The Zero-Removing Property in Hilbert Spaces of Entire Functions Arising in Sampling Theory

A. G. García and M. A. Hernández-Medina

Abstract. In the topic of sampling in reproducing kernel Hilbert spaces, sampling in Paley–Wiener spaces is the paradigmatic example. A natural generalization of Paley–Wiener spaces is obtained by substituting the Fourier kernel with an analytic Hilbert-space-valued kernel K. Thus we obtain a reproducing kernel Hilbert space \mathcal{H}_K of entire functions in which the Kramer property allows to prove a sampling theorem. A necessary and sufficient condition ensuring that this sampling formula can be written as a Lagrange-type interpolation series concerns the stability under removal of a finite number of zeros of the functions belonging to the space \mathcal{H}_K ; this is the so-called zero-removing property. This work is devoted to the study of the zero-removing property in \mathcal{H}_K spaces, regardless of the Kramer property, revealing its connections with other mathematical fields.

Mathematics Subject Classification. 46E22, 42C15, 94A20.

Keywords. Analytic Kramer kernel, Lagrange-type interpolation series, zero-removing property.

1. Introduction

Sampling in reproducing kernel Hilbert spaces is nowadays an interesting mathematical topic (see, for instance, Refs. [8,19,21]). Besides, it has opened new research lines: sampling in unitarily translation invariant reproducing kernel Hilbert spaces or sampling in reproducing Banach spaces (see, for instance,

Refs. [13, 18, 20, 21]). The present work is intimately related with this subject, and an easy motivation can be found in the Lagrange-type interpolatory character of the Shannon sampling theorem which holds for Paley–Wiener spaces. Namely, the Paley–Wiener space PW_{π} of bandlimited functions to $[-\pi, \pi]$, i.e.,

$$PW_{\pi} := \{ f \in L^2(\mathbb{R}) \cap C(\mathbb{R}) \mid \text{supp } \widehat{f} \subseteq [-\pi, \pi] \},\$$

where \hat{f} stands for the Fourier transform of f, coincides, via the classical Paley–Wiener theorem [28, p. 85], with the space of entire functions f such that $|f(z)| \leq A e^{\pi |z|}$ on \mathbb{C} for some positive constant A, and $f|_{\mathbb{R}} \in L^2(\mathbb{R})$. In PW_{π} the classical Shannon sampling theorem holds: Any $f \in PW_{\pi}$ can be expanded as

$$f(z) = \sum_{n = -\infty}^{\infty} f(n) \frac{\sin \pi (z - n)}{\pi (z - n)}, \quad z \in \mathbb{C}.$$
 (1)

The series converges absolutely and uniformly on horizontal strips of the complex plane. Moreover, the sampling expansion (1) can be written as the Lagrange-type interpolation series

$$f(z) = \sum_{n = -\infty}^{\infty} f(n) \frac{P(z)}{(z - n)P'(n)}, \quad z \in \mathbb{C},$$

where P stands for the entire function $P(z) = (\sin \pi z)/\pi$, which has only simple zeros at \mathbb{Z} .

Since any function $f \in PW_{\pi}$ can be written as

$$f(z) = \left\langle \frac{\mathrm{e}^{iz \cdot}}{\sqrt{2\pi}}, F \right\rangle_{L^2[-\pi,\pi]}, \quad z \in \mathbb{C},$$

for some function $F \in L^2[-\pi, \pi]$, Shannon sampling theory admits a straightforward generalization by substituting the Fourier kernel

$$\mathbb{C} \ni z \longmapsto K(z) \in L^2[-\pi,\pi] \text{ such that } K(z)(w) := e^{izw}/\sqrt{2\pi}, \quad w \in [-\pi,\pi],$$

by another abstract kernel K valued in a Hilbert space \mathcal{H} . The analytic Kramer sampling theory accomplishes this generalization. Indeed, let \mathcal{H} be a complex, separable Hilbert space with inner product $\langle \cdot, - \rangle_{\mathcal{H}}$ and suppose K is an \mathcal{H} valued analytic function defined on \mathbb{C} . For each $x \in \mathcal{H}$, define the function $f_x(z) = \langle K(z), x \rangle_{\mathcal{H}}$ on \mathbb{C} , and let \mathcal{H}_K denote the collection of all such functions f_x . Furthermore, each element in \mathcal{H}_K is an entire function since K is analytic on \mathbb{C} . In this setting, an abstract version of the analytic Kramer theorem [16] is obtained by assuming the Kramer property, that is, the existence of two sequences, $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$, and a Riesz basis for \mathcal{H} $\{x_n\}_{n=1}^{\infty}$ such that $K(z_n) = a_n x_n$ for each $n \in \mathbb{N}$. Namely, for any $f_x \in \mathcal{H}_K$ we have

$$f_x(z) = \sum_{n=1}^{\infty} f_x(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C},$$
(2)

where, for each $n \in \mathbb{N}$, $S_n(z) = \langle K(z), y_n \rangle$, $z \in \mathbb{C}$, and $\{y_n\}_{n=1}^{\infty}$ stands for the dual Riesz basis of $\{x_n\}_{n=1}^{\infty}$ (see Sect. 2 below for the details).

A challenging problem is to give a necessary and sufficient condition to ensure that the above sampling formula can be written as a Lagrange-type interpolation series, that is

$$f_x(z) = \sum_{n=1}^{\infty} f_x(z_n) \frac{P(z)}{(z-z_n)P(z_n)}, \quad z \in \mathbb{C},$$
(3)

where P denotes an entire function having only simple zeros at all points of the sequence $\{z_n\}_{n=1}^{\infty}$. The necessary and sufficient condition ensuring when a Kramer sampling expansion (2) can be written as a Lagrange-type interpolation series (3) was proved in [8] for orthogonal sampling formulas, and in [9] for non-orthogonal Riesz basis sampling formulas. Roughly speaking, the aforesaid necessary and sufficient condition concerns the stability of the functions belonging to the space \mathcal{H}_K under removal of a finite number of their zeros; in other words,

$$f \in \mathcal{H}_K$$
 and $f(a) = 0$ implies that $\frac{f(z)}{z-a} \in \mathcal{H}_K$.

This is an ubiquitous algebraic property in the mathematical literature (see Sect. 2 below) and it will be called the zero-removing property (ZR property in short) throughout the paper. The main aim in this paper is to thoroughly study the ZR property in \mathcal{H}_K spaces, regardless of the Kramer property, revealing its relationships with other mathematical fields. For instance, Paley–Wiener spaces are particular cases of de Branges spaces [4] where the ZR property holds, and de Branges spaces are particular cases of \mathcal{H}_K spaces as well [10].

Next, we outline the organization of the paper, highlighting its significant contributions. In Sect. 2 we introduce the needed preliminaries on spaces \mathcal{H}_K : these spaces are reproducing kernel Hilbert spaces (RKHS in short) of entire functions; we briefly recall the sampling result in \mathcal{H}_K . In Sect. 3 we study some properties of \mathcal{H}_K obtained from the Taylor coefficients of the kernel K at a fixed complex point. In particular, the relationship between \mathcal{H}_K and the set $\mathcal{P}(\mathbb{C})$ of complex polynomials. In Section 4 we study the zero-removing property at a fixed point; this property can be reduced to a general moment problem. Thus, the zero-removing property at a fixed point depends on the continuity of a certain associated operator which looks like the classical shift operator. Moreover, we give a sufficient condition for the continuity of this operator. The section is closed by studying the local zero-removing property: If the zero-removing property holds for a fixed point, say 0, it also holds for any $a \in \mathbb{C}$ with |a| small enough. This study is carried out by using the wellknown Fredholm operator theory. Finally, in Sect. 5 we close the paper with an study of the differentiation operator in an \mathcal{H}_K space.

2. Preliminaries on \mathcal{H}_K Spaces

Suppose we are given a separable complex Hilbert space and an abstract kernel K which is nothing but an \mathcal{H} -valued function on \mathbb{C} . For each $z \in \mathbb{C}$, set $f_x(z) := \langle K(z), x \rangle_{\mathcal{H}}$ for $z \in \mathbb{C}$, and denote by \mathcal{H}_K the collection of all such functions $f_x, x \in \mathcal{H}$, and let \mathcal{T}_K be the mapping

$$\mathcal{H} \ni x \stackrel{T_K}{\longmapsto} f_x \in \mathcal{H}_K \tag{4}$$

If we define the norm $||f||_{\mathcal{H}_K} := \inf\{||x||_{\mathcal{H}} : f = \mathcal{T}_K x\}$ in \mathcal{H}_K (in the sequel we omit the subscript x in f_x), we obtain a reproducing kernel Hilbert space whose reproducing kernel is given by

$$k(z,w) = \langle K(z), K(w) \rangle_{\mathcal{H}}, \quad z,w \in \mathbb{C}.$$

(see [24] for the details). Notice that the mapping \mathcal{T}_K is an antilinear mapping from \mathcal{H} onto \mathcal{H}_K . It is injective if and only if the set $\{K(z)\}_{z\in\mathbb{C}}$ is complete in \mathcal{H} . In particular, if there exist sequences $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}, \{a_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\}$ and a Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathcal{H} such that $K(z_n) = a_n x_n$ for any $n \in \mathbb{N}$, then the mapping \mathcal{T}_K is an anti-linear isometry from \mathcal{H} onto \mathcal{H}_K . Recall that a Riesz basis in a separable Hilbert space \mathcal{H} is the image of an orthonormal basis by means of a boundedly invertible operator. Any Riesz basis $\{x_n\}_{n=1}^{\infty}$ has a unique biorthonormal (dual) Riesz basis $\{y_n\}_{n=1}^{\infty}$, i.e., $\langle x_n, y_m \rangle_{\mathcal{H}} = \delta_{n,m}$, such that the expansions

$$x = \sum_{n=1}^{\infty} \langle x, y_n \rangle_{\mathcal{H}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathcal{H}} y_n$$

hold for every $x \in \mathcal{H}$ (see [6,28] for more details and proofs).

