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Abstract

We treat graphoid and separoid structures within the mathematical framework of model
theory, specially suited for representing and analysing axiomatic systems with multiple
semantics. We represent the graphoid axiom set in model theory, and translate algebraic
separoid structures to another axiom set over the same symbols as graphoids. This brings
both structures to a common, sound theoretical ground where they can be fairly compared.
Our contribution further serves as a bridge between the most recent developments in for-
mal logic research, and the well-known graphoid applications in probabilistic graphical
modelling.
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1. Introduction

Probabilistic graphical models were originated at the interface between statistics, where
Markov random fields were predominant, and artificial intelligence, with a focus on Bayesian
networks. Since then, a wide spectrum of models has grown (chain graphs, ancestral graphs,
etc.), and all of them share the same foundational concept: the relationship between statis-
tical independence in a probability distribution and graph separation. This correspondence
was originally made explicit via the set of graphoid axioms (Pearl and Paz, 1987). Infor-
mally, they are rules that hold for both conditional independence (Dawid, 1979) and certain
separation criteria in graphs (Pearl, 1988). Their satisfiability is not only limited to the
context of probabilistic graphical models; in fact, they usually apply whenever a notion of
‘irrelevance’ is being mathematically treated (Dawid, 2001), although sometimes they are
too restrictive (Cozman and Walley, 2005). Such apparent similarities led to the definition
of separoids (Dawid, 2001), aimed at unifying those mathematical notions of irrelevance.
A separoid is an algebraic structure consisting of a ternary relation I (representing irrele-
vance) operating on a set. The properties of I parallel, although are not equivalent to, the
graphoid axioms (Dawid, 2001).

In this paper we frame graphoids and separoids in model theory (Marker, 2000), which
describes and reasons about formal structures using the tools of mathematical logic. The
distinguishing characteristic of model theory is an explicit separation between syntactical
or symbolic objects, and context-specific semantics. Our contribution is thus twofold. On
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the one hand, we exploit the natural suitability of model theory for treating axiom systems
(syntax) with varied applications (semantics), such as graphoids. On the other hand, we
translate the algebraic separoid structure to an axiom set over the same symbols used for
graphoids, thus bringing both structures to a common, sound theoretical ground (model
theory) where they can be fairly compared. Furthermore, recently researchers in mathe-
matical logic have defined a new logic for intuitively reasoning about independence (Grädel
and Väänänen, 2013), which is being actively developed and studied (Hannula et al., 2016).
This logic resembles the separoid structure, rather than the more well-known graphoid ax-
ioms. Thus, our contribution serves as a bridge between these recent formal developments
and graphoid applications in probabilistic graphical modelling, which can be exploited for
the potential benefit of both research areas.

The rest of the paper is structured as follows. Section 2 gives a preliminary introduction
to model theory. Separoids and graphoids are both defined in Section 3. We formalize them
within model theory in Sections 4 and 5, using two complementary approaches, which are
unified in Section 6. In Section 7 we summarize the main conclusions and discuss prospective
research directions. Appendix A contains auxiliary results used throughout the paper.

2. Preliminaries in model theory

The main purpose of model theory is to describe mathematical structures from the perspec-
tive of logic. Intuitively, a mathematical structure consists of a set, together with special
functions, relations, and elements. These are represented with a chosen language.

Definition 1. A set of symbols L is called a first-order language when it contains:

• Relation, constant and function symbols. For relations and functions a strictly pos-
itive number n must be specified, called its arity (n-ary relation or function). Intu-
itively, this represents the number of elements operated or related by the represented
function or relation, respectively. Sometimes, for technical convenience, constants are
considered as functions with 0 arity.

• Logical symbols: variables (x, y, z, v1, v2 . . .), connectors (¬, →) and the universal
quantifier (∀).

• A 2-ary relation symbol, =, called equality.

The set of function symbols (including constants) is denoted as LF , the set of relation
symbols (including =) as LR. Logical symbols and the relation = are always present in all
first-order languages, and thus they are not explicitly specified when defining them.

Just as first-order languages represent the syntax in model theory, the semantics is
provided by interpreting those symbols according to the mathematical structure we want
to describe.

