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Abstract. In the topic of sampling in reproducing kernel Hilbert spaces, 
sampling in Paley-Wiener spaces is the paradigmatic example. A natural 
generalization of Paley-Wiener spaces is obtained by substituting the 
Fourier kernel with an analytic Hilbert-space-valued kernel K. Thus we 
obtain a reproducing kernel Hilbert space HK of entire functions in which 
the Kramer property allows to prove a sampling theorem. A necessary and 
sufficient condition ensuring that this sampling formula can be written as 
a Lagrange-type interpolation series concerns the stability under removal 
of a finite number of zeros of the functions belonging to the space HK', this 
is the so-called zero-removing property. This work is devoted to the study 
of the zero-removing property in HK spaces, regardless of the Kramer 
property, revealing its connections with other mathematical fields. 

Mathematics Subject Classification. 46E22, 42C15, 94A20. 

Keywords. Analytic Kramer kernel, Lagrange-type interpolation series, 
zero-removing property. 

1. Introduction 
Sampling in reproducing kernel Hilbert spaces is nowadays an interesting 
mathematical topic (see, for instance, Refs. [8,19,21]). Besides, it has opened 
new research lines: sampling in unitarily translation invariant reproducing ker­
nel Hilbert spaces or sampling in reproducing Banach spaces (see, for instance. 



Refs. [13,18,20,21]). The present work is intimately related with this subject, 
and an easy motivation can be found in the Lagrange-type interpolatory char­
acter of the Shannon sampling theorem which holds for Paley-Wiener spaces. 
Namely, the Paley-Wiener space PW^ of bandlimited functions to [—n, IT], i.e., 

PW* := {/ G L2(R) n C(R) | supp / C [-n,n]}, 

where / stands for the Fourier transform of / , coincides, via the classical 
Paley-Wiener theorem [28, p. 85], with the space of entire functions / such 
that |/(.z)| < Ae71"'2 on C for some positive constant A, and / | R G L2(R). In 
PW-n the classical Shannon sampling theorem holds: Any / G PWV can be 
expanded as 

00 , , 

*, s ^r^ ,, ssmirlz — n) „ . . f(z)= Y, / « — r — r > zeC- ! z—' irlz — n) 
n= — 00 v ' 

The series converges absolutely and uniformly on horizontal strips of the 
complex plane. Moreover, the sampling expansion (1) can be written as the 
Lagrange-type interpolation series 

f(z)= ] T f(n)- U—, ZGC, 
¿-^ (z — n)P'(n) 

n=— 00 v ' ' 

where P stands for the entire function P(z) = (sin7rz)/7r, which has only 
simple zeros at Z. 

Since any function / G PWV can be written as 

f(z) = (-=,F) , zeC, 

for some function F G L2[—TT,TT], Shannon sampling theory admits a straight­
forward generalization by substituting the Fourier kernel 

C 3 z 1—> K{z) G L2[-7r,7r] such that K(z)(w) := eizw/V2ñ, w G [-7r,7r], 

by another abstract kernel K valued in a Hilbert space Tí. The analytic Kramer 
sampling theory accomplishes this generalization. Indeed, let Tí be a complex, 
separable Hilbert space with inner product {-,—)n a n ( i suppose K is an TÍ-
valued analytic function defined on C For each x G Tí, define the function 
fx(z) = (K(z), X)T-C on C, and let TÍK denote the collection of all such functions 
fx. Furthermore, each element in TÍK is an entire function since K is analytic 
on C In this setting, an abstract version of the analytic Kramer theorem [16] 
is obtained by assuming the Kramer property, that is, the existence of two 
sequences, {zn}'^=l in C and {an}^Li in C \ {0}, and a Riesz basis for Tí 
{xn}^=i such that K(zn) = anxn for each n G N. Namely, for any fx G TÍK 
we have 

/*(*) = f>(*n) ^ , zeC, (2) 



where, for each n G f$,Sn(z) = (K(z),yn),z G C, and {yn}ÍÍLi stands for the 
dual Riesz basis of {xn}'^D

=1 (see Sect. 2 below for the details). 
A challenging problem is to give a necessary and sufficient condition to 

ensure that the above sampling formula can be written as a Lagrange-type 
interpolation series, that is 

^) = Y.f^) ¿J ,GC, (3) 

where P denotes an entire function having only simple zeros at all points of 
the sequence {zn}'^D

=1. The necessary and sufficient condition ensuring when 
a Kramer sampling expansion (2) can be written as a Lagrange-type interpo­
lation series (3) was proved in [8] for orthogonal sampling formulas, and in 
[9] for non-orthogonal Riesz basis sampling formulas. Roughly speaking, the 
aforesaid necessary and sufficient condition concerns the stability of the func­
tions belonging to the space TÍK under removal of a finite number of their 
zeros; in other words, 

f(z) f G TÍK and f(a) = 0 implies that G TÍK-
z — a 

This is an ubiquitous algebraic property in the mathematical literature 
(see Sect. 2 below) and it will be called the zero-removing property (ZR prop­
erty in short) throughout the paper. The main aim in this paper is to thor­
oughly study the ZR property in TÍK spaces, regardless of the Kramer prop­
erty, revealing its relationships with other mathematical fields. For instance, 
Paley-Wiener spaces are particular cases of de Branges spaces [4] where the 
ZR property holds, and de Branges spaces are particular cases of TÍK spaces 
as well [10]. 

Next, we outline the organization of the paper, highlighting its significant 
contributions. In Sect. 2 we introduce the needed preliminaries on spaces TÍK-
these spaces are reproducing kernel Hilbert spaces (RKHS in short) of entire 
functions; we briefly recall the sampling result in TÍK- In Sect. 3 we study 
some properties of TÍK obtained from the Taylor coefficients of the kernel K 
at a fixed complex point. In particular, the relationship between TÍK and the 
set P(C) of complex polynomials. In Section 4 we study the zero-removing 
property at a fixed point; this property can be reduced to a general moment 
problem. Thus, the zero-removing property at a fixed point depends on the 
continuity of a certain associated operator which looks like the classical shift 
operator. Moreover, we give a sufficient condition for the continuity of this 
operator. The section is closed by studying the local zero-removing property: 
If the zero-removing property holds for a fixed point, say 0, it also holds for 
any a G C with \a\ small enough. This study is carried out by using the well-
known Fredholm operator theory. Finally, in Sect. 5 we close the paper with 
an study of the differentiation operator in an TÍK space. 



2. Preliminaries on TÍK Spaces 

Suppose we are given a separable complex Hilbert space and an abstract kernel 
K which is nothing but an 7i-valued function on C For each z G C, set 
fx(z) := {K(Z),X)T-C for z G C, and denote by TÍK the collection of all such 
functions fx, x G Tí, and let TR be the mapping 

TÍ3x£UfxeTÍK (4) 

If we define the norm H/H^K : = infilMlw : / = TRX} in TÍK ( m the sequel 
we omit the subscript x in f x ) , we obtain a reproducing kernel Hilbert space 
whose reproducing kernel is given by 

k(z,w) = (K(z), K{w))ii, Z , W G C . 