The convergence in the norm $\|\cdot\|_{\mathcal{H}_K}$ implies pointwise convergence which is uniform on those subsets of \mathbb{C} where the function $z \mapsto \|K(z)\|_{\mathcal{H}}$ is bounded; in particular, in compact subsets of \mathbb{C} whenever K is a continuous kernel.

Like in the classical case the following result holds: The space \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} ([26, p. 266]). Another characterization of the analyticity of the functions in \mathcal{H}_K is given in terms of Riesz bases. Suppose that a Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathcal{H} is given and let $\{y_n\}_{n=1}^{\infty}$ be its dual Riesz basis; expanding K(z), where $z \in \mathbb{C}$ is fixed, with respect to the basis $\{x_n\}_{n=1}^{\infty}$ we obtain

$$K(z) = \sum_{n=1}^{\infty} \langle K(z), y_n \rangle_{\mathcal{H}} x_n = \sum_{n=1}^{\infty} S_n(z) x_n \quad \text{in } \mathcal{H},$$

where the coefficients

$$S_n(z) := \langle K(z), y_n \rangle_{\mathcal{H}}, \quad z \in \mathbb{C},$$
(5)

as functions in $z \in \mathbb{C}$, are in \mathcal{H}_K . The following result holds [10]: Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be a pair of dual Riesz bases for \mathcal{H} . Then, \mathcal{H}_K is RKHS of entire functions if and only if all the functions S_n , $n \in \mathbb{N}$, are entire and the function $z \mapsto ||K(z)||_{\mathcal{H}}$ is bounded on compact sets of \mathbb{C} .

2.1. Sampling and the Zero-Removing Property in \mathcal{H}_K Spaces

Consider the data

$$\{z_n\}_{n=1}^{\infty} \in \mathbb{C} \text{ and } \{a_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\}.$$
 (6)

Definition 1. An analytic kernel $K : \mathbb{C} \longrightarrow \mathcal{H}$ is said to be an analytic Kramer kernel (with respect to the data (6)) if it satisfies $K(z_n) = a_n x_n, n \in \mathbb{N}$, for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ of \mathcal{H} . A sequence $\{S_n\}_{n=1}^{\infty}$ of functions in \mathcal{H}_K is said to have the interpolation property (with respect to the data (6)) if

$$S_n(z_m) = a_n \,\delta_{n,m} \,. \tag{7}$$

An analytic kernel K is an analytic Kramer one if and only if the sequence of functions $\{S_n\}_{n=1}^{\infty}$ in \mathcal{H}_K given by (5), where $\{y_n\}_{n=1}^{\infty}$ is the dual Riesz basis of $\{x_n\}_{n=1}^{\infty}$, has the interpolation property with respect to the same data (6).

Under the notation introduced so far an abstract version of the classical Kramer sampling theorem [16] holds: First notice that $\lim_{m\to\infty} |z_m| = +\infty$; otherwise we obtain that any entire function S_n is identically zero in \mathbb{C} . The anti-linear mapping \mathcal{T}_K is a bijective isometry between \mathcal{H} and \mathcal{H}_K . As a consequence, the functions $\{S_n = \mathcal{T}_K(y_n)\}_{n=1}^{\infty}$ form a Riesz basis for \mathcal{H}_K ; the sequence $\{T_n := \mathcal{T}_K(x_n)\}_{n=1}^{\infty}$ is its dual Riesz basis. Expanding any $f \in \mathcal{H}_K$ with respect the basis $\{S_n\}_{n=1}^{\infty}$ we obtain

$$f(z) = \sum_{n=1}^{\infty} \langle f, T_n \rangle_{\mathcal{H}_K} S_n(z) \quad \text{in } \mathcal{H}_K.$$

Besides,

$$\langle f, T_n \rangle_{\mathcal{H}_K} = \overline{\langle x, x_n \rangle}_{\mathcal{H}} = \left\langle \frac{K(z_n)}{a_n}, x \right\rangle_{\mathcal{H}} = \frac{f(z_n)}{a_n}.$$

Since a Riesz basis is an unconditional basis, the sampling series will be pointwise unconditionally convergent and hence, absolutely convergent. The uniform convergence is a standard result in the setting of the RKHS theory since $z \mapsto ||K(z)||_{\mathcal{H}}$ is bounded on compact subsets of \mathbb{C} . Thus we have proved an abstract version of the *classical Kramer sampling theorem* [16]:

Theorem 1. Let $K : \mathbb{C} \longrightarrow \mathcal{H}$ be an analytic Kramer kernel, and assume that the interpolation property (7) holds for some sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$. Let \mathcal{H}_K be the corresponding RKHS of entire functions. Then any $f \in \mathcal{H}_K$ can be recovered from the sequence of its samples $\{f(z_n)\}_{n=1}^{\infty}$ by means of the sampling series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C}.$$
(8)

This series converges absolutely and uniformly on compact subsets of \mathbb{C} .

Equivalently, the Kramer property in Definition 1 can be seen as a sequence $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} such that the sequence of reproducing kernels $\{k(\cdot, z_n)\}_{n=1}^{\infty}$ is a Riesz basis for \mathcal{H}_K . An interesting problem is to characterize the sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} having this property in some structured RKHS spaces of entire functions like Hardy or Bergman spaces (see, for instance, Refs. [2,3,25] and references therein).

Concerning the sampling formula (8) in \mathcal{H}_K , a challenging problem is to give a necessary and sufficient condition to ensure that it can be written as a Lagrange-type interpolation series (see, Eq. (9) below). As it was pointed out in the introduction, it concerns the stability of the functions belonging to the space \mathcal{H}_K on removing a finite number of their zeros; it will be called the zero-removing property:

Definition 2. A set \mathcal{A} of entire functions has the zero-removing property (ZR property in short) if for any $g \in \mathcal{A}$ and any zero w of g the function g(z)/(z-w) belongs to \mathcal{A} .

A set \mathcal{A} of entire functions has the zero-removing property at a point $a \in \mathbb{C}$ (ZR_a property in short) if for any $g \in \mathcal{A}$ with g(a) = 0 the function g(z)/(z-a) belongs to \mathcal{A} .

In fact, the following result holds (see [8,9] for the proof):

Theorem 2. Let \mathcal{H}_K be a RKHS of entire functions obtained from an analytic Kramer kernel K with respect to the data $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$ and $\{a_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\}$, *i.e.*, $K(z_n) = a_n x_n$, $n \in \mathbb{N}$, for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathcal{H} . Then, the sampling formula (8) for \mathcal{H}_K can be written as a Lagrange-type interpolation series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C},$$
(9)

where P denotes an entire function having only simple zeros at $\{z_n\}_{n=1}^{\infty}$ if and only if the space \mathcal{H}_K satisfies the ZR property.

The ZR property (also called the *division property*; see [11]) is ubiquitous in mathematics; for instance, the set $\mathcal{P}_N(\mathbb{C})$ of polynomials with complex coefficients of degree less or equal than N has the ZR property. Another more involved examples sharing this property are:

(a) The entire functions in the Pólya class have the ZR property [4, p. 15]. Recall that an entire function E(z) is said to be of Pólya class if it has no zeros in the upper half-plane, if $|E(x - iy)| \leq |E(x + iy)|$ for y > 0, and if |E(x + iy)| is a nondecreasing function of y > 0 for each fixed x.

(b) The Paley-Wiener space PW_{π} satisfies the ZR property; it follows immediately from its characterization as the space of entire functions f such that $|f(z)| \leq A e^{\pi |z|}$ on \mathbb{C} for some positive constant A, and $f|_{\mathbb{R}} \in L^2(\mathbb{R})$, i.e., the classical Paley-Wiener theorem [28, p.85]. For a direct proof, consider $f \in PW_{\pi}$ such that f(a) = 0, i.e.,

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{iwz} \,\widehat{f}(w) \, dw, \ z \in \mathbb{C}, \ \text{ such that } \int_{-\pi}^{\pi} e^{iwa} \,\widehat{f}(w) \, dw = 0,$$

where \hat{f} stands for the Fourier transform of f. Consider the function $g(w) = \int_{-\pi}^{w} e^{iax} \hat{f}(x) dx$ which satisfies $g(-\pi) = g(\pi) = 0$. Integrating by parts one obtains

$$\frac{f(z)}{z-a} = \frac{1}{\sqrt{2\pi}} \frac{1}{z-a} \int_{-\pi}^{\pi} e^{i(z-a)w} e^{iwa} \widehat{f}(w) \, dw = \frac{-1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{iwz} (i e^{-iaw} g(w)) \, dw.$$

In other words, since the function $-i e^{-iaw}g(w)$ belongs to $L^2[-\pi,\pi]$, the function f(z)/(z-a) belongs to PW_{π} .

(c) In general, a de Branges space $\mathcal{H}(E)$ with strict de Branges (structure) function E has the ZR property [4, p. 52]. Let E be an entire function verifying |E(x-iy)| < |E(x+iy)| for all y > 0. The de Branges space $\mathcal{H}(E)$ is the set of all entire functions f such that

$$\|f\|_E^2 := \int_{-\infty}^{\infty} \left|\frac{f(t)}{E(t)}\right|^2 \, dt < \infty,$$

and such that both ratios f/E and f^*/E , where $f^*(z) := \overline{f(\overline{z})}, z \in \mathbb{C}$, are of bounded type and of nonpositive mean type in the upper half-plane. The structure function or de Branges function E has no zeros in the upper half plane. A de Branges function E is said to be strict if it has no zeros on the real axis. We require f/E and f^*/E to be of bounded type and nonpositive mean type in \mathbb{C}^+ . A function is of bounded type if it can be written as a quotient of two bounded analytic functions in \mathbb{C}^+ and it is of nonpositive mean type if it grows no faster than $e^{\varepsilon y}$ for each $\varepsilon > 0$ as $y \to \infty$ on the positive imaginary axis $\{iy : y > 0\}$. Note that the Paley–Wiener space PW_{π} is a de Branges space with strict structure function $E_{\pi}(z) = \exp(-i\pi z)$.

