias frecuencias, es superior la incertidumbre en el laboratorio de acústica pero a partir de 2 kHz es superior la incertidumbre en el Aula Magna.

Comparando los datos obtenidos de la incertidumbre de tipo A con los datos de [4.8.1] de las desviaciones, Tabla 86, los únicos datos comparables serían los correspondientes a los barridos y señales MLS en el Aula Magna. La incertidumbre de tipo A es superior a la desviación de repetibilidad, pero no es una diferencia tan significativa como si lo es para el resto de casos, donde es muy superior la desviación a la incertidumbre. En el laboratorio de acústica no es posible relacionar los datos obtenidos debido a las grandes diferencias entre los valores.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala R Interr</td>
<td>0,01692</td>
<td>0,01190</td>
<td>0,00852</td>
<td>0,00628</td>
<td>0,00449</td>
<td>0,00303</td>
</tr>
<tr>
<td>μA R Interr</td>
<td>0,00988</td>
<td>0,01416</td>
<td>0,01150</td>
<td>0,00560</td>
<td>0,02273</td>
<td>0,01287</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,01209</td>
<td>0,00589</td>
<td>0,00400</td>
<td>0,00388</td>
<td>0,00449</td>
<td>0,00039</td>
</tr>
<tr>
<td>μA Barridos</td>
<td>0,01978</td>
<td>0,00782</td>
<td>0,00879</td>
<td>0,00521</td>
<td>0,02594</td>
<td>0,01521</td>
</tr>
<tr>
<td>σ MLS</td>
<td>0,01417</td>
<td>0,00288</td>
<td>0,00258</td>
<td>0,00319</td>
<td>0,00396</td>
<td>0,00560</td>
</tr>
<tr>
<td>μA MLS</td>
<td>0,01967</td>
<td>0,01552</td>
<td>0,00983</td>
<td>0,00415</td>
<td>0,01627</td>
<td>0,01626</td>
</tr>
<tr>
<td>σ Globos</td>
<td>0,05259</td>
<td>0,03001</td>
<td>0,03119</td>
<td>0,02874</td>
<td>0,02342</td>
<td>0,01899</td>
</tr>
<tr>
<td>μA Globos</td>
<td>0,02335</td>
<td>0,01367</td>
<td>0,00758</td>
<td>0,00676</td>
<td>0,01357</td>
<td>0,01217</td>
</tr>
<tr>
<td>σ Pistola</td>
<td>0,03134</td>
<td>0,02045</td>
<td>0,02471</td>
<td>0,02382</td>
<td>0,02131</td>
<td>0,01771</td>
</tr>
<tr>
<td>μA Pistola</td>
<td>0,01908</td>
<td>0,01811</td>
<td>0,00997</td>
<td>0,00921</td>
<td>0,02317</td>
<td>0,01501</td>
</tr>
</tbody>
</table>
4. Resultados

<table>
<thead>
<tr>
<th>Sala</th>
<th>Laboratorio de acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ R Interr</td>
<td>0,02845 0,02475 0,01862</td>
</tr>
<tr>
<td>μA R Interr</td>
<td>0,01291 0,02520 0,01332</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,00286 0,00439 0,00863</td>
</tr>
<tr>
<td>μA Barridos</td>
<td>0,02385 0,03390 0,02280</td>
</tr>
<tr>
<td>σ MLS</td>
<td>0,00956 0,00155 0,00114</td>
</tr>
<tr>
<td>μA MLS</td>
<td>0,02256 0,03029 0,02476</td>
</tr>
</tbody>
</table>

4.10.2 Incertidumbre T_{30}

Para el cálculo de la incertidumbre del tiempo de reverberación a través de la caída de 30 dB, se procede de manera idéntica al apartado anterior. Se obtendrá la incertidumbre de tipo A al no ser posible calcular la incertidumbre expandida con el intervalo de confianza correspondiente. En las siguientes tablas se presenta la información global diferenciándola por método.

Tabla 87: Incertidumbre T_{30} global en Aula Magna por método.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Aula Magna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barridos</td>
</tr>
<tr>
<td>125</td>
<td>0,0115</td>
</tr>
<tr>
<td>250</td>
<td>0,0056</td>
</tr>
<tr>
<td>500</td>
<td>0,0067</td>
</tr>
<tr>
<td>1000</td>
<td>0,0043</td>
</tr>
<tr>
<td>2000</td>
<td>0,0099</td>
</tr>
<tr>
<td>4000</td>
<td>0,0154</td>
</tr>
</tbody>
</table>

Tabla 88: Incertidumbre T_{30} global en el laboratorio de acústica por método.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>Laboratorio de acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barridos</td>
</tr>
<tr>
<td>125</td>
<td>0,0261</td>
</tr>
<tr>
<td>250</td>
<td>0,0187</td>
</tr>
<tr>
<td>500</td>
<td>0,0122</td>
</tr>
<tr>
<td>1000</td>
<td>0,0074</td>
</tr>
<tr>
<td>2000</td>
<td>0,0037</td>
</tr>
<tr>
<td>4000</td>
<td>0,0423</td>
</tr>
</tbody>
</table>

Para este tiempo de reverberación, se puede observar que en función de cada método y sala, se obtiene un comportamiento distinto de la incertidumbre.