Definition 2. Let L be a first-order language. A L-structure A is composed of:

• a non-empty set A;

• a set RA ⊆ Am for each m-ary relation R ∈ LR;
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• a function fA : An 7→ A for each n-ary function f ∈ LF ,

and denoted as A = 〈A, {fA}f∈LF , {RA}R∈LR〉. A is called the universe of A, and for each
s ∈ LF ∪ LR, sA is called the interpretation of s in A. =A is always interpreted as the
equality among elements in A.

Example 1. Consider the first-order language L = {≤}, where ≤ is a 2-ary relation symbol,
aimed at describing ordered mathematical structures. The following are representations of
standard mathematical structures as L-structures:

• R := 〈R,≤R〉, where ≤R is the usual less or equal than relation in R.

• S := 〈2S ,≤S〉, where S is a set, 2S denotes its power set, and ≤ is interpreted as the
set inclusion.

• V := 〈V,≤V〉 where V is the vertex set of an acyclic digraph and (u, v) ∈ ≤V when v
is reachable from u by a directed path.

2.1 Syntax: Formulas and theories

Our aim is to use finite sequences of the symbols in a first-order language L to construct
logical statements about L-structures. Thus, we need to establish which of such finite
sequences are going to be considered valid. These valid sequences are called formulas of L,
which are in turn defined using the more basic notion of language term:

Definition 3. The set of terms of L, Ter(L), is the smallest set of finite sequences of
symbols in L containing the variables and such that if t1, . . . , tn ∈ Ter(L) and f ∈ LF is
n-ary, then ft1 . . . tn ∈ Ter(L).

Definition 4. An atomic formula is Rt1 . . . tm where R ∈ LR is m-ary and ti ∈ Ter(L)
for 1 ≤ i ≤ m. The set of formulas of L, For(L), is the smallest set of finite sequences
of symbols in L containing the atomic formulas and such that if F,G ∈ For(L), then ¬F ,
F → G and ∀vF belong to For(L). The following abbreviations are commonly used: if
F,G ∈ For(L), F ∨G for ¬F → G, F ∧G for ¬(¬F ∨¬G), F ↔ G for (F → G)∧ (G→ F )
and ∃x for ¬∀x¬.

If R ∈ LR is 2-ary, we will write the atomic formula R t1t2 as t1R t2; for m-arity such
formulas will be sometimes parenthesized as R(t1, . . . , tm). Analogously, when f ∈ LF is 2-
ary, ft1t2 will be sometimes denoted as t1ft2, whereas function symbols of any arity (except
constants) will appear parenthesized most times.

In order to arrive at our main syntactic object of interest, we first need to formalize the
notion of closed formulas. This allows us to define L-theories, which, intuitively, are sets of
formulas stating properties about the functions and relations in our mathematical structure
of interest.

Definition 5. Let F ∈ For(L). The set of sub-formulas of F , SubFor(F ), is recursively
defined as: {F} if F is atomic, {F}∪SubFor(G) if F is ¬G or ∀vG, and {F}∪SubFor(G)∪
SubFor(H) if F is G → H. An occurrence of a variable v in F is said to be free if it does
not exist G ∈ SubFor(F ) such that ∀vG ∈ SubFor(F ). The variable v is said to be free in
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F if it has a free occurrence in F . We indicate that the free variables of F are contained
in {x1, . . . , xn} as F (x1, . . . , xn). F is said to be a closed formula if it contains no free
variables, and the set of closed formulas of L is denoted as For(L). If F is F (x1, . . . , xn),
then ∀x1 . . . ∀xn F is called the universal closure of F .

Definition 6. A set T ⊆ For(L) is called a L-theory, or theory in L. An element F ∈ T is
called an axiom of T.

Example 2. If L = {≤}, Ter(L) consists on the set of variables, since there is no function
symbol in L. Thus, an atomic formula, composed only by terms, is for example x ≤ y,
where the variables x and y are free. If instead L = {t,u}, where t and u are 2-ary
function symbols, then x t y is a non-variable term. A formula in such language would be
∀x∀y x t y = x u y; in fact, this is a closed formula, and thus could be part of a L-theory.

2.2 Semantics: Satisfiability and models

We will now formalize how formulas are interpreted; that is, how to provide semantics for
those sequences of symbols with respect to a L-structure. The building blocks of formulas,
terms, are interpreted directly with respect to the L-structure, whereas formulas rely on
those term interpretations and specified logical symbol semantics.