(see [24] for the details). Notice that the mapping TR is an antilinear mapping 
from Tí onto TÍK- It is injective if and only if the set {if(z)}zec is complete 
in Tí. In particular, if there exist sequences {zn}'^D

=1 C C, {cin}ÍÍLi G C \ {0} 
and a Riesz basis {xn}'^D

=1 for Tí such that K(zn) = anxn for any n G N. 
then the mapping TR is an anti-linear isometry from Tí onto TÍK- Recall that 
a Riesz basis in a separable Hilbert space Tí is the image of an orthonormal 
basis by means of a boundedly invertible operator. Any Riesz basis {xn}'^D

=1 

has a unique biorthonormal (dual) Riesz basis {yn}^Lí, i-e-, {xm ym)H = &n,m; 
such that the expansions 

DO OC 

X= ^2(x,yn)HXn = ^2{x,Xn)Hyn 

n=l n=l 

hold for every x G Tí (see [6,28] for more details and proofs). 
The convergence in the norm || • \\HK implies pointwise convergence which 

is uniform on those subsets of C where the function z H^ ||if (2)11% is bounded: 
in particular, in compact subsets of C whenever if is a continuous kernel. 

Like in the classical case the following result holds: The space TÍK is a 
RKHS of entire functions if and only if the kernel K is analytic in C ([26, p. 
266]). Another characterization of the analyticity of the functions in TÍK is 
given in terms of Riesz bases. Suppose that a Riesz basis {xn}'^D

=1 for Tí is 
given and let {yn}ÍÍLi be its dual Riesz basis; expanding K(z), where z G C 
is fixed, with respect to the basis {xn}'^D

=1 we obtain 
DO OC 

K(z) = ^{K(z),yn)Hxn = ^Sn(z)xn in Tí, 
n=l n=l 

where the coefficients 

Sn(z) := (K(z),yn)n, z G C, (5) 

as functions in z G C, are in TÍK- The following result holds [10]: Let {xn}'^D
=1 

and {í/n}ÍÍLi be a pair of dual Riesz bases for Tí. Then, TÍK is RKHS of entire 
functions if and only if all the functions Sn, n G N, are entire and the function 
z H^ ||if (2) ||% is bounded on compact sets of C 



2.1. Sampling and the Zero-Removing Property in TÍK Spaces 

Consider the data 

W : = i £ C and K } ~ = 1 G C \ { 0 } . (6) 

Definition 1. An analytic kernel K : C —> Tí is said to be an analytic Kramer 
kernel (with respect to the da ta (6)) if it satisfies K(zn) = anxn,n G N, for 
some Riesz basis {xn}'^D

=1 of Tí. A sequence {Sn}^=1 of functions in TÍK is 
said to have the interpolation property (with respect to the data (6)) if 

^n \ Zjn) Q>n On ,m • \ ' ) 

An analytic kernel K is an analytic Kramer one if and only if the sequence 
of functions {Sn}^=1 in TÍK given by (5), where {yn}„°=i is the dual Riesz basis 
of {xn}^=i, has the interpolation property with respect to the same da ta (6). 

Under the notation introduced so far an abstract version of the classical 
Kramer sampling theorem [16] holds: First notice tha t linim^oo \zm\ = +oo: 
otherwise we obtain tha t any entire function Sn is identically zero in C The 
anti-linear mapping TR- is a bijective isometry between Tí and TÍK- A S a con­
sequence, the functions {Sn = TK(yn)}^=i form a Riesz basis for TÍK', the 
sequence {Tn := TK(xn)}'^D

=1 is its dual Riesz basis. Expanding any / G TÍK 
with respect the basis {Sn}^=1 we obtain 

DC 

f(*) = Y,{f,Tn)nKSn(z) in TÍK-

Besides, 

{f,Tn)uK = (x,xn)n = / — , x ) = —. 

Since a Riesz basis is an unconditional basis, the sampling series will be point-
wise unconditionally convergent and hence, absolutely convergent. The uni­
form convergence is a s tandard result in the setting of the RKHS theory since 
z i—s- | |if (2) ||% is bounded on compact subsets of C Thus we have proved an 
abstract version of the classical Kramer sampling theorem [16]: 

Theorem 1. Let K : C —> Tí be an analytic Kramer kernel, and assume 
that the interpolation property (7) holds for some sequences {zn}™=1 in C and 
{on}™=1 in C \ {0}. Let TÍK be the corresponding RKHS of entire functions. 
Then any f G TÍK can be recovered from the sequence of its samples {/(^n)}^=i 
by means of the sampling series 

f(z) = j¡2f(zn)^, zeC. (8) 

tí 
This series converges absolutely and uniformly on compact subsets of C. 



Equivalently, the Kramer property in Definition 1 can be seen as a se­
quence {zn}^=1 in C such tha t the sequence of reproducing kernels {k(-, zn)}^=1 

is a Riesz basis for TÍK • An interesting problem is to characterize the sequences 
{zn}^=i m C having this property in some structured RKHS spaces of entire 
functions like Hardy or Bergman spaces (see, for instance, Refs. [2,3,25] and 
references therein). 

Concerning the sampling formula (8) in TÍK, a challenging problem is to 
give a necessary and sufficient condition to ensure tha t it can be writ ten as 
a Lagrange-type interpolation series (see, Eq. (9) below). As it was pointed 
out in the introduction, it concerns the stability of the functions belonging to 
the space TÍK on removing a finite number of their zeros; it will be called the 
zero-removing property: 

Definition 2. A set A of entire functions has the zero-removing property (ZR 
property in short) if for any g G A and any zero w of g the function g(z)/(z—w) 
belongs to A. 

A set A of entire functions has the zero-removing property at a point 
a G C (ZRa property in short) if for any g G A with g(a) = 0 the function 
g(z)/(z — a) belongs to A. 

In fact, the following result holds (see [8,9] for the proof): 

Theorem 2. Let TÍK be a RKHS of entire functions obtained from an analytic 
Kramer kernel K with respect to the data {zn}^=1 C C and {an\'^=i G C \ { 0 } ; 

i.e., K(zn) = anxn, n G N7 for some Riesz basis {xn}^=1 for Tí. Then, the 
sampling formula (8) for TÍK can be written as a Lagrange-type interpolation 
series 

/M = X > » > — ^ - y «ec (») 
where P denotes an entire function having only simple zeros at {zn}^=1 if and 
only if the space TÍK satisfies the ZR property. 