As a consequence of Theorem 2, any sampling formula like Eq. 8 in a de Branges space can be written as a Lagrange-type interpolation series. (d) Whenever the space \mathcal{H}_K is associated with a polynomial kernel $K(z) := \sum_{n=0}^{N} c_n z^n$, where $c_n \in \mathcal{H}$ and $c_N \neq 0$, it is easy to give a characterization for the ZR property in \mathcal{H}_K . Namely, the ZR property holds in \mathcal{H}_K if and only if the set $\{c_0, c_1, \ldots, c_N\}$ is linearly independent in \mathcal{H} (see [9] for a proof). A more involved problem is to deal with a general entire \mathcal{H} -valued kernel $K(z) = \sum_{n=0}^{\infty} c_n z^n, z \in \mathbb{C}$; the aim of this paper is to obtain some results in this direction.

(e) In a separable Hilbert space \mathcal{H} with orthonormal basis $\{e_n\}_{n=0}^{\infty}$ consider the kernel

$$K_{\gamma} : \mathbb{C} \longrightarrow \mathcal{H}$$

 $z \longmapsto K_{\gamma}(z) := \sum_{n=0}^{\infty} \frac{e_n}{\gamma_n} z^n$

where $\gamma := \{\gamma_n\}_{n=0}^{\infty}$ is a sequence of positive real numbers such that the sequence of quotients $\{\gamma_n/\gamma_{n+1}\}_{n\in\mathbb{N}_0}$ decreases to zero as n increases to infinity. The corresponding spaces $\mathcal{H}_{K_{\gamma}}$ constructed from this family of analytic kernels were introduced by Chan and Shapiro in [5]. Obviously, an entire function $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ belongs to the space $\mathcal{H}_{K_{\gamma}}$ if and only if the sequence $\{\gamma_n \alpha_n\}_{n\in\mathbb{N}_0}$ belongs to $\ell^2(\mathbb{N}_0)$, where, as usual, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Therefore, it is straightforward to show that if $f \in \mathcal{H}_{K_{\gamma}}$, with f(0) = 0, then f(z)/z belongs to $\mathcal{H}_{K_{\gamma}}$, i.e., the space $\mathcal{H}_{K_{\gamma}}$ satisfies the ZR₀ property. If the sequence $\{\gamma_{n+1}/\gamma_n\}_{n\in\mathbb{N}_0}$ is O(1/n) as $n \to \infty$, then, for any $a \in \mathbb{C}$, the translation operator given by $T_a f(z) := f(z-a), z \in \mathbb{C}$, is a well-defined bounded operator $T_a : \mathcal{H}_{K_{\gamma}} \longrightarrow \mathcal{H}_{K_{\gamma}}$ (see [5] for the details). As a consequence of this fact, the space $\mathcal{H}_{K_{\gamma}}$ satisfies the ZR property (for the details, see Eq. (20) below).

Next we include some examples of spaces \mathcal{H}_K where the ZR property fails:

(f) Let $K : \mathbb{C} \to \mathcal{H}$ be an analytic kernel and assume that there exist two distinct points z_1 and $z_2 \in \mathbb{C}$ such that $K(z_1) = K(z_2)$. Then the space \mathcal{H}_K does not hold the ZR property. Indeed, for $x \neq 0$ in \mathcal{H} , orthogonal to $K(z_1)$, consider the function $f(z) = \langle K(z), x \rangle, z \in \mathbb{C}$. Assume that r is the order of the zero z_1 of f. If the property ZR holds in \mathcal{H}_K , the function

$$g(z) = rac{f(z)}{(z-z_1)^r}, \quad z \in \mathbb{C}$$

belongs to \mathcal{H}_K , and $g(z_1) \neq 0$. Let $y \in \mathcal{H}$ be such that $g(z) = \langle K(z), y \rangle, z \in \mathbb{C}$. Since $g(z_2) = 0$ we have that y is orthogonal to $K(z_2)$; but $g(z_1) \neq 0$ implies that y is not orthogonal to $K(z_1)$, that is, a contradiction.

(g) Finally, we exhibit a nontrivial example taken from [9] of a RKHS \mathcal{H}_K , built from the Sobolev Hilbert space $\mathcal{H} := H^1(-\pi,\pi)$, where the ZR property fails. Namely: consider the Sobolev Hilbert space $H^1(-\pi,\pi)$ with its usual inner product

$$\langle f,g\rangle_1 = \int_{-\pi}^{\pi} f(x)\,\overline{g(x)}\,dx + \int_{-\pi}^{\pi} f'(x)\,\overline{g'(x)}\,dx\,, \quad f,g \in H^1(-\pi,\pi).$$

The sequence $\{e^{inx}\}_{n\in\mathbb{Z}} \cup \{\sinh x\}$ forms an orthogonal basis for $H^1(-\pi,\pi)$: It is straightforward to prove that the orthogonal complement of $\{e^{inx}\}_{n\in\mathbb{Z}}$ in $H^1(-\pi,\pi)$ is a one-dimensional space for which $\sinh x$ is a basis. For a fixed $a \in \mathbb{C} \setminus \mathbb{Z}$ we define a kernel

$$\begin{array}{ccc} K_a : \mathbb{C} \longrightarrow H^1(-\pi, \pi) \\ z \longmapsto & K_a(z) \,, \end{array}$$

by setting

$$[K_a(z)](x) = (z-a)e^{izx} + \sin \pi z \sinh x \quad \text{for } x \in (-\pi,\pi).$$

Clearly, K_a defines an analytic Kramer kernel. Expanding $K_a(z) \in H^1(-\pi,\pi)$ in the former orthogonal basis we obtain

$$K_a(z) = [1 - i(z - a)] \sin \pi z \sinh x + (z - a) \sum_{n = -\infty}^{\infty} \frac{1 + zn}{1 + n^2}$$
$$\operatorname{sinc}(z - n)e^{inx} \operatorname{in} H^1(-\pi, \pi).$$

where sinc denotes the cardinal sine function $\operatorname{sinc}(z) = \sin \pi z / \pi z$, if $z \neq 0$, and $\operatorname{sinc}(0) = 1$. As a consequence, Theorem 1 gives the following sampling result in \mathcal{H}_{K_a} : Any function $f \in \mathcal{H}_{K_a}$ can be recovered from its samples $\{f(a)\} \cup \{f(n)\}_{n \in \mathbb{Z}}$ by means of the sampling formula

$$f(z) = [1 - i(z - a)] \frac{\sin \pi z}{\sin \pi a} f(a)$$

+
$$\sum_{n = -\infty}^{\infty} f(n) \frac{z - a}{n - a} \frac{1 + zn}{1 + n^2} \operatorname{sinc}(z - n), \quad z \in \mathbb{C}.$$

The function $(z-a) \operatorname{sinc} z$ belongs to \mathcal{H}_{K_a} since $(z-a) \operatorname{sinc} z = \langle K_a(z), 1/2\pi \rangle_1$ for each $z \in \mathbb{C}$. However, by using the above sampling formula for \mathcal{H}_{K_a} it is straightforward to check that the function sinc z does not belong to \mathcal{H}_{K_a} . Analogously, one can prove that the zero-removing property also fails for any $n \in \mathbb{Z}$ by considering the function $f(z) = \sin \pi z$ which belongs to \mathcal{H}_{K_a} .

3. Some Properties on \mathcal{H}_K Related to the Kernel K

In this section we obtain some properties of the Hilbert space \mathcal{H}_K derived from the sequence of Taylor coefficients of the entire kernel K at a point $a \in \mathbb{C}$. Indeed, for each $a \in \mathbb{C}$ we have the Taylor expansion

$$K(z) = \sum_{n=0}^{\infty} c_n(a)(z-a)^n, \quad z \in \mathbb{C},$$

where the coefficient $c_n(a) \in \mathcal{H}$ for each $n \in \mathbb{N}_0$. By using Cauchy's integral formula for derivatives (see [26, p. 268] we have

$$c_n(a) = \frac{1}{n!} K^{(n)}(a) = \frac{1}{2\pi i} \int_{|z-a|=R} \frac{K(z)}{(z-a)^{n+1}} dz, \quad n = 0, 1, \dots,$$

from which

$$\|c_n(a)\|_{\mathcal{H}} \le \frac{1}{R^{n+1}} \sup_{|z-a|=R} \|K(z)\|_{\mathcal{H}} = \frac{M_R(a)}{R^{n+1}},$$
(10)

where $M_R(a) := \sup_{|z-a|=R} ||K(z)||_{\mathcal{H}}$. Taking R > 1, the above inequality shows that the sequence $\{||c_n(a)||\}_{n \in \mathbb{N}_0}$ belongs to $\ell^1(\mathbb{N}_0) \subset \ell^2(\mathbb{N}_0)$.

Proposition 1. Let $\{c_n(a)\}_{n \in \mathbb{N}_0}$ be the sequence of Taylor coefficients of K at any $a \in \mathbb{C}$.

- 1. The sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is a Bessel sequence for \mathcal{H} .
- 2. Assume that the mapping \mathcal{T}_K in (4) is injective. Then the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is a complete sequence in \mathcal{H} .

Proof. For any $x \in \mathcal{H}$ we have $|\langle c_n(a), x \rangle|^2 \leq ||c_n(a)||^2_{\mathcal{H}} ||x||^2_{\mathcal{H}}$ for each $n \in \mathbb{N}_0$. Thus, having in mind (10) we obtain

$$\sum_{n=0}^{\infty} |\langle c_n(a), x \rangle|^2 \le \left(\sum_{n=0}^{\infty} \|c_n(a)\|_{\mathcal{H}}^2\right) \|x\|_{\mathcal{H}}^2 \le B \|x\|_{\mathcal{H}}^2,$$

where $B := \frac{M_R^2(a)}{R^2 - 1}$ and R > 1.