La comparación entre las incertidumbres calculadas y las desviaciones obtenidas se pueden ver en la Tabla 89:

Tabla 89: Comparación entre desviaciones e incertidumbres de T_{30}.

<table>
<thead>
<tr>
<th>Frecuencia (Hz)</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ R Interr</td>
<td>0,01041</td>
<td>0,00726</td>
<td>0,00519</td>
<td>0,00384</td>
<td>0,00276</td>
<td>0,00188</td>
</tr>
<tr>
<td>μA R Interr</td>
<td>0,00918</td>
<td>0,00937</td>
<td>0,00646</td>
<td>0,00402</td>
<td>0,00785</td>
<td>0,01073</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,01918</td>
<td>0,00768</td>
<td>0,00407</td>
<td>0,00507</td>
<td>0,00397</td>
<td>0,00452</td>
</tr>
</tbody>
</table>
4. Resultados

La Universidad Politécnica de Madrid proporciona la siguiente tabla con datos de comparación:

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Sala</th>
<th>Laboratorio de acústica</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ R Interr</td>
<td>0,01748</td>
<td>0,01509</td>
</tr>
<tr>
<td>μA R Interr</td>
<td>0,01011</td>
<td>0,01847</td>
</tr>
<tr>
<td>σ Barridos</td>
<td>0,00247</td>
<td>0,00104</td>
</tr>
<tr>
<td>μA Barridos</td>
<td>0,02605</td>
<td>0,01869</td>
</tr>
<tr>
<td>σ MLS</td>
<td>0,00316</td>
<td>0,00208</td>
</tr>
<tr>
<td>μA MLS</td>
<td>0,01928</td>
<td>0,01412</td>
</tr>
</tbody>
</table>

Para este caso, a través de cualquiera de los métodos utilizados no se obtiene semejanzas entre los valores de los parámetros desviación e incertidumbre.

4.11 Análisis de datos: Statgraphics

El software Statgraphics es una herramienta de análisis de datos que combina procedimientos analíticos con gráficos interactivos para otorgar un entorno integrado de estudio. Incorpora funciones estadísticas avanzadas, capaces de generar análisis rigurosos.

Este software ha sido utilizado para comparar el comportamiento a 1 kHz entre los tiempos de reverberación T_{20} y T_{30} en el Aula Magna y el laboratorio de acústica.

El gráfico de medias tiene como objetivo mostrar cada media de la muestra junto con un intervalo de confianza. Los intervalos LSD de Fisher están escalados de modo que un par de muestras tiene medias significativamente diferentes si los intervalos no se solapan en la dirección vertical. La posibilidad de declarar correctamente dos muestras con media igual es del 95%.
En la Figura 51 se presenta el gráfico de medias para el T_{20} en el Aula Magna y se puede ver que el método del ruido interrumpido obtiene el mayor valor y el menor sería a través de la explosión de globos del método de la respuesta impulsiva. Parece que los métodos más precisos son las señales MLS y barridos, utilizando procesado digital, ya que los intervalos de confianza son más pequeños, y por lo tanto es más probable que los valores medios se encuentren dentro de ese rango.

Figura 52: Gráfico de medias para T_{20} en el laboratorio de acústica a 1 kHz.
4. Resultados

La Figura 52 presenta la información de las medias obtenidas para T_{20} a 1 kHz en el laboratorio de acústica. Respecto al Aula Magna se puede ver que los valores obtenidos son más altos y el método que presenta mayores valores sigue siendo el ruido interrumpido. En este caso, los métodos de la respuesta impulsva a través del procesado digital presentan valores casi idénticos, tanto para las medias como los intervalos de confianza, siendo ligeramente inferiores los de las señales MLS.

El gráfico de medias del parámetro T_{30} en el Aula Magna está en la Figura 53 con los diferentes métodos usados para su medición. Respecto a lo visto para T_{20} se observa que se obtienen valores ligeramente inferiores para este mismo recinto. El ruido interrumpido y globos siguen presentando los valores más extremos y las claquetas es el método menos preciso al tener los intervalos de confianza más grandes. A destacar que dos métodos con dos señales diferentes, como es el ruido interrumpido y las señales MLS, presenten valores casi idénticos para este recinto.
La Figura 54 muestra el gráfico de medias para T_{30} en el laboratorio de acústica a 1 kHz y como pasaba en el caso anterior, se obtienen valores ligeramente inferiores respecto a los obtenidos para el parámetro T_{20}. Los valores máximos se siguen correspondiendo al método del ruido interrumpido. Los valores obtenidos de este parámetro son superiores con las señales MLS en relación a los barridos, comportamiento invertido en el T_{20}.