The ZR property (also called the division property; see [11]) is ubiquitous 
in mathematics; for instance, the set P A T ( C ) of polynomials with complex co­
efficients of degree less or equal than N has the ZR property. Another more 
involved examples sharing this property are: 
(a) The entire functions in the Pólya class have the ZR property [4, p. 15]. 
Recall tha t an entire function E(z) is said to be of Pólya class if it has no 
zeros in the upper half-plane, if \E(x — iy)\ < \E(x + iy)\ for y > 0, and if 
\E(x + iy)\ is a nondecreasing function of y > 0 for each fixed x. 

(b) The Paley-Wiener space PW^ satisfies the ZR property; it follows imme­
diately from its characterization as the space of entire functions / such that 
\f(z)\ < Ae71"'2' on C for some positive constant A, and / | R G L 2 (R) , i.e., 
the classical Paley-Wiener theorem [28, p.85] . For a direct proof, consider 
/ G PWir such tha t f(a) = 0, i.e., 



f(z) = — = ¡ éwz f(w) dw, zeC, such that / éwa f(w) dw = O, 
V 27T 

where / stands for the Fourier transform of / . Consider the function g(w) = 
f_ eiaxf(x)dx which satisfies g(—n) = g(ji) = 0. Integrating by parts one 
obtains 

í Sz-a^wéwaf{w)d,w = ^ L ¡ éwz(ie-iawg(w))dw. 
2TY z - a J_7T A/27T 

In other words, since the function — i e~lawg(w) belongs to I?[—TT, IT], the 
function f(z)/(z — a) belongs to PW^. 
(c) In general, a de Branges space Tt(E) with strict de Branges (structure) 
function E has the ZR property [4, p. 52]. Let E be an entire function verifying 
\E(x — iy)\ < \E(x + iy)\ for all y > 0. The de Branges space Tt(E) is the set 
of all entire functions / such that 

II /(*) 2 

E(t) 
dt < oo. 

and such that both ratios f/E and f*/E, where f*(z) := f(~z),z G C, are 
of bounded type and of nonpositive mean type in the upper half-plane. The 
structure function or de Branges function E has no zeros in the upper half 
plane. A de Branges function E is said to be strict if it has no zeros on the real 
axis. We require f/E and f*/E to be of bounded type and nonpositive mean 
type in C+. A function is of bounded type if it can be written as a quotient of 
two bounded analytic functions in C+ and it is of nonpositive mean type if it 
grows no faster than eey for each e > 0 as y —s- oo on the positive imaginary 
axis {\y : y > 0}. Note that the Paley-Wiener space PW^ is a de Branges 
space with strict structure function E7T(z) = exp(— mz). 

As a consequence of Theorem 2, any sampling formula like Eq. 8 in a de 
Branges space can be written as a Lagrange-type interpolation series. 
(d) Whenever the space TÍK is associated with a polynomial kernel K(z) := 
'^2n=0cnz

n, where cn G Tí and CN ^ 0, it is easy to give a characterization 
for the ZR property in TÍK- Namely, the ZR property holds in TÍK if a n ( l only 
if the set {co, c i , . . . , c^} is linearly independent in Tí (see [9] for a proof). 
A more involved problem is to deal with a general entire 7i-valued kernel 
K(z) = J^^Lo cnzT\ -z G C; the aim of this paper is to obtain some results in 
this direction. 
(e) In a separable Hilbert space Tí with orthonormal basis {en}^L0 consider 
the kernel 

K7:C —> Tí 
DC 

e K,(z) := ]T 
,7-

nzn 

=o 



where 7 := {7n}ÍÍLo is a sequence of positive real numbers such that the 
sequence of quotients {7n/7n+i}neN0 decreases to zero as n increases to in­
finity. The corresponding spaces TÍK constructed from this family of analytic 
kernels were introduced by Chan and Shapiro in [5]. Obviously an entire func­
tion f(z) = Y^=o anz" belongs to the space TÍK if and only if the sequence 
{lnan}neN0 belongs to ^2(No), where, as usual, No : = N U {0}. Therefore, it 
is straightforward to show that if / € TÍK , with /(0) = 0, then f(z)/z be­
longs to TÍK , i.e., the space TÍK satisfies the ZRo property. If the sequence 
Í7n+i/7n}neN0 is 0(1/"-) as n —• oo, then, for any a G C, the translation op­
erator given by Taf(z) := f(z — a), z G C, is a well-defined bounded operator 
Ta '• TÍK —> T~LK ( s e e [5] for the details). As a consequence of this fact, the 
space TÍK satisfies the ZR property (for the details, see Eq. (20) below). 

Next we include some examples of spaces TÍK where the ZR property 
fails: 
(f) Let K : C —s- Tí be an analytic kernel and assume that there exist two 
distinct points z\ and zi G C such that K(z-¡) = K[z-i). Then the space TÍK 
does not hold the ZR property. Indeed, for x ^ 0 in Tí, orthogonal to K{z\), 
consider the function f(z) = (K(z),x), z G C. Assume that r is the order of 
the zero z\ of / . If the property ZR holds in TÍK, the function 

g{z) = - ^ - , zeC 
{z-ziY 

belongs to TÍK, and g(z\) ^ 0. Let y G Tí be such that g(z) = (K(z), y), z G C. 
Since giz-i) = 0 we have that y is orthogonal to K(22); but g{z\) ^ 0 implies 
that y is not orthogonal to K(zi), that is, a contradiction. 
(g) Finally, we exhibit a nontrivial example taken from [9] of a RKHS TÍK, 
built from the Sobolev Hilbert space Tí := H1(— TT,TT), where the ZR property 
fails. Namely: consider the Sobolev Hilbert space H1 (—7r,7r) with its usual 
inner product 

if, 9)i=\ f(x)g(x)dx+ f'(x)g'(x)dx, f,geHl{-n,n). 

The sequence {élnx}nei U {sinhx} forms an orthogonal basis for H1 

(—7r,7r): It is straightforward to prove that the orthogonal complement of 
{emx}n£Z in H1 (—7r,7r) is a one-dimensional space for which sinhx is a basis. 
For a fixed a G C \ Z we define a kernel 

z\—> Ka{z), 

by setting 

[Ka(z)](x) = [z — a) elzx + sin7rz sinhx for x G (— TT, IT) . 