Assume now that $\langle c_n(a), x \rangle = 0$ for all $n \in \mathbb{N}_0$. For the function $f(z) := \langle K(z), x \rangle$, $z \in \mathbb{C}$, we have the Taylor expansion

$$f(z) = \sum_{n=0}^{\infty} \langle c_n(a), x \rangle (z-a)^n = 0 \quad ext{for all } z \in \mathbb{C}.$$

Since the anti-linear mapping \mathcal{T}_K is injective we deduce that x = 0. \Box

The Bessel property in Proposition 1 implies that the space \mathcal{H}_K is a subspace of the Hardy space $H^2(\mathbb{D})$ with continuous inclusion (see [22]). It will be a closed subspace if and only if the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is a frame for \mathcal{H} (see, for instance, [6,23]). In this paper we often assume that the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is also minimal (see Definition 3 below); as a consequence, $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is a Riesz basis where necessarily $0 < m \leq ||c_n(0)|| \leq M < \infty$ for all $n \in \mathbb{N}_0$ (see [6, p. 124]). This is not the case in our setting since the sequence of Taylor coefficients $c_n(0) \to 0$ in \mathcal{H} as $n \to \infty$. In other words, the space \mathcal{H}_K is not, in general, a closed subspace of the Hardy space $H^2(\mathbb{D})$.

As it was mentioned in Sect. 2, whenever K is a polynomial kernel with coefficients in \mathcal{H} , a necessary and sufficient condition for \mathcal{H}_K satisfying the ZR property is the linear independence in \mathcal{H} of the coefficients of K. In the general case, the linear independence of the Taylor coefficients $\{c_n(0)\}_{n\in\mathbb{N}_0}$ of K at 0 is only a necessary condition for the ZR₀ property (clearly it is not a sufficient condition; see, for instance, example (g) in Sect. 2):

Proposition 2. Assume that the space \mathcal{H}_K satisfies the ZR_0 property and consider the Taylor expansion $K(z) = \sum_{n=0}^{\infty} c_n(0)z^n$ of K around 0. Then, the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is linearly independent in \mathcal{H} .

Proof. Assume that there exists an index N such that the coefficient $c_N(0)$ depends linearly on $\{c_0(0), c_1(0), \ldots, c_{N-1}(0)\}$, and consider a non-zero $x \in \{c_0(0), c_1(0), \ldots, c_{N-1}(0)\}^{\perp}$. Then, the function $\langle K(z), x \rangle$ satisfies

$$\langle K(z), x \rangle = z^m (\langle c_m(0), x \rangle + \langle c_{m+1}(0), x \rangle z + \langle c_{m+2}(0), x \rangle z^2 + \cdots)$$

with $m \ge N + 1$ and $\langle c_m(0), x \rangle \ne 0$. If \mathcal{H}_K satisfies the ZR₀ property, then the entire function

$$g(z) = z^{N}(\langle c_{m}(0), x \rangle + \langle c_{m+1}(0), x \rangle z + \langle c_{m+2}(0), x \rangle z^{2} + \cdots)$$

belongs to \mathcal{H}_K , that is, there exists $y \in \mathcal{H}$ such that

$$\langle c_0(0), y \rangle = \langle c_1(0), y \rangle = \cdots = \langle c_{N-1}(0), y \rangle = 0$$

and

$$\langle c_{m+k}(0), x
angle = \langle c_{N+k}(0), y
angle \quad ext{for all } k \geq 0 \,.$$

Since $c_N(0)$ depends linearly on $\{c_0(0), c_1(0), \ldots, c_{N-1}(0)\}$ and $\langle c_N(0), y \rangle \neq 0$ we get a contradiction.

As a consequence of the above result, if the space \mathcal{H}_K satisfies the ZR property then, for each $a \in \mathbb{C}$, the sequence $\{c_n(a)\}_{n \in \mathbb{N}_0}$ is linearly independent in \mathcal{H} . In other words, if there exists $a \in \mathbb{C}$ such that $\{c_n(a)\}_{n \in \mathbb{N}_0}$ is linearly dependent in \mathcal{H} , then the ZR property does not hold in \mathcal{H}_K .

A classical problem in a de Branges space $\mathcal{H}(E)$ is to determine when the set of polynomials $\mathcal{P}(\mathbb{C})$ is included in $\mathcal{H}(E)$ (see [1] and references therein). Next, we study the relationship between the set of polynomials $\mathcal{P}(\mathbb{C})$ and our spaces \mathcal{H}_K via the Taylor coefficients $\{c_n(a)\}_{n\in\mathbb{N}_0}$ of the kernel K at a point $a \in \mathbb{C}$.

Definition 3. A sequence $\{c_n\}_{n\in\mathbb{N}_0}$ is said to be minimal in \mathcal{H} if $c_m \notin \overline{\text{span}}$ $\{c_n\}_{n\neq m}$ for each $m \in \mathbb{N}_0$. A sequence $\{c_n\}_{n\in\mathbb{N}_0}$ is said to be supercomplete in \mathcal{H} if the sequence $\{c_n\}_{n>m}$ is complete in \mathcal{H} for each $m \in \mathbb{N}_0$.

Obviously, each minimal sequence $\{c_n\}_{n=0}^{\infty}$ is linearly independent in \mathcal{H} . In this section we will assume that the mapping \mathcal{T}_K in (4) is injective; consequently, the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ of Taylor coefficients of K at any $a \in \mathbb{C}$ is a complete sequence in \mathcal{H} (see Proposition 1).

Proposition 3. The set of polynomials $\mathcal{P}(\mathbb{C})$ is contained in \mathcal{H}_K if and only if the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ of Taylor coefficients of K at 0 is minimal in \mathcal{H} . Moreover, the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is minimal in \mathcal{H} if and only if the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is minimal in \mathcal{H} for each $a \in \mathbb{C}$.

Proof. For each $n \in \mathbb{N}_0$ the monomial z^n belongs to \mathcal{H}_K if and only if there exists $x_n \in \mathcal{H}$ such that $\langle c_m(0), x_n \rangle = \delta_{m,n}$, where $\delta_{m,n}$ denotes the Kronecker delta. Equivalently, $\{z^n\}_{n=0}^{\infty} \subset \mathcal{H}_K$ if and only if there exists a biorthogonal sequence $\{x_n\}_{n=0}^{\infty} \subset \mathcal{H}$ of $\{c_n(0)\}_{n \in \mathbb{N}_0}$. This is known to be equivalent to the minimality of $\{c_n(0)\}_{n \in \mathbb{N}_0}$ (see [28]).

Now, suppose that for some $a \in \mathbb{C}$ the sequence $\{c_n(a)\}_{n \in \mathbb{N}_0}$ fails to be minimal. Then there exists $N \in \mathbb{N}_0$ such that

$$c_N(a) \in \overline{\operatorname{span}}\{c_0(a), \dots, c_{N-1}(a), c_{N+1}(a), \dots\}$$

Having in mind the completeness of the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ in \mathcal{H} we deduce that the sequence $\{c_0(a),\ldots,c_{N-1}(a),c_{N+1}(a),\ldots\}$ is complete in \mathcal{H} . Therefore, if $x \in \{c_m\}_{m\neq N}^{\perp}$ then x = 0 and, consequently, the polynomial $(z - a)^N$ does not belong to \mathcal{H}_K .

Proposition 4. The sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ of Taylor coefficients of K at 0 is supercomplete in \mathcal{H} if and only if the space \mathcal{H}_K does not contain any non-zero polynomial. Moreover, the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is supercomplete in \mathcal{H} if and only if the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is supercomplete in \mathcal{H} for each $a \in \mathbb{C}$.

Proof. A non-zero polynomial $a_N z^N + a_{N-1} z^{N-1} + \cdots + a_0$ belongs to \mathcal{H}_K if and only if there exists $x \in \mathcal{H}, x \neq 0$, such that

$$\langle c_0(0), x
angle = a_0, \langle c_1(0), x
angle = a_1, \dots, \langle c_N(0), x
angle \ = a_N \quad ext{and} \quad \langle c_m(0), x
angle = 0 \quad ext{for } m > N.$$

Hence, a non-zero polynomial is in \mathcal{H}_K if and only if the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is not supercomplete in \mathcal{H} .

Now, suppose that the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is supercomplete in \mathcal{H} and that, for some $b\in\mathbb{C}$, the sequence $\{c_n(b)\}_{n\in\mathbb{N}_0}$ is not supercomplete in \mathcal{H} . Then, there exists $N\in\mathbb{N}_0$ such that sequence $\{c_{N+1}(b), c_{N+2}(b), \ldots\}$ is not complete in \mathcal{H} . Therefore, there exists a non-zero $x\in\mathcal{H}$ such that $\langle c_m(b), x \rangle = 0$ for all m > N. As a consequence, the non-zero polynomial

$$\langle c_0(b), x \rangle + \langle c_1(b), x \rangle (z-b) + \dots + \langle c_N(b), x \rangle (z-b)^N$$

belongs to \mathcal{H}_K , that is, a contradiction.

In the Paley–Wiener case, the Fourier kernel $K(z)(w) = \frac{1}{\sqrt{2\pi}}e^{izw}, w \in [-\pi, \pi]$, can be expanded, around $a \in \mathbb{C}$, as

$$K(z)(w) = \frac{1}{\sqrt{2\pi}} e^{izw} = \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} e^{iaw} \frac{(iw)^n}{n!} (z-a)^n \,, \quad z \in \mathbb{C} \,.$$

Hence, for $n \in \mathbb{N}_0$, we get that $c_n(0)(w) = \frac{1}{\sqrt{2\pi}} \frac{(iw)^n}{n!}, w \in [-\pi, \pi].$

As a by-product, since the Paley–Wiener space PW_{π} does not contain any non-zero polynomial, from Proposition 4 we deduce that the sequence of monomials $\{1, w, w^2, \ldots\}$ is supercomplete (and hence, it is not minimal) in $L^2[-\pi, \pi]$.

Concerning the ZR property in \mathcal{H}_K and the relationship between the set $\mathcal{P}(\mathbb{C})$ of polynomials and \mathcal{H}_K we have the following result:

Proposition 5. Suppose that the space \mathcal{H}_K satisfies the ZR property. Then, only one of the following three cases hold:

- (a) For any $a \in \mathbb{C}$ the sequence $\{c_n(a)\}_{n \in \mathbb{N}_0}$ is minimal in \mathcal{H} . In this case the space \mathcal{H}_K contains any polynomial.
- (b) For any $a \in \mathbb{C}$ the sequence $\{c_n(a)\}_{n \in \mathbb{N}_0}$ is supercomplete in \mathcal{H} . In this case the space \mathcal{H}_K does not contain non-zero polynomials.
- (c) There exists $N \in \mathbb{N}_0$ such that the polynomials belonging to \mathcal{H}_K are precisely the set of polynomials of degree less or equal than N. In this case, for each $a \in \mathbb{C}$ the sequence $\{c_n(a)\}_{n \geq N+1}$ is supercomplete in its closed span and $c_r(a) \notin \overline{\operatorname{span}}\{c_n(a)\}_{n \neq r}$ for $r = 0, 1, \ldots, N$.

Proof. We denote by ∂p the degree of a polynomial p. Assume that there exists a polynomial p belonging to the space \mathcal{H}_K . If the space \mathcal{H}_K satisfies the ZR property then the set of polynomials whose degree is less or equal than ∂p is included in \mathcal{H}_K .

If the case a. does not hold, consider $N := \max_{r \in \mathbb{N}_0} \{q \in \mathcal{H}_K | q \text{ polynomial and } \partial q = r\}$ which is finite. Since the ZR property holds, the set of polynomials of degree less or equal than N is included in \mathcal{H}_K .

4. The Zero-Removing Property at a Fixed Point

In this section we study conditions under which, for a fixed $a \in \mathbb{C}$, the \mathbb{ZR}_a property holds in \mathcal{H}_K . Reducing the \mathbb{ZR}_a property to a moment problem, a sufficient condition assuring that the \mathbb{ZR}_a property holds involves the continuity of a shift-type operator.

4.1. A Sufficient Condition for the ZR_a Property

Consider a function $f \in \mathcal{H}_K$, i.e., $f(z) = \langle K(z), x \rangle_{\mathcal{H}}$ on \mathbb{C} for some $x \in \mathcal{H}$, such that f(a) = 0. Then $\langle c_0(a), x \rangle = 0$ and

$$\frac{f(z)}{z-a} = \sum_{n=0}^{\infty} \langle c_{n+1}(a), x \rangle (z-a)^n, \quad z \in \mathbb{C}.$$

As a consequence, the space \mathcal{H}_K satisfies the property \mathbb{ZR}_a if and only if for each $x \in \{c_0(a)\}^{\perp}$ there exists $y \in \mathcal{H}$ such that

$$\langle c_n(a), y \rangle = \langle c_{n+1}(a), x \rangle, \quad n \in \mathbb{N}_0.$$

For the sake of completeness we include the following result on general moment problems whose proof can be found in [28, p. 126]:

Theorem 3. Let $\{f_1, f_2, f_3, \ldots\}$ be a sequence of vectors belonging to a Hilbert space \mathcal{H} and $\{d_1, d_2, d_3, \ldots\}$ a sequence of scalars. In order that the equations

$$\langle f, f_n \rangle = d_n , \quad n \in \mathbb{N}$$

shall admit at least one solution $f \in \mathcal{H}$ for which $||f|| \leq M$, it is necessary and sufficient that

$$\left|\sum_{n} a_{n} \overline{d}_{n}\right| \leq M \left\|\sum_{n} a_{n} f_{n}\right\|$$

for every finite sequence of scalars $\{a_n\}$. If the sequence $\{f_1, f_2, f_3, \ldots\}$ is complete in \mathcal{H} , then the solution is unique.

As a consequence of the above result we obtain:

Proposition 6. The space \mathcal{H}_K satisfies the ZR_a property if and only if for each $x \in \{c_0(a)\}^{\perp}$ the linear functional $\mu_{a,x}$ defined on $Y_a := \operatorname{span}\{c_n(a)\}_{n \in \mathbb{N}_0}$ as

$$\mu_{a,x}\left(\sum_{n}a_{n}c_{n}(a)\right) = \sum_{n}a_{n}\langle c_{n+1}(a), x\rangle$$

for every finite sequence of scalars $\{a_n\}$, is bounded.

Assume that the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is linearly independent. The linear functional $\mu_{a,x}: Y_a \to \mathbb{C}$ can be decomposed as $T_{a,x} \circ S_a$ where $T_{a,x}: Y_a \to \mathbb{C}$ is the linear operator given by

$$T_{a,x}\left(\sum_{n}a_{n}c_{n}(a)
ight)=\sum_{n}a_{n}\langle c_{n}(a),x
angle$$

and $S_a: Y_a \to Y_a$, is the linear operator given by

$$S_a\left(\sum a_n c_n(a)\right) = \sum a_n c_{n+1}(a) \tag{11}$$

for every finite sequence of scalars $\{a_n\}$. Observe that S_a is a well-defined linear operator since the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is linearly independent. From now on we will assume that the sequence $\{c_n(a)\}_{n\in\mathbb{N}_0}$ is linearly independent (see Proposition 2 above). Note that operator S_a is nothing but a generalization of the classical shift operator defined by means of an orthonormal basis [22]; here it is defined by means of a linear independent Bessel sequence in \mathcal{H} .

The operator $T_{a,x}$ is obviously bounded since

$$T_{a,x}\left(\sum_{n}a_{n}c_{n}(a)\right)=\sum_{n}a_{n}\langle c_{n}(a),x
angle=\left\langle \sum_{n}a_{n}c_{n}(a),x
ight
angle .$$

Thus, we have obtained the following result:

Theorem 4. Assume that, for each $a \in \mathbb{C}$, the sequence $\{c_n(a)\}_{n \in \mathbb{N}_0}$ is linearly independent and the corresponding operator S_a given by (11) is bounded. Then the space \mathcal{H}_K satisfies the ZR property.

Notice that, for the Paley–Wiener space PW_{π} , the corresponding operator S_a is bounded for any $a \in \mathbb{C}$. Indeed, for a = 0, we have that $\frac{d}{dw}c_{n+1}(0)(w)$ $= ic_n(0)(w), w \in (-\pi, \pi)$, from which we deduce that

$$S_0f(w) := i \int_0^w f(s) \, ds$$
 for any $f \in L^2[-\pi,\pi]$.

Since $||S_0f||_2 \leq 2\pi ||f||_2$ for any $f \in L^2[-\pi,\pi]$, S_0 is bounded on span $\{c_n(0)\}_{n\in\mathbb{N}_0} = L^2[-\pi,\pi]$. For a non-zero $a \in \mathbb{C}$ we have that $S_af(w) = e^{iaw}S_0f(w)$ and, as a consequence, the operator S_a is bounded for each $a \in \mathbb{C}$.

The reciprocal of Theorem 4 remains true under the hypothesis that the function $1 \in \mathcal{H}_K$.

Theorem 5. Assume that the mapping \mathcal{T}_K in (4) is injective, the sequence $\{c_n(a)\}_{n=1}^{\infty}$ is linearly independent for any $a \in \mathbb{C}$, and $1 \in \mathcal{H}_K$. Then, the space \mathcal{H}_K satisfies the ZR property if and only if the operator S_a is bounded for each $a \in \mathbb{C}$.

Proof. From Theorem 4 it is enough to show that if $1 \in \mathcal{H}_K$ and the \mathbb{ZR}_a property holds, then the operator S_a is bounded. Let $\sum_{n=0}^{L} a_n c_n(a)$ be a vector in Y_a . We have,

$$\left| \mu_{a,x} \left(\sum_{n=0}^{L} a_n c_n(a) \right) \right| = \left| \left\langle \sum_{n=0}^{L} a_n c_{n+1}(a), x \right\rangle \right|$$
$$= \left\| S_a \left(\sum_{n=0}^{L} a_n c_n(a) \right) \right\| \|x\| \left| \cos \left(\sum_{n=0}^{L} a_n c_{n+1}(a), x \right) \right|$$

First we prove that the function $1 \in \mathcal{H}_K$ if and only if the condition $c_0(a) \notin \overline{\operatorname{span}}\{c_n(a)\}_{n=1}^{\infty}$ holds for each $a \in \mathbb{C}$. Indeed, $1 = \langle K(z), x \rangle$ for some $x \in \mathcal{H}$ (necessarily $x \neq 0$) implies that, for each $a \in \mathbb{C}$, $\langle c_n(a), x \rangle = 0$, $n \geq 1$. From the completeness of $\{c_n(a)\}_{n\in\mathbb{N}_0}$ (see Proposition 1) we deduce that $c_0(a) \notin \overline{\operatorname{span}}\{c_n(a)\}_{n=1}^{\infty}$. For the sufficient condition, let $b \in \mathbb{C}$ such that $c_0(b) \notin \overline{\operatorname{span}}\{c_n(b)\}_{n=1}^{\infty}$; there exists $x \neq 0$ in $(\{c_n(b)\}_{n=1}^{\infty})^{\perp}$ and, as a consequence, the non-zero constant $\langle K(z), x \rangle$ belongs to \mathcal{H}_K . Note that the condition $c_0(b) \notin \overline{\operatorname{span}}\{c_n(a)\}_{n=1}^{\infty}$ for some $b \in \mathbb{C}$ is equivalent to the condition $c_0(a) \notin \overline{\operatorname{span}}\{c_n(a)\}_{n=1}^{\infty}$ for every $a \in \mathbb{C}$. Therefore, the hypothesis $1 \in \mathcal{H}_K$ implies the existence of a positive number α such that $|\cos(\widehat{v, x})| = \frac{|\langle v, x \rangle|}{||v|| ||x||} > \alpha > 0$ for any nonzero $v \in \operatorname{span}\{c_n(a)\}_{n=1}^{\infty}$ and any $x \in c_0(a)^{\perp} \setminus \{0\}$. Hence,

$$\left\| S_a\left(\sum_{n=0}^L a_n c_n(a)\right) \right\| \le \frac{1}{\alpha \|x\|} \left| \mu_{a,x}\left(\sum_{n=0}^L a_n c_n(a)\right) \right|.$$
(12)

Since the ZR_a property holds, the linear functional $\mu_{a,x}$ is bounded in Y_a . Thus, the inequality (12) implies the boundedness of the operator S_a on Y_a .