Definition 7. Let t ∈ Ter(L), where the variables appearing in t are x1, . . . , xn. The
interpretation of t is recursively defined as the function tA : An 7→ A such that for each
ā = (a1, . . . , an) ∈ An, tA(ā) = ai if t is the variable xi, and tA(ā) = fA(t1

A(ā), . . . , tl
A(ā))

if t is ft1 . . . tl with f a l-ary function symbol.

Definition 8. Let A be a L-structure, F (x1, . . . , xn) ∈ For(L) and ā = (a1, . . . , an) ∈ An.
F is satisfied in A for ā, and denoted as A |= F (ā), if:

• When F is Rt1 . . . tn with R ∈ LR, R n-ary, and t1, . . . , tn ∈ Ter(L), that is, when F
is atomic: (t1

A(ā), . . . , tn
A(ā)) ∈ RA;

• When F is ¬G: A 6|= G(ā) ( 6|= means not satisfied);

• When F is G→ H: A |= G(ā) implies A |= H(ā);

• When F is ∀xG: for all d ∈ A, A |= G(ā, d) (d substitutes ai if x is xi).

Note that abbreviations (∧,∨,↔,∃) obtain their usual semantics (and, or, iff, exists).

Finally, we have arrived at our main semantic object of interest: models for L-theories.
Intuitively, these are the mathematical structures that comply with the explicit properties
that we have described closed formulas in a theory.

Definition 9. Let T be a L-theory. The set of models of T is Mod(T) := {A L−structure :
A |= F for all F ∈ T}. The notation A ∈ Mod(T) is used interchangeably with A |= T.

A summary of the preliminaries introduced in this section is presented in Figure 1.
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SYNTAX

L-theories (T)

Closed L-formulas (For(L))

L-formulas (For(L))

L-terms (Ter(L))

First-order language (L)

Models for T (A |= T or A ∈ Mod(T))

SEMANTICS

Satisfiability (A |= F , F ∈ For(L))

Satisfiability (A |= F (ā), F (x̄) ∈ For(L))

Interpretation (tA, t ∈ Ter(L))

L-structures (A = 〈A, {sA}s∈L〉)

Figure 1: Key concepts in model theory, separated by syntax (gray) and semantics (white).

3. Lattices, separoids and graphoids

Separoid structures are special types of lattices (Grätzer, 2003). A lattice is a partially
ordered set (poset) in which the join/supremum or meet/infimum exist between every two
elements. When the former occurs, the structure is called join semi-lattice, whereas if the
latter holds, it is called meet semi-lattice. When both situations occur, the set is said to be
lattice ordered.

Definition 10. A semi-separoid is a set A with join semi-lattice structure, together with
a collection I of triples of A, satisfying, for all a, b, c, d ∈ A,

• (a, b, a) ∈ I;

• if (a, b, c) ∈ I then (b, a, c) ∈ I;

• if d ≤ b and (a, b, c) ∈ I then (a, c, d) ∈ I and (a, b, sup{c, d}) ∈ I;

• if (a, b, c) ∈ I and (a, d, sup{b, c}) ∈ I then (a, sup{b, d}, c) ∈ I;

where sup{·} denotes the supremum function. The stronger notion of separoid involves a
lattice instead of a semi-lattice, and has the additional property that if c ≤ b and d ≤ b,
then (a, b, c) ∈ I and (a, b, d) ∈ I implies (a, b, inf{c, d}) ∈ I, being inf{·} the infimum
function.

Definition 11. A semi-graphoid is a set I of triples of pairwise disjoint subsets of a finite
set V , satisfying the following properties, for all A,B,C,D ∈ 2V ,

• (A, ∅, A) ∈ I;

• if (A,B,C) ∈ I then (B,A,C) ∈ I;

• if (A,B ∪D,C) ∈ I then (A,B,C) ∈ I, (A,D,C) ∈ I and (A,B,C ∪D) ∈ I;

• if (A,B,C ∪D) ∈ I and (A,D,B ∪ C) ∈ I then (A,B ∪D,C) ∈ I.
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It is called a graphoid if, additionally, when (A,B,C ∪D) ∈ I and (A,D,B ∪C) ∈ I, then
(A,B ∪D,C) ∈ I.

Two important differences directly arise between separoid structures and graphoid ax-
ioms. The latter involve the notion of pairwise disjointness, while the former does not. By
contrast, separoid structures are a explicit extension of semi-lattices, while graphoid axioms
are indirectly related: the power set 2V is a finite lattice where, given A,B ∈ 2V , their join
is A∪B and their meet is A∩B. Thus, the graphoid axioms seem to define special cases of
separoid structures (as claimed in Dawid (2001)). The first-order theories we will construct
will make explicit these preliminary observations.

A final remark, regarding lattice theory, is relevant. Recall, from the beginning of this
section, the definition of lattices as posets. An alternative, equivalent way of characterizing
them is as algebraic structures with two operations satisfying certain dual properties (or
one operation, if they are semi-lattices, see Grätzer, 2003). As such, this gives rise to alter-
native characterizations depending on how their underlying lattice structure is represented.
Separoid structures are directly expressed as lattice ordered sets, while the graphoid axioms
rely on the operations ∪ and ∩.

4. Separoids as lattice ordered sets

We will use LOrd := {≤} (see Example 1) for formalizing lattices as posets. Consider the
following closed LOrd-formulas:

∀xx ≤ x, (O1)

∀x∀y x ≤ y ∧ y ≤ z → x ≤ z, (O2)

∀x∀y x ≤ y ∧ y ≤ x→ x = y, (O3)

∀x∀y∃z x ≤ z ∧ y ≤ z ∧ (∀w x ≤ w ∧ y ≤ w → z ≤ w), (O4)

∀x∀y∃z z ≤ x ∧ z ≤ y ∧ (∀ww ≤ x ∧ w ≤ y → w ≤ z). (O5)

O1, O2 and O3 syntactically express the reflexive, transitive and antisymmetric prop-
erties of posets, respectively, while O4 and O5 denote the existence of joins and meets,
respectively. Thus, we define the partial order theory as PO := {O1, . . . ,O3}, the join
semi-lattice theory as JL := PO∪{O4}, the meet semi-lattice theory as ML := PO∪{O5},
and the lattice-ordered set theory OL := JL ∪ ML= PO ∪ {O4,O5}. Models for these
theories represent the lattice structures as described in the beginning of Section 3.

Example 3. The LOrd-structures in Example 1 are models for some of the previous theories.
R |= OL and S |= OL. Indeed, joins (meets) are maximum (minimum) elements and union
(intersection) sets, respectively. V |= PO, but it may happen that V 6|= O4 (Figure 2a) or
V 6|= O5 (Figure 2b).

Consider the abbreviation, for expressing that we are referring to the join (meet) element,
such that O4 (O5) would be written ∀x∀y∃z z = sup{x, y} (∀x∀y∃z z = inf{x, y}). Using
the expanded language LOrdSep := LOrd ∪ {I} = {≤, I}, where I is a 3-ary relation, we can
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zx y

w

(a) Violation of O4

zx y

w

(b) Violation of O5

Figure 2: Non-transitive acyclic digraphs.

directly formulate the properties of I, in Definition 10, as:

∀x∀y I(x, y, x) (OS1)

∀x∀y∀z I(x, y, z)→ I(y, x, z) (OS2)

∀x∀y∀z∀ww ≤ y ∧ I(x, y, z)→ I(x, z, w) (OS3)

∀x∀y∀z∀w∀t w ≤ y ∧ I(x, y, z) ∧ t = sup{z, w} → I(x, y, t) (OS4)

∀x∀y∀z∀w∀t∀s I(x, z, w) ∧ I(x, y, t) ∧ t = sup{z, w} ∧ s = sup{y, w} → I(x, s, z), (OS5)

∀x∀y∀z∀w∀t I(x, y, z) ∧ I(x, y, w) ∧ z ≤ y ∧ w ≤ y ∧ t = inf{z, w} → I(x, y, t). (OS6)

Semi-separoids and separoids are thus represented by models for the LOrdSep-theories OSS :=
JL ∪ {OS1, . . . ,OS5} and OS := OL ∪ {OS1, . . . ,OS6}, respectively. The ‘O’ has been
prepended to indicate that the underlying lattice is characterized as a poset.

5. Graphoids as algebraic lattices

As discussed in Section 3, graphoids are more related with the characterization of lattices
as algebraic structures with two dual operations, instead of as posets. Thus, let t, u denote
2-ary function symbols and consider the first-order language LAlgLat := {t,u} (see Example
2) where the following closed formulas are defined:

∀xx t x = x, (L1)

∀x∀y x t y = y t x, (L3)

∀x∀y∀z x t (y t z) = (x t y) t z, (L5)

∀x∀y x t (x u y) = x, (L7)

∀xx u x = x, (L2)

∀x∀y x u y = y u x, (L4)

∀x∀y∀z x u (y u z) = (x u y) u z, (L6)

∀x∀y x u (x t y) = x. (L8)

L1, L3 and L5 respectively express idempotency, commutativity and associativity for
t, as dually do L2, L4 and L6 for u. These properties are satisfied by and charac-
teristic of joins/meets in semi-lattices (Grätzer, 2003). L7 and L8 relate both symbols
and are commonly called the absorption laws. We thus define the LAlgLattheory of (al-
gebraic) semi-lattices as ASL := {L1,L3,L5}, and the theory of (algebraic) lattices as
AL = {L1, . . . ,L8}. An important notion that we need to syntactically reflect for graphoids
is that of pairwise disjointness. Define in LAlgLat ∪ {0}, where 0 is a constant symbol, the
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formulas:

∀xx u 0 = 0. (L19)

∀x∀y∀z x t (y u z) = (x t y) u (x t z), (L10)

L19 enforces 0 to be a minimal element, while L10 expresses the distributivity of t and
u. Finite distributive lattices have been shown to be in bijection with finite lattice ordered
sets (see Section 4), a result that is known as Birkhoff’s representation theorem (Grätzer,
2003); we will define for convenience the theory MDL := AL ∪ {L19,L10}.
Example 4. Let V be finite and consider P := 〈2V ,tP ,uP , 0P〉, with tP(A,B) = A ∪ B
and uP(A,B) = A ∩ B. Then P |= AL. By the syntactic duality between t and u, we
could have reversed the semantics, and defined a distinct LAlgLat-structure P ′, with the
same universe 2V , and such that tP ′

(A,B) = A ∩B and uP ′
(A,B) = A ∩B, which is also

a model for AL. In the former interpretation, if 0P = ∅, then P |= MDL; while in the latter
interpretation, this happens only if 0P

′
= V .

Consider the extended language LAlgGraph := LAlgLat ∪ {I, 0}, where 0 is a constant
symbol and I is a 3-ary relation, and abbreviate ∧i,j∈{1,...,n},i 6=jxi u xj = 0 (pairwise dis-
jointness) in LAlgGraph as dis(x1, . . . , xn). The graphoid axioms (Definition 11) are thus
expressed as:

∀x∀z dis(x, z)→ I(x, 0, z), (G1)

∀x∀y∀z dis(x, y, z) ∧ I(x, y, z)→ I(y, x, z), (G2)

∀x∀y∀z∀w dis(x, y, z) ∧ dis(x, z, w) ∧ I(x, y t w, z)→ I(x, z, w), (G3)

∀x∀y∀z∀w dis(x, y, z) ∧ dis(x, z, w) ∧ I(x, y t w, z)→ I(x, y, z t w), (G4)

∀x∀y∀z∀w dis(x, y, z, w) ∧ I(x, z, w) ∧ I(x, y, z t w)→ I(x, y t w, z), (G5)

∀x∀y∀z∀w dis(x, y, z, w) ∧ I(x, y, z t w) ∧ I(x,w, y t z)→ I(x, y t w, z). (G6)

Mathematical structures complying with graphoid axioms are represented by models for the
LAlgLat-theories ASG := MDL ∪ {G1, . . . ,G5} (semi-graphoids) and AG := ASG ∪ {G6}.