Clearly, Ka defines an analytic Kramer kernel. Expanding Ka(z) G H1 

(—7r,7r) in the former orthogonal basis we obtain 
DO 1 

x—^ J- ¡ ZTl 
Ka(z) = [1 — i(z — a)] sin7rz s inhx + (z — a) 

¿^ 1 
n= — oc 

sinc(z - n)emx'm Hl{--n, it) 

where sine denotes the cardinal sine function sinc(z) = sinaz/nz, if z ^ 0, 
and sinc(0) = 1. As a consequence, Theorem 1 gives the following sampling 
result in T¿Ka'- Any function / G TÍKa

 c a n be recovered from its samples 
{/(«)} U { / ( n ) } n e z by means of the sampling formula 

f(z) = [l-i(z-a)]^-f(a) 
smira 

DO 1 

E z — a 1 + zn . 
j(n) T¡ smc(z — n), z G <L . 

n — a 1 -\- n¿ 

n= — oo 

The function (z — a) sine z belongs to 7~¿Ka since (z — a) sine z = (Ka(z), \/2n)\ 
for each z G C. However, by using the above sampling formula for T¿Ka it is 
straightforward to check tha t the function sine z does not belong to T¿Ka • 
Analogously, one can prove tha t the zero-removing property also fails for any 
n G Z by considering the function f(z) = sin7rz which belongs to TÍKa-

3. Some Properties on TiK Related to the Kernel K 

In this section we obtain some properties of the Hilbert space TÍK derived from 
the sequence of Taylor coefficients of the entire kernel i f at a point a G C. 
Indeed, for each a G C we have the Taylor expansion 

DC 

K{z) = YJCn{a){z-a)n, z G C, 
n=0 

where the coefficient cn(a) G Tí for each n G No. By using Cauchy's integral 
formula for derivatives (see [26, p . 268] we have 

*>(") = > n ) M = h J'lz_ahR ( ^ 1 *>> » = 0,1,..., 
from which 

| | c„(a) | | w < - L _ s u p | | K ( z ) | | w = ^ ^ , (10) 
-^ 2; — a | = ñ -^ 

where MR(O) := s u p u a i = ñ ||.ff(2)||%. Taking R > 1, the above inequality 

shows tha t the sequence {||cn(a)||}„eN0 belongs to ^ ( N o ) C ¿2(No). 

Proposition 1. Let {c„(a)}„eN0 ^e the sequence of Taylor coefficients of K at 
any a G C. 



1. The sequence {c n(a)} n £N 0 *s a Bessel sequence for Tí. 
2. Assume that the mapping TK in (4) is infective. Then the sequence 

{cn(a)}nem0 is a complete sequence in Tí. 

Proof. For any x G Tí we have \{cn(a),x)\2 < | |cn(a)| |^. | |x| |^. for each n G No. 
Thus, having in mind (10) we obtain 

DO / OO \ 

£ \(cn(a),x)f < £ \\cn{a)fn \\xfn < B\\x\\2
n, 

n=0 \n=0 J 

where B := R2_i and R > 1. 

Assume now tha t {cn(a), x) = 0 for all n G No. For the function f(z) := 
(K(z),x), z G C, we have the Taylor expansion 

DC 

f(z) = £ ( c „ ( a ) , x ) ( z - a ) n = 0 for all z G C. 
n=0 

Since the anti-linear mapping TR- is injective we deduce tha t x = 0. D 

The Bessel property in Proposition 1 implies tha t the space TÍK is a 
subspace of the Hardy space H2(D) with continuous inclusion (see [22]). It 
will be a closed subspace if and only if the sequence {cn(0)}n £No is a frame 
for Tí (see, for instance, [6,23]). In this paper we often assume that the se­
quence {cn(0)}n £No is a l s o minimal (see Definition 3 below); as a consequence, 
{cn(0)}neNo i s a R-iesz basis where necessarily 0 < m < | |cn(0)| | < M < oc 
for all n G No (see [6, p. 124]). This is not the case in our setting since the 
sequence of Taylor coefficients cn(0) —s- 0 in Tí as n —• oo. In other words, the 
space TÍK is not, in general, a closed subspace of the Hardy space H2(D). 

As it was mentioned in Sect. 2, whenever i f is a polynomial kernel with 
coefficients in Tí, a necessary and sufficient condition for TÍK satisfying the 
ZR property is the linear independence in Tí of the coefficients of K. In the 
general case, the linear independence of the Taylor coefficients {cn(0)}n £No of 
i f at 0 is only a necessary condition for the ZRo property (clearly it is not a 
sufficient condition; see, for instance, example (g) in Sect. 2): 

Proposition 2. Assume that the space TÍK satisfies the ZRo property and con­
sider the Taylor expansion K(z) = ~Y^=0cn{f))zn of K around 0. Then, the 
sequence {cn(0)}n £No is linearly independent in Tí. 

Proof. Assume tha t there exists an index N such tha t the coefficient CJV(0) 
depends linearly on {co(0), c i ( 0 ) , . . . , CJV_i(0)}, and consider a non-zero x G 
{co(0), c i ( 0 ) , . . . , CJV_I (0 )} - L . Then, the function (K(z),x) satisfies 

(K(z), x) = z m ( ( c m ( 0 ) , x) + ( c m + 1 (0 ) , x)z + ( c m + 2 ( 0 ) , x)z2 + •••) 

with m > N + 1 and (c m (0) ,x) ^ 0. If TÍK satisfies the ZRo property, then 
the entire function 

g(z) = zN({cm(0),x) + {cm+1(0),x)z+ ( c m + 2 (0 ) , x)z2 -\ ) 



belongs to TÍK, tha t is, there exists y G Tí such that 

(c0(0),y) = (C l(0) ,y) = • • • = (cN-^y) = 0 

and 

(cm+fc(0), x) = (cN+k(0), y) for all k > 0 . 

Since CJV(O) depends linearly on {co(0), c i ( 0 ) , . . . , C J V _ I ( 0 ) } and (CJV(O), y) 
7̂  0 we get a contradiction. D 

As a consequence of the above result, if the space TÍK satisfies the ZR 
property then, for each a G C, the sequence {c n(a)} n £N 0 is linearly independent 
in Tí. In other words, if there exists a G C such tha t {c n(a)} n £N 0 is linearly 
dependent in Tí, then the ZR property does not hold in TÍK-

A classical problem in a de Branges space Ti(E) is to determine when the 
set of polynomials P ( C ) is included in Ti(E) (see [1] and references therein). 
Next, we s tudy the relationship between the set of polynomials P ( C ) and our 
spaces TÍK via the Taylor coefficients {c n(a)} n £N 0 °f the kernel i f at a point 
a G C. 

Definition 3. A sequence {cn}n £N0 is said to be minimal in Tí if c m ^ span 
{cn}n^m for each m G No. A sequence {cn}n £N0 is said to be supercomplete 
in Tí if the sequence { c n } n > m is complete in Tí for each m G No. 

Obviously, each minimal sequence {cn}^L0 is linearly independent in Tí. 
In this section we will assume tha t the mapping TK in (4) is injective; conse­
quently, the sequence {c n(a)} n £N 0 of Taylor coefficients of K at any a G C is 
a complete sequence in Tí (see Proposition 1). 

Proposition 3. The set of polynomials P ( C ) is contained in TÍK if an<l only 
if the sequence {cn(0)}n £No °f Taylor coefficients of K at 0 is minimal in Tí. 
Moreover, the sequence {cn(0)}n £No *s 'minimal in Tí if and only if the sequence 
{cn(ti)}neNo *s 'minimal in Tí for each a G C. 