In the context of de Branges spaces, Baranov [1], improving a previous work in [14, 15], solved the problem of finding the structure functions E of zero exponential type for which $1 \in \mathcal{H}(E)$. Since de Branges spaces are particular cases of \mathcal{H}_K spaces [10], the condition $1 \in \mathcal{H}(E)$ could be replaced by the equivalent geometric condition $c_0(a) \notin \overline{\text{span}}\{c_n(a)\}_{n=1}^{\infty}$ for some $a \in \mathbb{C}$.

4.2. A Sufficient Condition for the Global ZR Property in a \mathcal{H}_K Space

In this section we give a sufficient condition on the continuity of the operator, say S_0 , under the assumption of the minimality of the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ in \mathcal{H} , i.e., any polynomial belongs to \mathcal{H}_K (see Proposition 3). Following Ref. [12, p. 27], the minimality of the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ in \mathcal{H} implies that the numbers δ_k given by

$$\delta_k := \inf_{\theta \in \mathbb{R}} \rho\left(e^{i\theta} \frac{c_k(0)}{\|c_k(0)\|}, \overline{\operatorname{span}}\{c_n(0)\}_{n \neq k} \right), \quad k \in \mathbb{N}_0,$$
(13)

are strictly positive for every $k \in \mathbb{N}_0$. Note that the number δ_k denotes the inclination in \mathcal{H} of the straight line spanned by $c_k(0)$ to the closed subspace $\overline{\operatorname{span}}\{c_n(0)\}_{n\neq k}$, being ρ the distance with respect to the metric given by the norm in \mathcal{H} .

Besides (see [12, pp. 27–28]), for any $x = \sum_k a_k c_k(0)$ (finite or convergent sum) the inequalities

$$|a_k| \le \frac{\|x\|}{\delta_k \|c_k(0)\|} \quad \text{hold for each } k \in \mathbb{N}_0.$$
(14)

Lemma 6. Assume that the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ of Taylor coefficients of K at 0 is complete and minimal in \mathcal{H} . The convergence of the series

$$\sum_{n=0}^{\infty} \frac{1}{\delta_n} \frac{\|c_{n+1}(0)\|}{\|c_n(0)\|},\tag{15}$$

where the numbers $\delta_n > 0$, $n \in \mathbb{N}_0$, are given in (13), implies that the operator S_0 is bounded.

Proof. For any finite sum $x = \sum_{n} a_n c_n(0)$, using inequalities (14), we have

$$\|S_0 x\| \le \sum_n |a_n| \|c_{n+1}(0)\| \le \left(\sum_n \frac{1}{\delta_n} \frac{\|c_{n+1}(0)\|}{\|c_n(0)\|}\right) \|x\| \le M \|x\|$$

where M denotes the sum of the series in (15). Therefore, the operator S_0 is bounded on span $\{c_n(0)\}_{n\in\mathbb{N}_0}$; the completeness of $\{c_n(0)\}_{n\in\mathbb{N}_0}$ proves that S_0 is bounded on \mathcal{H} .

In fact, the following result holds:

Theorem 7. Assume that the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ of Taylor coefficients of K at 0 is complete and minimal in \mathcal{H} . Suppose also that the series in (15) converges and the sequence of quotients $\{\|c_{n+1}(0)\|/\|c_n(0)\|\}_{n\in\mathbb{N}_0}$ is monotonically decreasing. Then, the ZR property in \mathcal{H}_K holds.

Proof. By Lemma 6 the ZR₀ property holds. Let a be a nonzero complex number and let $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n \in \mathcal{H}_K$ be such that f(a) = 0. Then,

$$g(z) = \frac{f(z)}{z-a} = -\frac{1}{a} \sum_{n=0}^{\infty} c_n z^n$$
 where $c_n = \frac{1}{a^n} \sum_{k=0}^n \alpha_k a^k$.

Since $f(a) = \sum_{k=0}^{\infty} \alpha_k a^k = 0$, we have that $\sum_{k=0}^n \alpha_k a^k = -\sum_{k=n+1}^{\infty} \alpha_k a^k$. Hence.

$$g(z) = \sum_{n=0}^{\infty} \left(\frac{1}{a^{n+1}} \sum_{k=n+1}^{\infty} \alpha_k a^k \right) z^n$$

The entire function g belongs to \mathcal{H}_K if and only if the linear functional defined on $Y_0 = \operatorname{span} \{ c_n(0) \}_{n \in \mathbb{N}_0}$ as

$$\nu_f\left(\sum_n b_n c_n(0)\right) = \sum_n b_n\left(\frac{1}{a^{n+1}}\sum_{k=n+1}^\infty \alpha_k a^k\right),$$

for every finite sequence of scalars $\{b_n\}$, is bounded. For any $y = \sum_n b_n c_n(0)$, using inequalities (14) we have

$$|\nu_f(y)| \le \|y\| \|x\| \sum_n \frac{\|c_{n+1}(0)\|}{\delta_n \|c_n(0)\|} \sum_{m=0}^\infty \frac{\|c_{m+n+1}(0)\|}{\|c_{n+1}(0)\|} |a|^m,$$

where $f = T_K x$. Applying the ratio test it is straightforward to prove that the series $\sum_{m=0}^{\infty} \frac{\|c_{m+n+1}(0)\|}{\|c_{n+1}(0)\|} z^m$ defines an entire function G_n for any $n \in \mathbb{N}_0$. Moreover, since the sequence $\{\|c_{l+1}(0)\|/\|c_l(0)\|\}_{l\in\mathbb{N}_0}$ is monotonically decreasing, we have that $G_n(|a|) \geq G_{n+1}(|a|)$ for any $a \in \mathbb{C}$. As a consequence, for any $y \in Y_0 = \operatorname{span} \{c_n(0)\}_{n \in \mathbb{N}_0}$ we obtain that

$$|\nu_f(y)| \le \left(\|x\| G_0(|a|) \sum_{n=0}^{\infty} \frac{\|c_{n+1}(0)\|}{\delta_n \|c_n(0)\|} \right) \|y\| = M_{f,a} \|y\|,$$

i.e., the boundedness of ν_f .

4.3. On the Local Zero-Removing Property

In this section we will assume that S_0 is well-defined bounded operator on $\operatorname{span}\{c_n(0)\}_{n\in\mathbb{N}_0}$. As a consequence, the ZR₀ property holds in \mathcal{H}_K . This means that for each function $f \in \mathcal{H}_K$ with f(0) = 0, the function f(z)/z belongs to \mathcal{H}_K . Our goal here is to prove that the \mathbb{ZR}_a property also holds for $a \in \mathbb{C}$ with |a| small enough.

We will also assume that the operator $\mathcal{T}_K : \mathcal{H} \longrightarrow \mathcal{H}_K$ given in (4) is injective. Therefore, for any $a \in \mathbb{C}$ the sequence $\{c_n(a)\}_{n \in \mathbb{N}_0}$ is complete in \mathcal{H} . The completeness of the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ implies that S_0 can be extended to \mathcal{H} as a bounded operator. Let S_0^* be its adjoint bounded operator, i.e., for each x, y in \mathcal{H} we have $\langle x, S_0 y \rangle = \langle S_0^* x, y \rangle$.

By using the bijective anti-linear isometry \mathcal{T}_K , we define two bounded operators on \mathcal{H}_K as $\mathfrak{S}_0 = \mathcal{T}_K S_0 \mathcal{T}_K^{-1}$ and $\mathfrak{S}_0^* = \mathcal{T}_K S_0^* \mathcal{T}_K^{-1}$. For each $x \in \mathcal{H}$, having in mind that $K(z) = \sum_{n=0}^{\infty} c_n(0) z^n$, we have

$$\langle K(z), S_0^* x \rangle = \langle S_0 K(z), x \rangle = \sum_{n=0}^{\infty} \langle c_{n+1}(0), x \rangle z^n = \frac{f(z) - f(0)}{z},$$

being $f(z) = \langle K(z), x \rangle = \sum_{n=0}^{\infty} \langle c_n(0), x \rangle z^n$. Since $\mathcal{T}_K S_0^* x = \mathfrak{S}_0^* \mathcal{T}_K x = \mathfrak{S}_0^*(f)$, we deduce that

$$\mathfrak{S}_0^*f(z) = \frac{f(z) - f(0)}{z} \,, \quad z \in \mathbb{C} \,.$$

In general, assuming that S_a is bounded, the ZR_a property holds and the bounded operator $\mathfrak{S}_a^* := \mathcal{T}_K S_a^* \mathcal{T}_K^{-1}$ from $\mathcal{H}_K \to \mathcal{H}_K$ satisfies that

$$\mathfrak{S}_a^* f(z) = \frac{f(z) - f(a)}{z - a}, \quad z \in \mathbb{C}.$$
 (16)

Notice that in the de Branges spaces theory, a natural question is whether the space is closed under forming difference quotients as in (16), which means that the function 1 is an associated function (see, for instance, [4, 27]).

For each $a \in \mathbb{C}$ we denote by \mathcal{H}_a the set

$$\mathcal{H}_a := \{ f \in \mathcal{H}_K \text{ such that } f(a) = 0 \}.$$

It is straightforward to prove that \mathcal{H}_a is a closed subspace of \mathcal{H}_K for each $a \in \mathbb{C}$. Indeed, Let $\{f_n\}_{n \in \mathbb{N}} \subset \mathcal{H}_a$ be a sequence converging to g in the \mathcal{H}_K norm. Since \mathcal{H}_K is a RKHS, for each $z \in \mathbb{C}$ we have that $f_n(z) \to g(z)$; in particular $g(a) = \lim_{n \to \infty} f_n(a) = 0$.