El gráfico de cajas y bigotes ofrece un resumen visual de la muestra de datos. La caja central cubre la mitad de los datos, yendo desde el cuartil inferior al superior, indicando los valores menor y mayor en las líneas extendidas a los lados de la caja. La mediana es la línea vertical en el interior de la caja y el signo + indica la media muestral. Si el bigote superior es algo mayor que el inferior, y la media es mayor a la mediana, se puede decir que hay asimetría positiva en los datos.
4. Resultados

La Figura 55 indica que de los métodos usados para medir el tiempo de reverberación, se ve que para casi todos existen datos anómalos, por debajo y por encima, los cuales pueden afectar a los resultados dados. El único método que no sufre anomalías es el de los barridos. Respecto al resto de métodos se puede comentar que el ruido interrumpido y los barridos tienen asimetría positiva mientras que los globos presentan una mediana mayor a la media de los datos.

Figura 56: Gráfico de cajas y bigotes para T_{20} en el laboratorio de acústica a 1 kHz.
En la Figura 56 se observa que en el laboratorio de acústica, no hay métodos con anomalías presentes. Solo en el método del ruido interrumpido se obtiene una mediana superior a la media de los datos, lo que indica que la media es inferior al valor central de los datos.

La Figura 57 muestra el gráfico de cajas y bigotes para T30 en el Aula Magna. Para este parámetro tanto la pistola como el ruido interrumpido ofrecen un valores anómalos dentro del cuadrante. Las claquetas y los globos presentan una asimetría.
4. Resultados

Para el laboratorio de acústica (Figura 58), también están presentes valores anormales en el método de las señales MLS. Para el método del ruido interrumpido se obtiene que la mediana y la media comparten el mismo valor.

Figura 58: Gráfico de cajas y bigotes para T_{30} en el laboratorio de acústica.
5 Conclusiones

El objetivo principal que se intentaba cumplir a través de la realización de este trabajo fin de
master era la evaluación de los parámetros y métodos utilizados en la medición del tiempo de
reverberación, tanto de forma global como individual. Para ello se han llevado a cabo diversos
estudios relacionados con la veracidad y precisión de las medidas así como con la
incertidumbre de las mismas.

Las conclusiones que han sido obtenidas una vez analizados todos los resultados cosechados,
son las siguientes:

A la vista de los resultados de la evaluación de coherencia entre las mediciones, basándose en
los métodos de Grubbs y Cochran, se puede decir que la utilidad del método de Grubbs es
reducida al prácticamente no influir en el número de laboratorios que presentan valores
aberrantes.

En el apartado [4.7], donde se analizaba la precisión y veracidad de los resultados en función
de considerar un método normalizado, se ha visto que, cuando el método del ruido
interrumpido actúa como método normalizado, los métodos tienen una diferencia
estadísticamente significativa, fundamentándose en la evaluación de la veracidad. La
evaluación de la precisión intralaboratorio nos indica que no hay diferencias entre los dos
métodos y la precisión general varía en función de la frecuencia.

Respecto a la comparación del punto [4.8], donde se evaluaba la incertidumbre del método del
ruído interrumpido frente a las diferentes señales del método de la respuesta impulsiva, los
resultados indican que el comportamiento de la respuesta impulsiva global se basa en el
comportamiento individual de las señales impulsivas no basadas en procesado digital. Es decir,
las globos, pistola y claquetas de forma independiente conformarían el comportamiento de la
respuesta impulsiva global.

Según los visto en los antecedentes, se ha comprobado la evaluación de la repetibilidad de
Vörlander [9] en el apartado [4.9]. Se declaraba que el límite de repetibilidad de T_{20} y T_{30} se
podía estimar a través de unas ecuaciones vistas, pero para el caso evaluado no ha sido así,
difieren bastante los valores obtenidos de los calculados.

La desviación de repetibilidad indica cuanto varía el valor de la variable al realizar mediciones
bajo condiciones de repetibilidad. Como tal, este parámetro se puede entender como una
incertidumbre de las mediciones realizadas, es decir, la incertidumbre de tipo A. La conclusión
obtenida del apartado [4.10] es que la desviación de repetibilidad y la incertidumbre son
parámetros diferentes, que en ocasiones confluyen a valores similares, pero no se deben tratar
como parámetros equivalentes.

De forma genérica, al evaluar las desviaciones de repetibilidad se ha visto que los límites de
repetibilidad del método del ruido interrumpido presentan valores superiores en comparación
con el resto de señales usadas para el método de la respuesta al impulso.
6 Referencias bibliográficas