6. LIrr: unifying first-order languages and theories

Let LIrr := {t,u,≤, I} = LOrd ∪ LAlgLat ∪ {I}. This language combines the symbols for
both the algebraic and order-theoretic characterization of underlying lattices in separoids
and graphoids. In fact, a correspondence can be established between models for ASL and
JL/ML, as well as between AL and OL, that gives raise to an equivalence of the respective
expansions in the language LOrd ∪LAlgLat (see Appendix A). This equivalence allows us to
find expansions, into LIrr, of models for OSS/OS that satisfy the analogous formulas

∀x∀y I(x, y, x), (S1)

∀x∀y∀z I(x, y, z)→ I(y, x, z), (S2)

∀x∀y∀z∀ww ≤ y ∧ I(x, y, z)→ I(x, z, w), (S3)

∀x∀y∀z∀ww ≤ y ∧ I(x, y, z)→ I(x, y, z t w), (S4)

∀x∀y∀z∀w I(x, z, w) ∧ I(x, y, z t w)→ I(x, y t w, z), (S5)

∀x∀y∀z∀w z ≤ y ∧ w ≤ y ∧ I(x, y, z) ∧ I(x, y, w)→ I(x, y, z u w), (S6)
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resorting to Corollary 1 in Appendix A. Furthermore, this process can be inverted to express
separoid properties using symbols exclusively in LAlgLat ∪ {I}, as

∀x∀y I(x, y, x), (AS1)

∀x∀y∀z I(x, y, z)→ I(y, x, z), (AS2)

∀x∀y∀z∀w y t w = y ∧ I(x, y, z)→ I(x, z, w), (AS3)

∀x∀y∀z∀w y t w = y ∧ I(x, y, z)→ I(x, y, z t w), (AS4)

∀x∀y∀z∀w I(x, z, w) ∧ I(x, y, z t w)→ I(x, y t w, z), (AS5)

∀x∀y∀z∀w y t w = y ∧ y t z = y ∧ I(x, y, z) ∧ I(x, y, w)→ I(x, y, z u w). (AS6)

Again, in this case if we let ASS := ASL ∪ {AS1, . . . ,AS5} and algebraic separoids AS :=
AL∪ {AS1, . . . ,AS6}, we can find a expansion for each model of ASS (AS) into LIrr that
satisfies S1, . . . ,S6. We will call the unifying LIrr-theories SS := JL ∪ASL ∪ {S1, . . . ,S5}
and S := OL ∪AL ∪ {S1, . . . ,S6}, the I and separoid theories, respectively.

There is a huge resemblance between AS2, . . . ,AS5 and G2, . . . , G5: AS2 and G2
are identical, and if we directly substitute the formula x t y = y, we obtain

I(x, y t w, z)→ I(x, z, w),

I(x, y t w, z)→ I(x, y, z t w),

I(x, z, w) ∧ I(x, y, z t w)→ I(x, y t w, z),

which are the same as G3, . . ., G5 omitting the disjointness sub-formulas and universal
quantifiers. However, the formula x t y = y cannot be omitted, since without it there is
no correspondence with the statement x ≤ y when considering the transformation into the
equivalent partial order (Corollary 3 in Appendix A).

A diagram relating this hierarchy of separoid formal characterizations is depicted in
Figure 3.

Separoid (S)

Semi-
separoid (SS)

Algebraic
separoid (AS)

Ordered sep-
aroid (OS)

Algebraic semi-
separoid (ASS)

Ordered semi-
separoid (OSS)

Algebraic
lattice (AL)

Ordered lat-
tice (OL)

Algebraic semi-
lattice (ASL)

Join semi-
lattice (JL)

Meet semi-
lattice (ML)

Figure 3: Hierarchy of theories related to separoids (highlighted in gray).

Similarly, formulas G1, . . . ,G6 can be reformulated in LOrd and LIrr by exploiting the
outlined correspondences among lattices and an extension of the results in Appendix A to
Birkhoff’s representation theorem, obtaining the respective hierarchy of theories (Figure 4).

Comparing both Figures 3 and 4, we see directly that the stronger notion of separoid
comes from strengthening the underlying lattice structure in a semi-separoid (from JL to
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Graphoid (G)

Semi-
graphoid (SG)

Algebraic
graphoid (AG)

Ordered
graphoid (OG)

Algebraic semi-
graphoid (ASG)

Ordered semi-
graphoid (OSG)

Distributive lat-
tice with minimal
element (MDL)

Algebraic
lattice (AL)

Finite ordered
lattice (FOL)

Ordered lat-
tice (OL)

Algebraic semi-
lattice (ASL)

Meet semi-
lattice (ML)

Join semi-
lattice (JL)

Figure 4: Hierarchy of theories related to graphoids (highlighted in gray).