The following lemma relates de \mathbb{ZR}_a property with the subspace \mathcal{H}_a via the restriction of the operator \mathfrak{S}_0^* to the subspace \mathcal{H}_0 :

Lemma 8. Assume that the operator S_0 is bounded. Let $\widetilde{\mathfrak{S}}_0^*$ be the restriction of the operator \mathfrak{S}_0^* to the closed subspace \mathcal{H}_0 of \mathcal{H}_K . Given $a \in \mathbb{C}$, the ZR_a property holds in \mathcal{H}_K if and only if the range of the operator $I - a\widetilde{\mathfrak{S}}_0^*$ is \mathcal{H}_a .

Proof. Assume that the operator S_0 is bounded and, therefore, the ZR₀ property holds. The range of the operator $I_0 - a\widetilde{\mathfrak{S}}_0^*$ is a subspace included in \mathcal{H}_a , where $I_0 := I_{|\mathcal{H}_0}$. If the ZR_a property holds in \mathcal{H}_K then any entire function g in \mathcal{H}_a can be written as g(z) = zh(z) - ah(z) where $h \in \mathcal{H}_K$. The entire function zh(z) belongs to \mathcal{H}_0 and $g = (I - a\widetilde{\mathfrak{S}}_0^*)(zh)$, i.e., g belongs to the range of $I - a\widetilde{\mathfrak{S}}_0^*$.

Now, suppose that the range of $I - a\widetilde{\mathfrak{S}_0^*}$ is \mathcal{H}_a . For any $g \in \mathcal{H}_a$ there exists $f \in \mathcal{H}_0$ such that g(z) = f(z) - af(z)/z = (z-a)f(z)/z. Hence, since the ZR₀ property holds, the entire function g(z)/(z-a) = f(z)/z belongs to \mathcal{H}_K .

In the sequel we follow the Fredholm operator theory as it appears in [7].

Theorem 9. Assume that the operator S_0 is bounded. Then, there exists $\delta > 0$ such that the ZR_a property holds in \mathcal{H}_K for $|a| < \delta$.

Proof. The identity operator I restricted to \mathcal{H}_0 , i.e., I_0 , is a Fredholm operator. Indeed, I_0 is bounded; its range is $R(I_0) = \mathcal{H}_0$, hence, closed; the kernel of I_0 , $N(I_0) = \{0\}$ is finite dimensional and the codimension of the range is finite and equal to 1 (recall that \mathcal{H}_0^{\perp} is the subspace of \mathcal{H}_K generated by $f_0(z) = \langle K(z), c_n(0) \rangle, \ z \in \mathbb{C}$). The index of I_0 is dim $N(I_0) - \operatorname{codim} R(I_0) = -1$.

For any $a \in \mathbb{C}$ the operator $I_0 - a\widetilde{\mathfrak{S}}_0^*$ is injective. Indeed, let $f \in \mathcal{H}_0$ such that $(I_0 - a\widetilde{\mathfrak{S}}_0^*)f = 0$ or, equivalently, such that $\frac{z-a}{z}f(z) = 0$, for any $z \in \mathbb{C}$. This implies that f is the zero function since f is an entire function. Following see [7, p. 34], there exists $\delta > 0$ such that if $|a| < \delta$ the operator $I_0 - a\widetilde{\mathfrak{S}}_0^*$ is Fredholm and its index verifies $\operatorname{ind}(I_0 - a\widetilde{\mathfrak{S}}_0^*) = \operatorname{ind} I_0 = -1$. Since $I_0 - a\widetilde{\mathfrak{S}}_0^*$ is an injective Fredholm operator we have that $R(I_0 - a\widetilde{\mathfrak{S}}_0^*) = \mathcal{H}_a$. Hence, by Lemma 8 the ZR_a property holds in \mathcal{H}_K

An estimation of the constant δ is given in next proposition:

Proposition 7. Assume that the operator S_0 is bounded. Then, the ZR_a holds for each $a \in \mathbb{C}$ such that $|a| < \|\widetilde{\mathfrak{S}_0^*}\|^{-1}$.

Proof. The numerical range of the operator $\widetilde{\mathfrak{S}_0^*}$ is defined by:

$$\Theta(\widetilde{\mathfrak{S}_0^*}) = \{ \langle \widetilde{\mathfrak{S}_0^*} f, f \rangle \mid f \in \mathcal{H}_0 \,\, ext{and} \,\, \|f\| = 1 \}.$$

Since $\widetilde{\mathfrak{S}}_0^*$ is bounded we have that $\Theta(\widetilde{\mathfrak{S}}_0^*)$ is bounded in \mathbb{C} ; indeed, $|\langle \widetilde{\mathfrak{S}}_0^* F, F \rangle| \leq ||\widetilde{\mathfrak{S}}_0^*||.$

It is known that if $|\lambda| > \|\widetilde{\mathfrak{S}_0^*}\|$ then $\lambda I_0 - \widetilde{\mathfrak{S}_0^*}$ is an injective semi-Fredholm operator, whose range, $R(\lambda I_0 - \widetilde{\mathfrak{S}_0^*})$, is closed and codim $R(\lambda I_0 - \widetilde{\mathfrak{S}_0^*})$ is constant in the set $\{\mu \in \mathbb{C} \text{ such that } |\mu| > \|\widetilde{\mathfrak{S}_0^*}\|\}$ (see [7, p. 100]).

Let $\lambda = a^{-1}$, taking into account that $a^{-1}I_0 - \widetilde{\mathfrak{S}}_0^* : \mathcal{H}_0 \to \mathcal{H}_a$ we obtain that if $|a| < \|\widetilde{\mathfrak{S}}_0^*\|^{-1}$ then $R(a^{-1}I_0 - \widetilde{\mathfrak{S}}_0^*)$ is a closed subspace in \mathcal{H}_a , therefore, $\operatorname{codim} R(a^{-1}I_0 - \widetilde{\mathfrak{S}}_0^*) = C$ with $C \ge 1$ for each $a \ne 0$ satisfying $|a| < \|\widetilde{\mathfrak{S}}_0^*\|^{-1}$. From Theorem 9 we have that if $b \ne 0$ is close to 0 then $\operatorname{codim} R(I_0 - b\widetilde{\mathfrak{S}}_0^*) = \operatorname{codim} R(b^{-1}I_0 - \widetilde{\mathfrak{S}}_0^*) = 1$. Hence, C = 1 and the ZR_a property holds in \mathcal{H}_K whenever $|a| < \|\widetilde{\mathfrak{S}}_0^*\|^{-1}$.

Corollary 10. Assume that the mapping \mathcal{T}_K in (4) is injective, the sequence $\{c_n(a)\}_{n=1}^{\infty}$ is linearly independent for any $a \in \mathbb{C}$ and $1 \in \mathcal{H}_K$. Then the set

$$\{b \in \mathbb{C} \mid property \ ZR_b \ holds\}$$

is an open set in $\mathbb C$

Proof. It is a straightforward consequence of Theorems 5 and 9.

Remark As far as Theorem 9 is concerned, one can construct kernels K such that the \mathbb{ZR}_a property at a fixed point $a \in \mathbb{C}$ implies that the zero-removing property holds in \mathcal{H}_K for every $b \in \mathbb{C}$. It remains the open question whether this is true for every space \mathcal{H}_K .

5. The Differentiation Operator in \mathcal{H}_K

In general, the differentiation operator $\mathcal{D} : \mathcal{H}_K \longrightarrow \mathcal{H}_K$ given by $\mathcal{D}(f) = f', f \in \mathcal{H}_K$, is not well-defined as the following example shows. In example (e) in Sect. 2 with $\gamma := \{\sqrt{n!}\}_{n \in \mathbb{N}_0}$, an entire function $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ belongs to $\mathcal{H}_{K_{\gamma}}$ if and only if the sequence $\{\sqrt{n!} \alpha_n\}_{n=0}^{\infty}$ belongs to $\ell^2(\mathbb{N}_0)$. In particular, for the sequence $\alpha_n = 1/(n\sqrt{n!}), n \in \mathbb{N}_0$, the corresponding function f belongs to $\mathcal{H}_{K_{\gamma}}$; however its derivative f' does not belong to $\mathcal{H}_{K_{\gamma}}$. A sufficient condition is given in the next result:

Theorem 11. Suppose that the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ of Taylor coefficients of K at 0 is complete and minimal in \mathcal{H} . Consider the numbers $\delta_n > 0$, $n \in \mathbb{N}_0$, given in (13). If the series

$$\sum_{n=0}^{\infty} \frac{(n+1)}{\delta_n} \frac{\|c_{n+1}(0)\|}{\|c_n(0)\|}$$
(17)

converges, then the differentiation operator \mathcal{D} is a well-defined bounded operator on \mathcal{H}_K .

Proof. Let f be in \mathcal{H}_K ; there exists $x \in \mathcal{H}$ such that $f(z) = \langle K(z), x \rangle$, for any $z \in \mathbb{C}$, and $f(z) = \sum_{n=0}^{\infty} \langle c_n(0), x \rangle z^n$. Therefore,

$$f'(z) = \sum_{n=1}^{\infty} \langle c_n(0), x \rangle n z^{n-1}, \quad z \in \mathbb{C}.$$

The derivative f' of the entire function f belongs to \mathcal{H}_K if and only if there exists $y \in \mathcal{H}$ such that

$$\langle c_n(0), y \rangle = (n+1) \langle c_{n+1}(0), x \rangle$$
 for any $n \in \mathbb{N}_0$. (18)

Proceeding as in the proof of Theorem 4, the set of equations (18) has a solution $y \in \mathcal{H}$ if and only if the operator

$$\mathfrak{D}: \operatorname{span}\{c_n(0)\}_{n\in\mathbb{N}_0} \longrightarrow \operatorname{span}\{c_n(0)\}_{n\in\mathbb{N}_0} \ c_n(0) \longmapsto (n+1)c_{n+1}(0),$$

is bounded. Let $u = \sum_{n} a_n c_n(0)$ be a finite sum in \mathcal{H} with $||u||_{\mathcal{H}} = 1$. By using inequalities in (14), we obtain

$$\begin{aligned} \|\mathfrak{D}u\| &= \left\|\sum_{n} a_{n}(n+1)c_{n+1}(0)\right\| \leq \sum_{n} (n+1)|a_{n}|\|c_{n+1}(0)\| \\ &\leq \sum_{n} \frac{(n+1)}{\delta_{n}} \frac{\|c_{n+1}(0)\|}{\|c_{n}(0)\|}. \end{aligned}$$

Hence, the convergence of the series in (17) implies the continuity of the operator \mathfrak{D} . Moreover, the boundedness of the operator \mathfrak{D} implies the boundedness of the differentiation operator \mathcal{D} . Indeed, if \mathfrak{D} is bounded on $\operatorname{span}\{c_n(0)\}_{n=0}^{\infty}$ then it can be extended by continuity to the whole space \mathcal{H} . In this case, the adjoint operator of $\mathfrak{D}, \mathfrak{D}^* : \mathcal{H} \to \mathcal{H}$ is bounded and it is straightforward to prove that $\mathcal{D} = \mathcal{T}_K \mathfrak{D}^* \mathcal{T}_K^{-1}$ where $\mathcal{T}_K : \mathcal{H} \to \mathcal{H}_K$ is the anti-linear isometry defined in (4).