Proof For each n G No the monomial zn belongs to TÍK if and only if there 
exists xn G Tí such tha t (cm(0) , xn) = Sm¡n, where Sm¡n denotes the Kronecker 
delta. Equivalently, {zn}"^=0 C TÍK if a n ( l only if there exists a biorthogonal 
sequence {icn}^Lo C Tí of {cn(0)}n £No- This is known to be equivalent to the 
minimality of {cn(0)}n £No (see [28]). 

Now, suppose tha t for some a G C the sequence {c n (a)} n £N 0 fails to be 
minimal. Then there exists N G No such that 

cN(a) G spañ{c 0 (a ) , . . . , c/v_i(a), cN+1(a),.. .} 

Having in mind the completeness of the sequence {c n(a)} n £N 0
 m Tí we deduce 

that the sequence { c o ( a ) , . . . , CAT_I(CJ), c/v"_|_i(a),...} is complete in Tí. There­
fore, if x G {cm}m^N then x = 0 and, consequently, the polynomial (z — a)N 

does not belong to TÍK- C 



Proposition 4. The sequence {cn(0)}n £No °f Taylor coefficients of K at 0 is 
supercomplete in Tí if and only if the space TÍK does not contain any non-zero 
polynomial. Moreover, the sequence {cn(0)}n £No is supercomplete in Tí if and 
only if the sequence {c n(a)} n £N 0 *s supercomplete in Tí for each a G C. 

Proof A non-zero polynomial a^zN + aN-iz1^^1 + • • • + ao belongs to TÍK if 
and only if there exists x G Tí, x ^ 0, such that 

(c0(0), x) = a0, (ci(0), x) = a i , . . ., (c/v(0), x) 

= ÜN and (cm(0), x) = 0 for m > N. 

Hence, a non-zero polynomial is in TÍK if and only if the sequence 
{cn(0)}neNo is n ° t supercomplete in Tí. 

Now, suppose tha t the sequence {cn(0)}n £No is supercomplete in Tí and 
that , for some b G C, the sequence {cn(6)}n £N0 is n ° t supercomplete in Tí. 
Then, there exists N G No such tha t sequence {CAT + I (5) , CN+2(Í>), . . . } is not 
complete in Tí. Therefore, there exists a non-zero x G Tí such tha t (cm(6), x) = 
0 for all m > N. As a consequence, the non-zero polynomial 

(c0(6), x) + (Cl(b),x)(z - & ) + ••• + (CAr(6),x)(z - 6 ) w 

belongs to TÍK, tha t is, a contradiction. D 

In the Paley-Wiener case, the Fourier kernel K(z)(w) = —k=etzw, w G 

[—7T, 7r], can be expanded, around a G C, as 

K(z)(w) = -^eizw = —= V eiaw^-(z - a)n , z G C . 

Hence, for n G No, we get tha t cn(0)(w) = -h=^J—, w G [—7r,7r]. 

As a by-product, since the Paley-Wiener space PW^ does not contain 
any non-zero polynomial, from Proposition 4 we deduce tha t the sequence of 
monomials {1, w, w 2 , . . . } is supercomplete (and hence, it is not minimal) in 
L 2 [ - ^ ] . 

Concerning the ZR property in TÍK and the relationship between the set 
V(C) of polynomials and TÍK we have the following result: 

Proposition 5. Suppose that the space TÍK satisfies the ZR property. Then, 
only one of the following three cases hold: 

(a) For any a G C the sequence {c n(a)} n £N 0 *s rninimal in Tí. In this case the 
space TÍK contains any polynomial. 

(b) For any a G C the sequence {cn(a)}nem0 is supercomplete in Tí. In this 
case the space TÍK does not contain non-zero polynomials. 

(c) There exists N G No such that the polynomials belonging to TÍK are pre­
cisely the set of polynomials of degree less or equal than N. In this case, 
for each a G C the sequence {c n (a )} n >jv + i is supercomplete in its closed 
span and cr(a) <£ s p a n { c n ( a ) } n ^ r for r = 0, 1, . . ., N. 



Proof We denote by dp the degree of a polynomial p. Assume tha t there exists 
a polynomial p belonging to the space TÍK • If the space TÍK satisfies the ZR 
property then the set of polynomials whose degree is less or equal than dp is 
included in TÍK-

If the does not hold, consider N := max r e t j 0 { l G TÍK IQ 
polynomial and dq = r} which is finite. Since the ZR property holds, the set 

of polynomials of degree less or equal than N is included in TÍK • C 

4. The Zero-Removing Property at a Fixed Point 

In this section we s tudy conditions under which, for a fixed a G C, the ZR a 

property holds in TÍK • Reducing the ZR a property to a moment problem, a suf­
ficient condition assuring tha t the ZR a property holds involves the continuity 
of a shift-type operator. 

4.1. A Sufficient Condition for the ZRa Property 

Consider a function / G TÍK, i-e., f(z) = {K(z),x)n on C for some x G Tí. 
such tha t f(a) = 0. Then (co(a),x) = 0 and 

^ = YJ(cn+i{a),x){z-a)n, zeC. 
z — a z—' 

n=0 

As a consequence, the space TÍK satisfies the property ZR a if and only if 
for each x G {co(a)}1- there exists y G Tí such that 

(c n (a) ,y) = (c„+i(a) ,x) , n G N0 . 

For the sake of completeness we include the following result on general 
moment problems whose proof can be found in [28, p. 126]: 

Theorem 3. Let {/i, /2 , fy,.. .} be a sequence of vectors belonging to a Hilbert 
space Tí and {d\, (¿2, «¿3, • • •} a sequence of scalars. In order that the equations 

(f, fn)=dn, n G N 

shall admit at least one solution f G Tí for which | | / | | < M, it is necessary 
and sufficient that 

n 

<M 
n 

for every finite sequence of scalars {a,n}. If the sequence { /1 , /2 , /3 , • • •} is 
complete in Tí, then the solution is unique. 

As a consequence of the above result we obtain: 



Proposition 6. The space TLK satisfies the ZRa property if and only if for each 

x G {co(a)} the linear functional [ia¡x defined onYa := span{c n (a)} n £N 0
 as 

l^a:x I / Q>nC-n 
\ n / n 

for every finite sequence of scalars { a n } 7 is bounded. 

Assume tha t the sequence {c n (a)} n £N 0 is linearly independent. The linear 
functional [ia¡x : Ya —s- C can be decomposed as Ta¡x o Sa where Ta¡x : Ya —s- C 
is the linear operator given by 

Ta,x I '^Ja,ncn(a) J = y ^ a w ( c w ( a ) , x ) 
\ n / n 

and Sa : Ya —s- Ya, is the linear operator given by 

Sa r^2ancn(a)) = ^2ancn+i{a) (11) 

for every finite sequence of scalars {an}. Observe that Sa is a well-defined linear 
operator since the sequence {c n (a)} n £N 0 is linearly independent. From now on 
we will assume tha t the sequence {c n(a)} n £N 0 is linearly independent (see 
Proposition 2 above). Note tha t operator Sa is nothing but a generalization 
of the classical shift operator defined by means of an orthonormal basis [22]: 
here it is defined by means of a linear independent Bessel sequence in Tí. 

The operator Ta¡x is obviously bounded since 

Ta,x I ^2ancn{a) = ^2an{cn{a),x) = ( y ^ a w c w ( 
\ n / n \ n 

Thus, we have obtained the following result: 

a), x 

Theorem 4. Assume that, for each a G C7 the sequence {c n(a)} n £N 0 *s linearly 
independent and the corresponding operator Sa given by (11) is bounded. Then 
the space TLK satisfies the ZR property. 

Notice that , for the Paley-Wiener space PW^, the corresponding opera­
tor Sa is bounded for any a G C. Indeed, for a = 0, we have that -^c n + i (0) (w;) 
= Í C „ ( 0 ) ( W ) , w G (—7r,7r), from which we deduce that 

Sof(w) := i / f(s) ds for any / G L [—ir, ir] . 
Jo 

Since II/S0/H2 < 27r||/||2 for any / G L2[—n, TT], SQ is bounded on span 
{cn(0)}neNo = L2[—TT,TT]. For a non-zero a G C we have tha t Saf(w) = 
etawSof(w) and, as a consequence, the operator Sa is bounded for each a G C. 

The reciprocal of Theorem 4 remains t rue under the hypothesis tha t the 
function 1 G TLK-



Theorem 5. Assume that the mapping TK in (4) is injective, the sequence 
{cn{o)}^=i is linearly independent for any a G C7 and 1 G TÍK- Then, the 
space TÍK satisfies the ZR property if and only if the operator Sa is bounded 
for each a G C. 

Proof Prom Theorem 4 it is enough to show that if 1 G TÍK and the ZRa 

property holds, then the operator Sa is bounded. Let J2n=0 ancn(a) be a vector 
in Y„. We have. 

*«,* E««c«(«) 
\n=0 

cos ^ a „ c n + 1 ( a ) , i 
\n=o / 

First we prove that the function 1 G TÍK if and only if the condition 
co(a) ^ span{cn(a)}^L1 holds for each a G C. Indeed, 1 = (K(z),x) for some 
x G Tí (necessarily x ^ 0) implies that, for each a G C, (c„(a),x) = 0, n > 1. 
From the completeness of {cn(a)}n£N0 (see Proposition 1) we deduce that 
co (a) ^ span{cn(a)}^L1. For the sufficient condition, let 6 G C such that 
co(6) <£ span{cn(6)}^L1; there exists x ^ 0 in ({c„(6)}^L1)± and, as a con­
sequence, the non-zero constant (K(z),x) belongs to TÍK- Note that the con­
dition co (6) ^ span{cn(6)}^L1 for some 6 G C is equivalent to the condition 
co (a) ^ span{cn(a)}^L1 for every a G C. Therefore, the hypothesis 1 G TÍK 
implies the existence of a positive number a such that | cos(í¡72)| = 4̂ f 
a > 0 for any nonzero v G span{cn(a)}^L1 and any x G co(a)^ \ {0}. Hence, 

> 

^'n^n \Q') < 
i 

(12) 

Since the ZRa property holds, the linear functional [ia¡x is bounded in 
Ya. Thus, the inequality (12) implies the boundedness of the operator Sa on 
Ya. D 

In the context of de Branges spaces, Baranov [1], improving a previous 
work in [14,15], solved the problem of finding the structure functions E of zero 
exponential type for which 1 G Ti(E). Since de Branges spaces are particular 
cases of TÍK spaces [10], the condition 1 G Ti(E) could be replaced by the 
equivalent geometric condition co(a) ^ span{cn(a)}^L1 for some a G C. 

4.2. A Sufficient Condition for the Global ZR Property in a TÍK Space 

In this section we give a sufficient condition on the continuity of the operator, 
say So, under the assumption of the minimality of the sequence {cn(0)}n£N0 

in Tí, i.e., any polynomial belongs to TÍK ( s e e Proposition 3). Following Ref. 



[12, p. 27], the minimality of the sequence {cn(0)}n £No
 m 7~L implies tha t the 

numbers 5k given by 

6k:=mip(ei9-rp^r,spm{cn(0)}njtk), fc G N0 , (13) 
eeR V IM°)II / 

are strictly positive for every k G No. Note that the number 5k denotes the 
inclination in Tí of the straight line spanned by ck (0) to the closed subspace 
span{cn(0)}n^fc, being p the distance with respect to the metric given by the 
norm in Tí. 

Besides (see [12, pp. 27-28]), for any x = J2k akck(0) (finite or convergent 
sum) the inequalities 

K l < , | | l | X L n hold for each k G N0 . (14) 
<5fc||Cfc(0)|| 

Lemma 6. Assume that the sequence {cn(0)}n £No °f Taylor coefficients of K 
at 0 is complete and minimal in Tí. The convergence of the series 

y i IK + i (Q) | | . , 

¿0Sn ||C„(0)|| ' l ] 

where the numbers 5n > 0, n G No, are given in (13), implies that the operator 
So is bounded. 

Proof For any finite sum x = J2n a n c n (0 ) , using inequalities (14), we have 

I > I I I - « < » > I I Í ( I : ¿ ^ - ; -^"""!(o)'illl)||i||-M||i|h 

where M denotes the sum of the series in (15). Therefore, the operator So is 
bounded on span{c n(0)} n £N o ; the completeness of {cn(0)}n £No proves tha t So 
is bounded on Tí. D 

In fact, the following result holds: 

Theorem 7. Assume that the sequence {cn(0)}n £No °f Taylor coefficients of 
K at 0 is complete and minimal in Tí. Suppose also that the series in (15) 
converges and the sequence of quotients { | |cn+i(0) | | / | |cn(0) | |}n eNo is monoton-
ically decreasing. Then, the ZR property in TÍK holds. 

Proof By Lemma 6 the ZRo property holds. Let a be a nonzero complex 
number and let f(z) = X^Lo anz" £ T~LK be such tha t f(a) = 0. Then, 

f( \ 1 °° 1 n 

g(z) = = y^cnz
n where c„ = —- V " aka

k . 
n=0 fc=0 



Since ¡(a) = Y^k=oakak = °> w e n a v e t n a t X ^ o " ^ = ~~ Y^k=n+\ «fc«fc-
Hence, 

0(*) 

DO / 1 OO \ 

n=0 \ k=n+l J 

The entire function g belongs to TÍK if and only if the linear functional defined 
on Y0 = span{c„(0)}„eNo as 

DC 

^bncn(0)) =J2b"' 
k=n+l 

vi z^bnCnW = Z^M ^+r 2^ aka: 
a" 

for every finite sequence of scalars {&„}, is bounded. For any y = J2n 6„c„(0). 
using inequalities (14) we have 

v - lk+i(o)|| ^ ||cm+n+1(o)|| 
h(y)\ < IMIINI2JI N n U ii 7n\i Hm 

„ ¿n||c„(0)|| ^ ||cn+1(0)|| 
where / = TR-X. Applying the ratio test it is straightforward to prove that 
the series 5^m=o \U:+n+(o)\\ zm defines an entire function Gn fon any n G No. 
Moreover, since the sequence {||c¡+i(0)||/||c¡(0)||}¡eNo is monotonically decreas­
ing, we have that Gn(|a|) > Gn + i ( |a | ) for any a G C. As a consequence, for 
any y G YQ = span{cn(0)}n£No we obtain that 

Mi/)I < (\\*\\Go(\a\) £ ü j ^ j o j ü ) Ml = MfAvl 

i.e., the boundedness of v¡. D 

4.3. On the Local Zero-Removing Property 

In this section we will assume that So is well-defined bounded operator on 
span{cn(0)}n£No • As a consequence, the ZRo property holds in TÍK- This means 
that for each function / G TÍK with /(0) = 0, the function f(z)/z belongs to 
TÍK • Our goal here is to prove that the ZRa property also holds for a G C with 
\a\ small enough. 

We will also assume that the operator TK '• Tí —> TÍK given in (4) is 
injective. Therefore, for any a G C the sequence {cn(a)}n£N0 is complete in Tí. 
The completeness of the sequence {cn(0)}n£No implies that So can be extended 
to Tí as a bounded operator. Let SQ be its adjoint bounded operator, i.e., for 
each x, y in Tí we have (x, Soy) = (SQX, y). 

By using the bijective anti-linear isometry TK, we define two bounded 
operators on TÍK as (So = T< So T^ and &Q = TK SQ T^ . 

For each x G Tí, having in mind that K(z) = Y^=o cn(®)zn, w e have 

(K(z),S*0x) = (S0K(z),x) = f > n + 1 ( 0 ) , x ) z " = / ( z ) ~ / ( 0 ) , 
n=0 



being f(z) = (K(z),x) = J2Zo(cn(0),x)zn. Since TK S*0x = &*0TKx = 

®o( / ) ; w e deduce that 

e¡ÍM = !^m, , e c . 
z 

In general, assuming tha t Sa is bounded, the ZR a property holds and the 

bounded operator 6 * := TR- S* T^ from TLK —>• HK satisfies that 

&*J(z) = ñ z ) - ñ a \ zeC. (16) 
z — a 

Notice that in the de Branges spaces theory, a natural question is whether 
the space is closed under forming difference quotients as in (16), which means 
that the function 1 is an associated function (see, for instance, [4,27]). 

For each a G C we denote by Ha the set 

Ha •= {/ € HK such tha t f(a) = 0}. 

It is straightforward to prove tha t Ha is a closed subspace of HK for each 
a G C. Indeed, Let {/„}„et( C Ha be a sequence converging to g in the TLK 
norm. Since TLK is a RKHS, for each z G C we have tha t fn(z) —• <?(.z); in 
particular g(a) = limn^oo / n ( a ) = 0. 

The following lemma relates de ZR a property with the subspace TLa via 
the restriction of the operator (SQ to the subspace Ho'-

Lemma 8. Assume that the operator So is bounded. Let &Q be the restriction 

of the operator (Sg to the closed subspace TLo of TLK- Given a G C7 the ZRa 

property holds in TLK if and only if the range of the operator L — a(Sg is TLa-

Proof Assume tha t the operator So is bounded and, therefore, the ZRo prop­

erty holds. The range of the operator LQ — a&o is a subspace included in TLa. 

where LQ := I\Uo- If the ZR a property holds in TLK then any entire function 

g in TLa can be writ ten as g(z) = zh(z) — ah(z) where h G TLK- The entire 

function zh(z) belongs to TLo and g = (I — a&o)(zh), i.e., g belongs to the 

range of / — a(Sg. 

Now, suppose tha t the range of / — a&o is TLa- For any g G TLa there 
exists / G TLo such tha t g(z) = f(z) — af(z)/z = (z — a)f(z)/z. Hence, since 
the ZRo property holds, the entire function g(z)/(z — a) = f(z)/z belongs to 
HK. • 

In the sequel we follow the Fredholm operator theory as it appears in [7]. 

Theorem 9. Assume that the operator So is bounded. Then, there exists S > 0 
such that the ZRa property holds in HK for \a\ < S. 

Proof The identity operator / restricted to Ho, i.e., LQ, is a Fredholm operator. 
Indeed, LQ is bounded; its range is R(IQ) = Ho, hence, closed; the kernel of IQ, 
N(IQ) = {0} is finite dimensional and the codimension of the range is finite 



and equal to 1 (recall tha t TLQ is the subspace of TLK generated by fo(z) = 

(K(z),cn(0)), z G C). The index of I0 is dim AT(/0) - cod imf i ( / 0 ) = - 1 . 

For any a e C the operator IQ — a©*, is injective. Indeed, let / G Tío such 

that (Jo — a&o)f = 0 or, equivalently, such tha t ^^f{z) = 0, for any z G C. 

This implies tha t / is the zero function since / is an entire function. Following 

see [7, p. 34], there exists S > 0 such tha t if \a\ < S the operator IQ — a©*, is 

Fredholm and its index verifies ind(/o — a ©o) = ind io = —1- Since IQ — a©*, 

is an injective Fredholm operator we have tha t R(IQ — a©o) = ^ « - Hence, by 

Lemma 8 the ZR a property holds in TLK C 

An estimation of the constant S is given in next proposition: 

Proposition 7. Assume that the operator So is bounded. Then, the ZRa holds 

for each a G C such that \a\ < | | (So| |_ 1 . 

Proof. The numerical range of the operator (Sg is defined by: 

6 ( 6 * ) = {{&*f, f)\feHo and | | / | | = 1}. 

Since (Sg is bounded we have tha t ©(©*,) is bounded in C; indeed, 

1(6*1^)1 < || 6*||. _ _ 
It is known tha t if |A| > ||©o|| then XIQ — &Q is an injective semi-Fredholm 

operator, whose range, R(XIO — &Q), is closed and codim R(XIO — &Q) is constant 

in the set {¡J, £ C such tha t |/x| > \\&l\\} (see [7, p. 100]). 