OL); whereas in the case of graphoids, the underlying lattice structure is always MDL, and
the strengthening comes axiomatically from G6.

7. Conclusions and future work

We have translated graphoids and separoids into the nomenclature of model theory. Our
main objective has been to provide a common conceptual framework under which both
structures can be studied and analysed. Separoids and graphoids both appear in contexts
where some kind of ‘irrelevance’ is being treated, and as such we have shown how an
underlying axiomatic set-up exists for such models. In addition, we have pointed out the
main similarities and differences between them from a purely syntactic point of view.

When considering graphoids as algebraic structures (corresponding in our context to the
LIrr-theory SG), Dawid (2001) defined, under some assumptions, the following algebraic
correspondence between separoids and graphoids: (x, y, z) ∈ I if and only if x u y ≤ z
and (x \ z, y \ z, z) ∈ I. This could be used to define a correspondence between models
for graphoids and models for separoids in an analogous way to Propositions 2 and 3 in
Appendix A. The independence logic that is currently being developed in model theory
(Hannula et al., 2016) is closer to separoids than graphoids, and has been applied mainly
to database modelling. Thus, another future direction of research is to further connect
these new findings with graphoid applications, instead of separoids. This would provide a
bridge between both research communities to advance towards a universal axiomatization
of ‘irrelevance’, which has been and continues to be the core of probabilistic graphical
modelling.
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Appendix A. Correspondence between models for ASL and JL, ML

The following results are based on well known facts from lattice theory (Grätzer, 2003). We
will need an additional concept from model theory: L′-expansions of L-structures, when
L ⊆ L′.

Definition 12. Let L and L′ be first-order languages with L ⊆ L′. If A is a L-structure
and A′ is a L′-structure, A′ is said to be a L′-expansion of A when, for all s ∈ L, sA and
sA

′
coincide.

Proposition 1. Let A |= JL with universe A and a, b ∈ A. The element c ∈ A such that
A |= sup(a, b, c) is unique. Furthermore, for all a, b, c ∈ A, A |= sup(a, b, c) if and only if
A |= sup(b, a, c). These results hold analogously for A′ |= ML and inf(x, y, z).

Proof. The existence is guaranteed by the fact that A |= JL and O4 ∈ JL. This implies
that A |= O4, which by definition of satisfiability leads to the existence, for all a, b ∈ A,
of an element c ∈ A such that A |= sup(a, b, c). Assume that c is not unique and denote
as c̃ another element in A such that c 6= c̃ and A |= sup(a, b, c̃). From A |= sup(a, b, c)
we get x≤Ac, y≤Ac and for all k ∈ A, if x≤Ak and y≤Ak, then c≤Ak; analogously, from
A |= sup(a, b, c̃) we get x≤Ac̃, y≤Ac̃ and for all k ∈ A, if x≤Ak and y≤Ak, then c̃≤Ak.
Thus, taking k as c̃ and c, we have that c̃≤Ac and c≤Ac̃, respectively. However, since
O3 ∈ JL, we get that c = c̃, which is a contradiction. Finally, the symmetry in O4 directly
gives A |= sup(a, b, c) if and only if A |= sup(b, a, c).

The proof regarding theory ML and inf(x, y, z) is analogous.

Proposition 2. Let A |= JL with universe A. Define B as the LAlgLat-structure with
the same universe, A, and such that, for a, b ∈ A, tB(a, b) = c where c is such that
A |= sup(a, b, c). Then, B is a model for ASL. If A |= ML and the interpretation of t
is defined in terms of the element satisfying inf(x, y, z) instead of sup(x, y, z), then B is a
model for ASL.

Proof. Since A and B share the universe, =A coincides with =B, thus we will omit the
superscript throughout the proof. Note that Proposition 1 directly gives us that the function
tB is well defined. Recall that B is a model for ASL if B |= F for all F ∈ ASL. B |= L1 if for
all a ∈ A we have tB(a, a) = a. From the definition of tB, we have that A |= sup(a, a, c) for
some unique c ∈ A, thus, it is enough to show that A |= sup(a, a, a). Using the definition of
satisfiability, we arrive at it by observing that a≤Aa, since A |= O1. Satisfiability of L3 is
directly obtained from Proposition 1, which gives that, for all a, b ∈ A, tB(a, b) = tB(b, a).
Finally, L5 is interpreted as tB(a, e) = tB(d, c), where d = tB(a, b) and e = tB(b, c). Let
f = tB(d, c) and g = tB(a, e). It is enough to see thatA |= sup(a, e, f) andA |= sup(d, b, g).
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As an example, a≤Af follows from a≤Ad (A |= sup(a, b, d)), d≤Af (A |= sup(d, c, f)) and
L3, interpreted accordingly; e≤Af , d≤Ag and b≤Ag follow analogously. Assume now a
k ∈ A such that a≤Ak and e≤Ak; we want to arrive at f≤Ak, since we would have proved
A |= sup(a, e, f). Since A |= sup(b, c, e) and A |= O2, we have b≤Ak and c≤Ak. From the
former, a≤Ak and A |= sup(a, b, d), we get d≤Ak; this, combined with the latter and the
fact that A |= sup(d, c, f), finally leads to f≤Ak. The proof for A |= sup(d, b, g) proceeds
in an analogous way.

When A |= ML and, for a, b ∈ A, tB(a, b) = c with c such that A |= inf(a, b, c), the
proof is analogous.

Proposition 3. Let B |= ASL with universe A. Define A as the LOrd-structure with the
same universe, A, and such that the interpretation of ≤A is the set {(a, b) ∈ A2 : B |=
atBb = b}. Then, A is a model for JL. If the interpretation of ≤ is instead characterized
by atBb = a, then A is a model for ML.

Proof. Since A and B share the universe, =A coincides with =B, and such we will omit the
superscript throughout the proof. Recall that A |= JL if A |= F for all F ∈ JL. A |= O1
if (a, a) ∈ ≤A for all a ∈ A. From the definition of ≤A, this is equivalent to proving that
B |= atBa = a, which we have from the fact that B |= ASL and L1 ∈ ASL. For O2 we need
to show that if (a, b) ∈ ≤A and (b, c) ∈ ≤A, then (a, c) ∈ ≤A, which is again equivalent to
showing that if B |= atBb = b and B |= btBc = c, then B |= atBc = c. This is obtained from
B |= L5 as atBc = atB(btBc) = (atBb)tBc = btBc = c. Similarly, for O3 we have to show
that if B |= atBb = b and B |= btBa = a, then a = b; this is directly obtained from B |= L3,
since it gives a = btBa = atBb = b. Finally, for O4, we need to find, for all a, b ∈ A,
an element c ∈ A such that B |= atBc = c, B |= btBc = c, and if B |= atBk = k and
B |= btBk = k, then B |= ctBk, for all k ∈ A. Let c = atBb. Using B |= L1, . . . ,B |= L5,
we can operate btB(atBb = btB(btBa)) = (btBb)tBa = btBa = atBb = c, thus getting
B |= btBc = c. We obtain B |= atBc = c similarly. Now, assume that B |= atBk = k
and B |= btBk = k; then ctBk = (atBb)tBk = atB(btBk) = atBk = k, thus we have
B |= ctBk = k, as we wanted to prove.

When ≤A = {(a, b) ∈ A2 : B |= atBb = a}, A is shown to be a model for ML in an
analogous way.

Corollary 1. Let A |= JL with universe A, and let B be the LIrr-expansion of A such
that tB is defined as in Proposition 2. Then, B is a model for the LIrr-theory JL ∪ ASL.
Conversely, if B |= ASL with universe A, and A is the LIrr-expansion of B with ≤A defined
as in Proposition 3, then A is a model for the LIrr-theory JL ∪ ASL. These results hold
analogously for the theory ML.

Corollary 2. Let A |= JL ∪ ASL with universe A. Then for all a, b ∈ A, tA(a, b) = c is
the unique element in A satisfying A |= sup(a, b, c). Conversely, if A |= ML ∪ ASL, then
uA(a, b) = c is the unique element satisfying A |= inf(a, b, c).

Corollary 3. The following bijective equivalences hold, via the mappings from Corollaries 1
and 2: Mod(JL)∪Mod(ML) ≡ Mod(ASL), Mod(JL∪ASL) ≡ Mod(JL), Mod(ML∪ASL) ≡
Mod(ML) and Mod(OL) ≡ Mod(AL).
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