Moreover, whenever the differentiation operator \mathcal{D} is a well-defined bounded operator on \mathcal{H}_K , the translation operator given by $T_a f(z) := f(z-a)$, $z \in \mathbb{C}$, is also a well-defined bounded operator $T_a : \mathcal{H}_K \longrightarrow \mathcal{H}_K$ for each $a \in \mathbb{C}$. Indeed, adapting a result from [5] we obtain:

Proposition 8. Suppose that the differentiation operator \mathcal{D} defined as $\mathcal{D}(f) = f'$ is a well-defined bounded operator $\mathcal{D} : \mathcal{H}_K \to \mathcal{H}_K$. Then, for each $a \in \mathbb{C}$, the translation operator $T_a : \mathcal{H}_K \to \mathcal{H}_K$ is a well-defined, bounded operator. Moreover, we have the following expansion for T_a converging in the operator norm

$$T_a = \sum_{n=0}^{\infty} \frac{(-a)^n}{n!} \mathcal{D}^n \,. \tag{19}$$

Proof. It is a well-known result that (19) holds in \mathcal{E} , the space of entire functions endowed with the topology of the uniform convergence on compact sets (see, for instance, [5]). Since the differentiation operator \mathcal{D} is bounded on the Hilbert space \mathcal{H}_K , the series on the right side of (19) converges absolutely, and hence in the operator norm to a bounded operator on \mathcal{H}_K . As the convergence in \mathcal{H}_K implies convergence in the space \mathcal{E} , this operator must be T_a .

Note that, under the hypotheses of Theorem 11, in the corresponding \mathcal{H}_K space the ZR property holds. Indeed, by using Lemma (6)) the ZR₀ property holds. For $a \in \mathbb{C} \setminus \{0\}$, let g be an entire function in \mathcal{H}_K such that g(a) = 0. The entire function $f = T_{-a}g$ belongs to \mathcal{H}_K and f(0) = g(a) = 0. Since the ZR₀ property holds we have

$$h(z) = \frac{f(z)}{z} = \frac{g(z+a)}{z} \in \mathcal{H}_K, \qquad (20)$$

and hence $g(z)/(z-a) = (T_a h)(z) \in \mathcal{H}_K$.

Closing the paper, it is worth to mention that the convergence of the series in (17) imposes a condition on the rate of decay of the sequence $\{\|c_n(0)\|\}_{n\in\mathbb{N}_0}$ and therefore, on the growth of the functions in \mathcal{H}_K . Indeed, let F be the entire function defined by $F(z) = \sum_{n=0}^{\infty} \|c_n(0)\| z^n$. Then, for any $f \in \mathcal{H}_K$, we have

$$|f(z)| \le ||f||F(|z|) = ||f|| \sum_{n=0}^{\infty} ||c_n(0)|| |z|^n \quad \text{for all } z \in \mathbb{C}.$$
 (21)

In order to illustrate the relationship between the decaying of the sequence $\{\|c_n(0)\|\}_{n\in\mathbb{N}_0}$, the growth of functions in \mathcal{H}_K and the ZR property, suppose that

$$\lim_{n \to \infty} n^r \frac{\|c_n(0)\|}{\|c_{n-1}(0)\|} = \alpha \quad \text{for some } r > 2.$$
 (22)

Assume that the sequence $\{c_n(0)\}_{n\in\mathbb{N}_0}$ is uniformly minimal, i.e., there exists δ such that $\delta_n > \delta > 0$ for any $n \in \mathbb{N}_0$ (see [12, p. 27]). Notice that the existence of the limit in (22) implies the convergence of the series $\sum_{n=0}^{\infty} (n+1) \frac{\|c_{n+1}(0)\|}{\|c_n(0)\|}$ and, the boundedness of the differentiation operator on \mathcal{H}_K ; as a consequence, the ZR property holds.

Let $\gamma > \alpha$; following [5], condition (22) implies the existence of a positive constant C, depending only on γ , such that

$$\|c_n(0)\| \le C \left(\frac{\mathrm{e} \,\gamma^{1/r}}{n}\right)^{nr}, \quad n \in \mathbb{N}_0.$$
⁽²³⁾

Now according to [17, p. 7], the entire function g defined by

$$g(z) = \sum_{n=1}^{\infty} \left(\frac{\mathbf{e}Mr^{-1}}{n}\right)^{nr} z^n \,,$$

where $M = r\gamma^{1/r}$, has order r^{-1} . Having in mind (23) we obtain that $F(|z|) \leq Cg(|z|)$ for any $z \in \mathbb{C}$. Hence, inequality (21) implies that any function f in \mathcal{H}_K has order less or equal than $r^{-1} < 1/2$.

Acknowledgements

The authors are indebted to the anonymous referees for their valuable suggestions. This work has been supported by the grant MTM2009-08345 from the Spanish *Ministerio de Ciencia e Innovación* (MICINN).

References

- Baranov, A.D.: Polynomials in the de Branges spaces of entire functions. Ark. Mat. 44(1), 16–38 (2006)
- [2] Belov, Y., Mengestie, T.Y., Seip, K.: Unitary discrete Hilbert transforms. J. Anal. Math. 112, 383–393 (2010)
- [3] Belov, Y., Mengestie, T.Y., Seip, K.: Discrete Hilbert transforms on sparse sequences. Proc. Lond. Math. Soc. 103(1), 73–105 (2011)
- [4] de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs (1968)
- [5] Chan, K.C., Shapiro, J.: The cyclic behavior of traslation operators on Hilbert space of entire functions. Indiana Univ. Math. J. 40(4), 1421–1449 (1991)
- [6] Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)
- [7] Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Science, Oxford (1990)
- [8] Everitt, W.N., García, A.G., Hernández-Medina, M.A.: On Lagrange-type interpolation series and analytic Kramer kernels. Results Math. 51, 215–228 (2008)

- [9] Fernández-Moncada, P.E., García, A.G., Hernández-Medina, M.A.: The zeroremoving property and Lagrange-type interpolation series. Numer. Funct. Anal. Optim. 32, 858–876 (2011)
- [10] García, A.G., Hernández-Medina, M.A., Szafraniec, F.H.: Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces. Complex Var. Elliptic Equ. 58(1), 79–97 (2013)
- [11] Godefroy, G., Shapiro, J.: Operators with dense, invariant cyclic vector manifolds. J. Funct. Anal. 98, 229–269 (1991)
- [12] Gurariy, V.I., Lusky, W.: Geometry of Müntz spaces and related questions. Springer, New York (2005)
- [13] Han, D., Nashed, M.Z., Sun, Q.: Sampling expansions in reproducing kernel Hilbert and Banach spaces. Numer. Funct. Anal. Optim. 30, 971–987 (2009)
- [14] Havin, V.P., Mashreghi, J.: Admissible majorants for model subspace of H^2 . Part I: slow winding of the generating inner function. Can. J. Math. **55**, 1231–1263 (2003)
- [15] Havin, V.P., Mashreghi, J.: Admissible majorants for model subspace of H^2 . Part II: Fast winding of the generating inner function. Can. J. Math. **55**, 1264–1301 (2003)
- [16] Kramer, H.P.: A generalized sampling theorem. J. Math. Phys. 63, 68–72 (1959)
- [17] Levin B.Y.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. AMS, Providence (1996)
- [18] Mee, C.van der , Nashed, M.Z., Seatzu, S.: Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces. Adv. Comput. Math. 19, 355–372 (2003)
- [19] Nashed, M.Z., Walter, G.G.: General sampling theorems in reproducing kernel Hilbert spaces. Math. Control Signals Syst. 4, 373–412 (1991)
- [20] Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of $L^p(\mathbb{R}^d)$. J. Funct. Anal. **258**, 2422–2452 (2010)
- [21] Nashed M.Z., Sun Q.: Function spaces for sampling expansions. In: Xhen, X., Zayed, A. (eds.) Multiscale Signal Analysis and Modeling, pp. 81–104. Lecture Notes in Electrical Engineering. Springer, New York (2012)
- [22] Nikolskii, N.K.: Treatise on Shift Operator. Springer, New York (1986)
- [23] Partington, J.R.: Interpolation, Identification and Sampling. Clarendon Press, Oxford (1997)
- [24] Saitoh, S.: Integral transforms, reproducing kernels and their applications. Longman, Essex (1997)
- [25] Seip, K.: Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series, vol. 33. AMS, Providence (2004)
- [26] Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Wiley, New York (1980)
- [27] Woracek, H.: De Branges spaces of entire functions closed under forming difference quotients space of entire functions. Integral Equ. Oper. Theory 37(2), 238– 249 (2000)

[28] Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (2001)

A. G. García Departamento de Matemáticas Universidad Carlos III de Madrid Avda. de la Universidad 30 28911 Leganés-Madrid, Spain e-mail: agarcia@math.uc3m.es

M. A. Hernández-Medina Departamento de Matemática Aplicada E.T.S.I.T., U.P.M. Avda. Complutense 30, 28040 Madrid, Spain e-mail: miguelangel.hernandez.medina@upm.es

Received: September 18, 2013. Accepted: September 4, 2014.