Let A = a - 1 , taking into account tha t a - 1 IQ — (5*, : Tío —>• Tía we 

obtain tha t if \a\ < 11<SQ11 1 then R(a^1Io — (5*,) is a closed subspace in TLa. 

therefore, cod imR(a^ 1 Io — 6*,) = C with C > 1 for each a ^ 0 satisfying 
a l < ll®oll_1- F r ° m Theorem 9 we have tha t if b ^ 0 is close to 0 then 

cod imf i ( / 0 -b&l) = codimR^-110 - ©5) = 1. Hence, C = 1 and the ZR a 

property holds in TLK whenever | a | < | | ( S o | | _ 1 . D 

Corollary 10. Assume that the mapping TK in (4) is injective, the sequence 

{cn{o)}^=i is linearly independent for any a G C and 1 G TLK- Then the set 

{b G C | property ZRb holds} 

is an open set in C 

Proof It is a straightforward consequence of Theorems 5 and 9. D 

Remark As far as Theorem 9 is concerned, one can construct kernels K such 
that the ZR a property at a fixed point a G C implies tha t the zero-removing 
property holds in TLK for every 6 G C. It remains the open question whether 
this is true for every space TLK-



5. The Differentiation Operator in TÍK 

In general, the differentiation operator T> : TÍK —> TÍK given by T>(f) = 

/ ' , / G TÍK, is not well-defined as the following example shows. In example 
(e) in Sect. 2 with 7 := {VñíjneNo) a n entire function f(z) = ^2^=0o;nz

n 

belongs to TÍK if a n ( i only if the sequence {y/rú an } ~ = 0 belongs to f(N0). 

In particular, for the sequence an = l/{n^/n\), n G No, the corresponding 
function / belongs to TÍK ', however its derivative / ' does not belong to TÍK • 

A sufficient condition is given in the next result: 

Theorem 11. Suppose that the sequence {cn(0)}n £No °f Taylor coefficients of 
K at 0 is complete and minimal in Tí. Consider the numbers ¿„ > 0, n G No, 
given in (13). If the series 

- (n + l ) | | c w + 1 ( 0 ) | | 

¿0 5n |M0)|| l ] 

converges, then the differentiation operator V is a well-defined hounded oper­

ator on TÍK-

Proof. Let / be in TÍK] there exists x G Tí such tha t f(z) = (K(z),x), for any 
z G C, and f{z) = T,7=o(cn(0),x)zn. Therefore, 

DC 

f'(z) = YJ(cn(0),x)nzn-\ zeC. 

The derivative / ' of the entire function / belongs to TÍK if and only if 
there exists y & Tí such that 

(cn(0),y) = ( n + l ) ( c n + 1 ( 0 ) , x ) for any n G N0 . (18) 

Proceeding as in the proof of Theorem 4, the set of equations (18) has a 
solution y G Tí if and only if the operator 

£> : s p a n { c n ( 0 ) } n e N o —> span{c„(0)}„ e N o 

c„(0) . — (n + l ) c n + 1 ( 0 ) , 

is bounded. Let u = J2nancn(0) be a finite sum in Tí with HWH'H = 1- By 
using inequalities in (14), we obtain 

ISM = ^ a n ( n + l ) c n + 1 ( 0 ) < ^ ( n + l) |an | | |cn + 1(0) | | 

< E (n+l ) | | c w + 1 (0) | | 
Sn l|c„(0)|| 

Hence, the convergence of the series in (17) implies the continuity of 
the operator 33. Moreover, the boundedness of the operator 33 implies the 
boundedness of the differentiation operator T>. Indeed, if 33 is bounded on 
span{cn(0)}^L0 then it can be extended by continuity to the whole space Tí. 



In this case, the adjoint operator of 33, 33* : Tí —s- Tí is bounded and it is 
straightforward to prove tha t T> = TKS)*T^ where TR- : W —*• TÍK is the 
anti-linear isometry defined in (4). D 

Moreover, whenever the differentiation operator I? is a well-defined 
bounded operator on TÍK, the translation operator given by Taf(z) := f(z — a), 
z G C, is also a well-defined bounded operator Ta : TÍK —*• TÍK for each a e C . 
Indeed, adapting a result from [5] we obtain: 

Proposition 8. Suppose that the differentiation operator T> defined as T>(f) = f 
is a well-defined hounded operator T> : TÍK —> TÍK- Then, for each a G C, 
the translation operator Ta : TÍK —> TÍK is a well-defined, hounded operator. 
Moreover, we have the following expansion for Ta converging in the operator 
norm 

Ta = Y j
[ - ^ V n . (19) 

n=0 

Proof It is a well-known result tha t (19) holds in £, the space of entire func­
tions endowed with the topology of the uniform convergence on compact sets 
(see, for instance, [5]). Since the differentiation operator T> is bounded on the 
Hilbert space TÍK, the series on the right side of (19) converges absolutely, and 
hence in the operator norm to a bounded operator on TÍK • As the convergence 
in TÍK implies convergence in the space £, this operator must be Ta. D 

Note that , under the hypotheses of Theorem 11, in the corresponding TÍK 
space the ZR property holds. Indeed, by using Lemma (6)) the ZRo property 
holds. For a G C \ {0}, let g be an entire function in TÍK such tha t g(a) = 0. 
The entire function / = T-ag belongs to TÍK and / (0 ) = g(a) = 0. Since the 
ZRo property holds we have 

h(z) = ^l = g-^±^eHK, (20) 

and hence g(z)/(z — a) = (Tah)(z) G TÍK-
Closing the paper, it is worth to mention tha t the convergence of the series 

in (17) imposes a condition on the rate of decay of the sequence {||c„(0)||}neN0 

and therefore, on the growth of the functions in TÍK • Indeed, let F be the entire 
function defined by F(z) = Yl^Lo \\cn(^)\\zn- Then, for any / G TÍK, we have 

DC 

l / M I < \\f\\F(\z\) = 11/11 ] T | M 0 ) | | H « for all z G C . (21) 
n=0 

In order to illustrate the relationship between the decaying of the se­
quence {||cn(0)||}neNo> the growth of functions in TÍK and the ZR proper ty 
suppose that 

lim nr J 0 " ^ ? ! , , = a for some r > 2 . (22) 
l|Cn-l(0)|| n—>oc 



Assume tha t the sequence {cn(0)}n £No is uniformly minimal, i.e., there 
exists S such tha t Sn > S > 0 for any n G No (see [12, p. 27]). Notice tha t the 
existence of the limit in (22) implies the convergence of the series 5^^Lo(n + 
1) Me+ro'ill an<^' ^ e boundedness of the differentiation operator on TLK', as a 
consequence, the ZR property holds. 

Let 7 > a; following [5], condition (22) implies the existence of a positive 
constant C, depending only on 7, such that 

/ l /r \ nr 

| | c„(0) | |<CÍ^—J , nGN0. (23) 

Now according to [17, p. 7], the entire function g defined by 

fa) = E 
n=\ 

where M = r^/l/r, has order r _ 1 . Having in mind (23) we obtain tha t -Fd-d) < 
C^d^l) for any z G C. Hence, inequality (21) implies tha t any function / in 
TÍK has order less or equal than r _ 1 < 1/2. 
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