Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

Datas Medina, Alejandro and Ramos Cabal, Alba and Martí Vega, Antonio and Cañizo Nadal, Carlos del and Luque López, Antonio (2016). Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion. "Energy", v. 107 ; pp. 542-549. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2016.04.048.

Description

Title: Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion
Author/s:
  • Datas Medina, Alejandro
  • Ramos Cabal, Alba
  • Martí Vega, Antonio
  • Cañizo Nadal, Carlos del
  • Luque López, Antonio
Item Type: Article
Título de Revista/Publicación: Energy
Date: May 2016
ISSN: 0360-5442
Volume: 107
Subjects:
Freetext Keywords: Boron, CSP (Concentrated Solar Power), High temperature, LHTES (Latent heat thermal energy storage), PCM (Phase change materials), Silicon, Thermophotovoltaics
Faculty: Instituto de Energía Solar (IES) (UPM)
Department: Electrónica Física
UPM's Research Group: Silicio y Nuevos Conceptos para Células Solares
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.

Funding Projects

TypeCodeAcronymLeaderTitle
Madrid Regional GovernmentS2013/MAE-2780MADRID-PVAntonio Martí VegaMateriales, dispositivos y tecnología para el desarrollo de la industria fotovoltaica
Government of SpainENE2012-37804-C02-01PROMESAProf. Antonio Martí VegaAplicación de estructuras cuánticas y otros nuevos conceptos a la mejora de la eficiencia de las células solares

More information

Item ID: 40561
DC Identifier: http://oa.upm.es/40561/
OAI Identifier: oai:oa.upm.es:40561
DOI: 10.1016/j.energy.2016.04.048
Official URL: https://doi.org/10.1016/j.energy.2016.04.048
Deposited by: Dr. Alejandro Datas
Deposited on: 23 May 2016 13:01
Last Modified: 14 Mar 2019 14:14
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM