Impact of physical activity and cardiovascular fitness on total homocysteine concentrations in European adolescents: The HELENA study

Article in Journal of Nutritional Science and Vitaminology · January 2015
Impact Factor: 0.83

223 authors, including:

Juan Mielgo-Ayuso
Universidad Politécnica de Madrid
49 PUBLICATIONS 46 CITATIONS
SEE PROFILE

Maria Plada
42 PUBLICATIONS 738 CITATIONS
SEE PROFILE

Donatella Ciarapica
Council for Agricultural Research and Agric…
33 PUBLICATIONS 492 CITATIONS
SEE PROFILE

George Moschonis
Harokopion University of Athens
140 PUBLICATIONS 1,404 CITATIONS
SEE PROFILE

Available from: Juan Mielgo-Ayuso
Retrieved on: 30 May 2016
Homocysteine (tHcy) is a sulfur-containing amino acid derived from dietary methionine; its levels are normally maintained within a narrow range by the activity of remethylation and transsulfuration (1). Elevated fasting plasma tHcy concentrations are considered a biomarker of increased oxidative stress, which is associated with an increased risk for endothelial damage and inflammatory vascular processes (2, 3). Moreover, tHcy has been suggested to be a continuous independent and modifiable risk factor for several multi-system diseases including cardiovascular diseases (4) and stroke (5); dementia and Alzheimer’s disease (6); and osteoporotic fracture (7).
Individual tHcy concentrations depend on non-communicable factors such as age and gender, showing higher levels in males than females and in older than in younger populations (8, 9). In addition, the common C677T polymorphism of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene, which regulates folate metabolism involved in folate-dependent remethylation of Hcy, has been established as an important genetic determinant of elevated Hcy (10, 11).

Lifestyle factors such as excessive alcohol intake, smoking, extenuating physical activity, and hyper-energetic nutrition resulting in obesity as well as folate and vitamin B12 deficiencies, can increase tHcy above adequate concentrations (12–14).

Although it is well established that physical activity (PA) is a key component of good health and disease prevention both in adults (15) and in children and adolescents (16, 17), there have been contradictory reports regarding its effects on plasma Hcy, without the type of exercise or intensity to cause changes in tHcy being well defined (18, 19). However, PA of moderate and high intensities (>75 min per week) could increase tHcy concentrations due to elevated vitamin requirements (20). These divergences could be due to the different techniques used for evaluation of PA, including self-reported questionnaires, the lack of consideration of intensity or duration of PA, limited statistical power with small sample size, and no adjustment for the potential confounders (4).

Studies examining the possible interplay among PA, cardiovascular fitness (CVF) and fatness with tHcy concentrations in childhood and adolescence are not clear. In a small sample of Spanish adolescents from the AENA study (Alimentación y Valoración del Estado Nutricional de los Adolescentes) an inverse association between tHcy and CVF was observed in females (21). In contrast, results from the Swedish part of the European Youth Heart Study (EYHS) did not support these previous findings (22). Thus, the purpose of this study was to examine the association of tHcy concentrations with objectively assessed PA, CVF and fatness after controlling for potential confounders in a large sample of European adolescents.

PARTICIPANTS AND METHODS

Participants, recruitment and study design. The HELENA-CSS study (HEalthy Lifestyle in Europe by Nutrition in Adolescence) was a multi-centre cross-sectional study aiming to obtain reliable and comparable data from a random sample of 3,528 European adolescents of 10 different cities aged between 12.5 and 17.5 y on a broad battery of nutrition and health-related parameters (23, 24). Selection of cities was based on two criteria: regional distribution and presence of an active research group assuring sufficient expertise and resources to successfully perform epidemiological studies. Within the study, Stockholm (Sweden) represented Northern Europe, Athens and Heraklion (Greece), Rome (Italy) and Zaragoza (Spain) Southern Europe, Pécs (Hungary) Eastern Europe, Gent (Belgium) and Lille (France) Western Europe, and Dortmund (Germany) and Vienna (Austria) Central Europe. Reliable and objective data concerning age and gender were obtained by analysing complete school classes. On the city level, diversity of the sample with respect to cultural and socioeconomic aspects was achieved by performing a random proportional distribution of all schools taking into account the site of the school (district/zone of the city) and the type of school (public or private). One partner (Gent) centrally performed for all study centres the school and class random selection procedure, including the subset of classes for blood sampling. In case a selected school refused its participation, a school with comparable characteristics from a list of substitutes was chosen. The sample size of 3,528 adolescents was estimated using body mass index (BMI; confidence level of 95%, and a±0.3 error). One-third of the classes was randomly selected for blood collection, resulting in a total of 1,089 (53% females) blood samples for the subsequent clinical biochemistry assays. Sixty-three per cent of the total sample (n=3,528) had valid data on cardiorespiratory fitness and physical activity, resulting in a final sample of 2,213 adolescents (53.8% females), for whom blood analyses were available for 713 (55.3% females).

Exclusion criteria were limited to subjects who were not able to speak the local language, subjects participating simultaneously in another clinical trial, subjects aged <12.5 or >17.5 y and subjects having suffered from acute infection 1 wk before the visit. Exclusions from the study were done a posteriori, without the knowledge of the affected subjects, in order to avoid non-desired situations. All protocols and informed consents for this study were reviewed and approved by an Ethics Review Committee in each country according to the Declaration of Helsinki 1964 (revision of Edinburgh 2000), Convention of Oviedo (1997), the Good Clinical Practice, and the legislation about clinical research in humans in each of the participating countries. Informed written consent was obtained from subjects and parents or guardians. A complete description of ethical issues and good clinical practice within the HELENA-CSS is provided elsewhere (25).

Prior to the start of the HELENA-CSS all methods were tested in a pilot study to assure an optimal sampling procedure and to optimise transport logistics and analytics.

Medical examination and blood sampling. Prior to the study day, participants were asked to abstain from eating and drinking after 8 p.m. On the study day, a medical doctor visited the school classes and asked all participants for medical history and acute diseases. A blood sampling questionnaire was used to assess fasting status, acute infections, allergies, smoking, vitamin and mineral supplements, and medication. Maturity was assessed by means of Tanner stage (26). Medical data and all information were recorded in a case report form for each participant.

Blood sampling generally took place between 8 and 10 a.m. Approximately 30 mL of blood was collected from an antecubital vein in serum and heparin monovettes®
Sample pre-treatment and transport. The blood sampling procedure within the HELENA-CSS was described in detail by Gonzalez-Gross et al. (27). Briefly, serum gel tubes were centrifuged at 3,500 revolutions per minute (rpm) for 10 min within 1 h after blood drawing for measuring creatinine. For the measurement of folate, cobalamin, and tHcy heparin gel tubes were immediately placed on ice and centrifuged at 3,500 rpm for 10 min within 30 min after blood drawing. Within 24 h the supernatant of heparin was transported at a stable temperature of 4–7°C while serum was transported at room temperature to the central laboratory in Bonn. All samples were stored at −80°C until withdrawn for bunched analyses.

Biochemical and genetic analyses. The biochemical analyses of folate, cobalamin, and tHcy were done with the use of Immulite 2000 (DPC Biemann GmbH, Bad Nauheim, Germany). The intra- and interassay coefficients of variation were 5.4% and 8.1% for folate, 5.0% and 12.7% for cobalamin, and 7.1% and 10.7% for tHcy. Creatinine was measured on the Dimension RxL clinical chemistry system (Dade Behring, Schwalbach, Germany) with enzymatic methods using the manufacturer's reagents and instructions. The intraassay coefficient of variation of the creatinine assay was 3.4%, while the interassay coefficient was 5.8%. The DNA was extracted from white blood cells with the Puregene kit (QIAGEN, Courtaboeuf, France). The SNP MTHFR 677C/T was genotyped by Illumina (Eindhoven, Netherlands) with enzymatic methods using the manufacturer's reagents and instructions. The interassay coefficient of variation of the creatinine assay was 3.4%, while the interassay coefficient was 5.8%. The DNA was extracted from white blood cells with the Puregene kit (QIAGEN, Courtaboeuf, France). The SNP MTHFR 677C/T was genotyped by Illumina (Eindhoven, Netherlands) with enzymatic methods using the manufacturer's reagents and instructions. The intraassay coefficient of variation of the creatinine assay was 3.4%, while the interassay coefficient was 5.8%. The DNA was extracted from white blood cells with the Puregene kit (QIAGEN, Courtaboeuf, France). The SNP MTHFR 677C/T was genotyped by Illumina (Eindhoven, Netherlands) with enzymatic methods using the manufacturer's reagents and instructions. The intraassay coefficient of variation of the creatinine assay was 3.4%, while the interassay coefficient was 5.8%.

Physical activity. A uni-axial accelerometer (ActiGraph™ GT1M, Pensacola, FL) was used to assess PA. Adolescents were instructed to place the monitor underneath the clothing, at their lower back, using an elastic waist band and to wear it for 7 consecutive days. They were also instructed to wear the accelerometer at all times except during water-based activities and periods of sleep. At least 3 d of recording with a minimum of 8 h registration per day was set as an inclusion criterion; the time-sampling interval (epoch) was 15 s. A measure of total volume of activity was expressed as the sum of recorded counts per epoch divided by the total daily registered time in minutes. The time engaged in moderate PA and vigorous PA was calculated and presented as the average time per day during the entire recording. The time engaged at moderate PA [3–6 metabolic equivalents (METs)] was calculated based upon a blanket cut-off of 2,000 counts per minute (cpm) — approximately equivalent to the intensity of a brisk walk (4.5 km/h). Periods of vigorous PA (>6 METs) were based upon a blanket cut-off of 4,000 cpm. In addition, the time spent in at least moderate intensity level activity (>3 METs) was calculated as the total time spent in moderate and vigorous physical activity (MVPA, min/d). Each minute spent above the specific cut-off was summarised in the corresponding intensity level group.

Cardiovascular fitness. CVF was assessed by the 20-m shuttle run test. Adolescents were instructed to run in a straight line and to pace themselves according to the audio signals emitted from a pre-recorded cassette tape. The initial speed was 8.5 km/h, which was increased by 0.5 km/h per minute (1 min equal to one stage). The tape used was calibrated over 1 min. The test was finished when the participant either failed to reach the end lines concurrent with the audio signals on two consecutive occasions or stopped because of fatigue. CVF was recorded as the number of stages completed (precision of 0.5 steps). In addition, to facilitate comparison with previous studies maximal oxygen consumption (VO2max, mL O2/kg/min) was estimated using the Léger equation (28).

Body composition measurements. The anthropometric methods used within the HELENA-CSS were described by Nagy et al. (29). Briefly, body weight was measured in kg using a standard beam balance (Type SECA 861, UK, precision 100 g, range 0–150 kg). Height was measured in cm using a precision stadiometer (Type SECA 225, precision 0.2 cm, range 70–200 cm). Body mass index was calculated with the equation weight in kg divided by height in m squared (kg/m2). Skinfold thickness (triceps, biceps, subscapular, suprailliac, thigh, and calf) was repeatedly measured on the left side of the body using a Holtain caliper (Crymych, UK, range 0–40 mm) and the mean calculated. Only adolescents providing data for the sum of six skinfolds (hereafter referred to as ‘skinfold thickness’) were included for the analyses. Percent body fat was calculated with the use of the following equation reported by Slaughter et al.: fat (%) = 0.61 × (triceps skinfold in mm + calf skinfold in mm) + 5.1 for females and fat (%) = 0.735 × (triceps skinfold in mm + calf skinfold in mm) + 1 for males (30).

Evaluation and statistics analysis. Regarding the point mutation in the MTHFR gene at nucleotide position 677, adolescents were identified as carriers of the homozygous for the wild-type allele (CC), heterozygous (CT), and homozygous for the variant allele genotype. Further, adolescents were classified into supplement users and non-supplement users (questionnaires). Smoking behaviour was categorised into daily smoking, smoking at least once a week but not every day, smoking less than once a week, and non-smokers. The number of cigarettes per day was not considered.

All data analyses were performed by using the Statistical Package for Social Sciences (SPSS) version 19.0 for Windows (SPSS Inc., Chicago, IL). A weighting factor was introduced in order to adjust the theoretical sampling to the observed sample in function of age and gender. Descriptive statistics are shown as mean ± standard deviation (SD) unless otherwise stated. p-values < 0.05 were considered as statistically significant. Blood tHcy, folate, and cobalamin concentrations, levels of CVF (stages and VO2max), and BMI were normalised by natural logarithm transformation. To test gender-specific differences as well as subgroups with MVPA < 60 min/d
and ≥60 min/d, Student’s t-test was used for metric variables and the X^2-test for categorical variables. A bivariate correlation analysis was performed to examine the associations among tHcy and PA (cpm and MVP A), CVF (stages and VO$_2$max), and fatness (BMI, skinfold thickness, and body fat percentage) by gender. Separate multiple regressions were performed by gender to study the relation among tHcy and PA, fitness and fatness after controlling for potential confounders: age, maturity, folate, cobalamin, creatinine, smoking, supplement use, and MTHFR 677C/T polymorphism.

RESULTS

Table 1 reveals the gender-specific characteristics of the study population ($n=713$). Compared with females ($n=394$; 55.3%), males presented significantly higher tHcy and lower cobalamin concentrations (tHcy: males: 7.6±4.1 vs females: 6.8±2.4 μmol/L and cobalamin: males: 336.6±130.2 vs females: 360.0±149.5 pmol/L, t-test, $p<0.001$), but folate concentrations were similar between genders (18.9±9.7 nmol/L). In our sample, 40.1% of males and 42.1% of females were CC, 42.5% of males and 40.6% of females were CT, and 17.4% of males and 17.3% of females were TT. Eleven percent of the adolescents smoked every day, 4% at least once a week, 5% less than once a week; 80% did not smoke. A vitamin and/or mineral supplement was taken by 11% of the adolescents. Smoking behaviour and supplement use did not vary between genders.

Table 2 presents bivariate Pearson correlations among tHcy concentrations and independent variables by gender. In females, CVF variables (stages: $r=0.118$ and VO$_2$max: $r=-0.102$) were negatively and BMI ($r=0.100$) was positively associated ($p<0.05$) with tHcy. Table 3 shows the gender-specific relationship among tHcy and PA, fitness and fatness after controlling for age, maturity, folate, cobalamin, and creatinine concentrations, smoking, supplement use, and MTHFR 677C/T polymorphism. In females, tHcy was positively

Table 1. Gender-specific characteristics of the HELENA participants.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Male ($n=319$)</th>
<th>Female ($n=394$)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in y (n)</td>
<td>14.8±1.2</td>
<td>14.8±1.1</td>
<td>0.657*</td>
</tr>
<tr>
<td>Maturity in stages%</td>
<td></td>
<td></td>
<td>0.008*</td>
</tr>
<tr>
<td>I/II/III/IV/V</td>
<td>1.4/7.3/19.9/37.6/33.8</td>
<td>0/4.3/22.0/42.5/31.2</td>
<td></td>
</tr>
<tr>
<td>Body mass index in kg/m2</td>
<td>20.7±3.3</td>
<td>21.3±3.4</td>
<td>0.060*</td>
</tr>
<tr>
<td>Skinfold thickness in mm</td>
<td>75.7±39.0</td>
<td>103.2±35.9</td>
<td><0.001*</td>
</tr>
<tr>
<td>Body fat in%</td>
<td>18.4±9.6</td>
<td>26.1±7.0</td>
<td><0.001*</td>
</tr>
<tr>
<td>MTHFR 677C/T in%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC/CT/TT</td>
<td>40.1/42.5/17.4</td>
<td>42.1/40.6/17.3</td>
<td>0.596/0.545/0.798*</td>
</tr>
<tr>
<td>THeC in μmol/L</td>
<td>7.6±4.1</td>
<td>6.8±2.4</td>
<td>0.005*</td>
</tr>
<tr>
<td>Cobalamin in pmol/L</td>
<td>336.6±130.2</td>
<td>360.0±149.5</td>
<td><0.001*</td>
</tr>
<tr>
<td>Folate in nmol/L</td>
<td>18.9±9.7</td>
<td>18.9±9.7</td>
<td>0.777</td>
</tr>
<tr>
<td>Physical activity in counts per minute</td>
<td>502.8±168.4</td>
<td>387.0±122.7</td>
<td>0.049*</td>
</tr>
<tr>
<td>Moderate and vigorous physical activity in min/d</td>
<td>69.1±25.0</td>
<td>51.4±20.4</td>
<td><0.001*</td>
</tr>
<tr>
<td>Cardiovascular fitness in stages</td>
<td>7.0±2.6</td>
<td>3.5±1.9</td>
<td><0.001*</td>
</tr>
<tr>
<td>Cardiovascular fitness in mL O$_2$/kg/min</td>
<td>52.5±8.0</td>
<td>36.7±5.7</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Parameters are shown as mean±SD.
* Student’s t-test.
X^2-test.
MTHFR: methylenetetrahydrofolate reductase, CC: homozygous for the wild-type allele, CT: heterozygous, TT: homozygous for the variant-type allele.
associated with PA expressed in MVPA ($p<0.05$).

Table 4 summarizes results of available studies examining the association of physical activity, cardiovascular fitness, and fatness with homocysteine after controlling for age, maturity, folate, cobalamin, and creatinine concentrations, smoking, supplement use, and MTHFR 677C/T polymorphism.

DISCUSSION

Despite the numerous scientific studies performed in recent years in relation to tHcy and its association with various health indicator outcomes such as PA and CVF, comparable data in the general European adolescent population are scarce. To the best of the authors’ knowledge, this is the first study aiming to examine these associations in a large number of individuals of ten different European cities.

The main finding in this study is that after controlling for several potential confounders well established in the literature (age, maturity, folate, cobalamin, creatinine, smoking, supplement use and MTHFR 677C/T genotype) ($p<0.05$), an independent association of physical activity with cardiovascular fitness, and fatness with homocysteine was observed ($p<0.05$, Table 3), but not in males. As our results showed significant tHcy differences by gender, data were analysed separately. A significant positive association between tHcy concentrations and MVPA was found in female adolescents ($p<0.05$, Table 3), but not in males. These data suggest that tHcy levels could be higher in very active female adolescents.

Fitness is an important marker for several health outcomes in young people like obesity, cardiovascular risk, and skeletal and psychological health (33). CVF is defined as the ability of active skeletal muscle to utilise oxygen during exercise. Changes in tissues and systemic vasculature may deteriorate the physiological capacity and subsequently may also negatively affect CVF. To some extent, elevated tHcy concentrations may contribute to these pathological changes by the generation of reactive oxygen species and impairment of nitric oxide production and bioavailability (3). Regarding adolescents, in previous studies, CVF was significantly and inversely associated with tHcy concentrations in Spanish female adolescents from the AVENA Study ($n=80$ females, aged 14.6 ± 1.4 y) (21). Similar results were obtained in our study with a larger sample of European female adolescents ($n=394$), confirming that CVF is a way of not stimulating tHcy metabolism in female adolescents. In contrast, results from the EYHS did not indicate a significant association between tHcy and fitness in children or adolescents (22). The difference between results from the AVENA as well as our study and the Swedish part of the EYHS might be due to the smaller sample size located only in one country. Additionally, it must be considered that healthy children and adolescents usually do not show cardiovascular pathologies.

To encourage an active lifestyle, the World Health Organisation and other international and national public health organisations propose that school-aged children should perform at least 60 min of moderate to vigorous intensity PA each day to ensure a healthy development (16, 34). Male adolescents participating in the HELENA-CSS achieved these recommendations with

| Table 3. Standardised multiple regression coefficients (β, standard error (SE), and semipartial correlation (sr) examining the association of physical activity, cardiovascular fitness, and fatness with homocysteine after controlling for age, maturity, folate, cobalamin, and creatinine concentrations, smoking, supplement use, and MTHFR 677C/T polymorphism. |
|---------------------------------|-----------------|---------|---------|---------|-----------------|-----------------|---------|---------|---------|
| | Males ($n=319$) | | | | Females ($n=394$) | | | | |
| | β | SE | sr | p-value | β | SE | sr | p-value |
| Physical activity in counts per minute | -0.002 | 0.002 | -0.063 | 0.343 | -0.029 | 0.002 | -1.01 | 0.124 |
| Moderate and vigorous physical activity | -0.010 | 0.011 | -0.062 | 0.354 | 0.795 | 0.401 | 0.131 | 0.049 |
| Cardiovascular fitness in stages | 0.015 | 0.008 | 0.128 | 0.051 | -0.278 | 0.345 | -0.053 | 0.222 |
| Cardiovascular fitness in mL O$_2$/kg/min | -0.246 | 0.149 | -0.019 | 0.100 | 0.096 | 0.107 | 0.059 | 0.370 |
| Body mass index in kg/m2 | -0.042 | 0.181 | 0.139 | 0.818 | -0.062 | 0.074 | -0.055 | 0.405 |
| Skinfold thickness in mm | -0.042 | 0.000 | -0.055 | 0.585 | -0.012 | 0.000 | -0.011 | 0.864 |
| Body fat in% | -0.043 | 0.052 | -0.037 | 0.411 | 0.076 | 0.037 | 0.136 | 0.245 |
69.1 ± 25.0 min/d of MVPA whereas females did not accomplish it (51.4 ± 20.4 min/d of MVPA). tHcy concentrations did not vary between groups achieving or not achieving these recommendations, neither in males nor in females.

Regarding body composition, associations between BMI and tHcy concentrations have been frequently investigated in adolescents as presented in Table 4. Ogsganian et al. (35) found a positive association between tHcy concentrations and BMI in 3,524 adolescents aged 13–14 y, but after adjustment for potential confounders, particularly blood vitamin concentrations, which

<table>
<thead>
<tr>
<th>Author et al.</th>
<th>Methods</th>
<th>Factor</th>
<th>Results (tHcy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Laet et al. 1999</td>
<td>n=647, 5–19 y, Belgium, GM±SD</td>
<td>BMI</td>
<td>n.s.</td>
</tr>
<tr>
<td>Gallistl et al. 2001</td>
<td>3-wk weight loss intervention, 37 obese females and 19 obese males, 11.9 ± 1.7 y, UK</td>
<td>LBM</td>
<td>+, baseline LBM, p=0.002</td>
</tr>
<tr>
<td>Bates et al. 2002</td>
<td>NDNS, n=1,193, 4–18 y, UK</td>
<td>BMI</td>
<td>n.s.</td>
</tr>
<tr>
<td>Shen et al. 2002</td>
<td>Taipei Children Heart Study, n=1,235, 12–15 y, Taiwan, mean±SD</td>
<td>BMI</td>
<td>M: sign. corr.</td>
</tr>
<tr>
<td>Rendeve et al. 2002</td>
<td>intervention, 21 overweight women with polycystic ovary syndrome, 29.7 ± 6.8 y, brisk walking 3 × per week over 6 mo</td>
<td>PA</td>
<td>baseline: 10.06 ± 3.22 vs after exercise: 7.36 ± 1.96 μmol/L, p<0.001</td>
</tr>
<tr>
<td>Kuo et al. 2005</td>
<td>NHANES, n=1,444, 20–49 y, μ; multiple logistic regressions, adjustments include folate and vitamin B12 concentrations</td>
<td>CVF</td>
<td>as continuous variable (p=0.003), as quartiles (p<0.001) as odds ratios (p<0.001)</td>
</tr>
<tr>
<td>Brasileiro et al. 2005</td>
<td>case control study, n=239, 5–19 y, Brazil</td>
<td>BMI</td>
<td>n.s.</td>
</tr>
<tr>
<td>Mora et al. 2006</td>
<td>Women’s Health Study, n=27,158, 54.7 ± 7.1 y, quintiles of PA, median</td>
<td>PA</td>
<td>highest quintile (>1.574 kcal/wk): 10.4 vs lowest quintile (<1.145 kcal/wk): 10.8 μmol/L, p<0.001 odds ratios for the association of quintiles of PA with tHcy concentrations, n.s.</td>
</tr>
<tr>
<td>Husemoen et al. 2006</td>
<td>general lifestyle intervention, 1-y follow up, n=915, 30–60 y</td>
<td>PA</td>
<td>R=0.09, p=0.001, after adjustment p>0.05</td>
</tr>
<tr>
<td>Huemer et al. 2006</td>
<td>n=264, 2–17 y, Austria, mean±SD</td>
<td>BMI</td>
<td>−, in females, p=0.007</td>
</tr>
<tr>
<td>Ruiz et al. 2007</td>
<td>AVENA study, n=156, 14.8 ± 1.4 y, regression models included folate and vitamin B12 levels as well as MTHFR 677CT genotype</td>
<td>CVF</td>
<td>n.s.</td>
</tr>
<tr>
<td>Ruiz et al. 2007b</td>
<td>EYHS, n=680, 9–10 and 15–16 y, adjustments for gender, maturity, socioeconomic status, folate and vitamin B12 intake, and MTHFR 677CT genotype</td>
<td>PA</td>
<td>n.s.</td>
</tr>
<tr>
<td>Papandrou et al. 2007</td>
<td>n=524, 6–15 y, Greece</td>
<td>CVF</td>
<td>n.s.</td>
</tr>
<tr>
<td>Joubert et al. 2008</td>
<td>less active (<420 min/wk, n=40) compared with active (>420 min/wk, n=36) adults, 26 ± 5 y, mean (range)</td>
<td>BMI</td>
<td>n.s.</td>
</tr>
<tr>
<td>Bent et al. 2008</td>
<td>currently active ex-athletes (n=52) compared with sedentary ex-athletes (n=25), 35–62 y</td>
<td>CVF</td>
<td>low PA: 7.5 ± 1.6 vs high PA: 7.7 ± 1.6 μmol/L, p=0.36 extremely high PA (>750 min/wk, n=11): 8.6 (6.1–12.3) vs extremely low PA (<130 min/wk, n=9): 6.9 (2.9–9.1) μmol/L, p<0.001</td>
</tr>
<tr>
<td>Al-Tahan et al. 2008</td>
<td>n=165, 13–18.5 y, Spain, median (2.5th–97.5th percentile)</td>
<td>CVF</td>
<td>active: 9.43 ± 2.12 vs sedentary: 12.32 ± 4.49 μmol/L, p<0.001</td>
</tr>
<tr>
<td>Murakami et al. 2011</td>
<td>434 Japanese adults (118 men and 316 women), 23–85 y</td>
<td>BMI</td>
<td>n.s.</td>
</tr>
<tr>
<td>Maroto-Sánchez et al. 2013</td>
<td>n=10, healthy males, 18–28 y</td>
<td>PA</td>
<td>acute PA</td>
</tr>
</tbody>
</table>

PA: physical activity, CVF: cardiovascular fitness, BMI: body mass index, MTHFR: methylenetetrahydrofolate reductase. n.s.: not significant, +: positively associated, −: negatively associated.
had the strongest effect, the association was no longer significant. These findings emphasize the importance of adjusting for B-vitamin status when examining associations between tHcy and other parameters. We found a positive association between tHcy and BMI only in females (p=0.045), but adjusting for B-vitamin status and MTHFR 677C/T genotype. However, we did not find any association between tHcy concentrations and fatness (expressed as skinfold thickness and% body fat). These results are in accordance with findings reported by several European cross-sectional studies including the EYHS (22), the British National Diet and Nutrition Survey (n=922, 4–18 y) (36), a Belgian (n=647, 5–19 y) (37), a Spanish (n=165, 13–18.5 y) (38) and a Greek study (n=524, 6–15 y) (39), as well as a Brazilian case control study (n=239, 5–19 y) (40).

The cross-sectional design of the HELENA study does not allow the drawing of causal conclusions. Some prospective longitudinal studies on the development of cardiovascular risk factors from adolescence to adulthood have been implemented; however, to date most of these studies omitted the relatively new risk factor homocysteine.

Strengths of the present study are the inclusion of a relatively large number of adolescents and several potential confounders including the MTHFR 677C/T genotype. PA was objectively measured with accelerometers as well as CVF being objectively measured by the 20-m shuttle run test, and therewith VO2max was estimated for a better comparability with other studies. The indirect measurement of VO2max is feasible within epidemiologic studies: it is not only practical, time-efficient, and low in cost and equipment requirements, but can also be performed on large numbers of adolescents simultaneously (41). In addition to BMI, body composition was measured by skinfold thickness which is suggested to be a better predictor of body fatness in later life than BMI (42).

In conclusion, the results of the present study suggest that tHcy concentrations decrease with increasing CVF and increase with increasing BMI in European female adolescents. Additionally, tHcy concentrations were positively associated with moderate and vigorous PA in female European adolescents. However, these associations are weak and probably not relevant in clinical practice. Likewise, variation in tHcy concentrations could not be explained by PA expressed in cpm, CVF, or parameters of fatness in males. All in all, our results confirm the equivocal relationship between tHcy concentrations and exercise, which must be further studied.

Disclosure

The content of this paper reflects only the authors’ view and the rest of HELENA study members are not responsible for it. The writing group takes sole responsibility for the content of this article.

Acknowledgments

The HELENA study has taken place with the financial support of the European Community Sixth RTD Framework Programme (Contract FOOD-CT-2005-007034). Additional support came in the form of by grants from the Spanish Ministry of Education (EX-2007-1124, EX-2008-0641, AP2006-02464; AGL2007-29784-E/ ALI; AP-2005-3827), the Spanish Ministry of Economy and Competitiveness (RYC-2010-05957), Universidad Politécnica de Madrid (CH/018/2008), Swedish Council for Working Life and Social Research, the ALPHA study, a European Union-funded study, in the framework of the Public Health Programme (Ref: 2006120), and the Spanish Ministry of Health: Maternal, Child Health and Development Network (number RD08/0072). The content of this article reflects only the authors’ views, and the European Community is not liable for any use that may be made of the information contained therein.

The authors wish to thank Ms Petra Pickert for her contribution to laboratory work.

None of the authors had any conflict of interests.

Contributions of each author: MMG, LAM, MS, MJC, DM, KW, YM, PS and AK are co-responsible of the design of the HELENA study. JRR, MJC, MMG and JB are responsible for the design of the present study. JB, JRR, GP and JMA are responsible for statistical analysis. JB, JV, JRR, JMA, MMG, PS, GVR, MF, CB, GP and SGM are responsible for the first writing of the manuscript. All authors contributed to the execution of the HELENA CSS study, the data analysis and interpretation, and approved the manuscript in its current version.

HELENA Study Group

Co-ordinator: Luis A. Moreno.

Core Group members: Luis A. Moreno, Frédéric Gottrand, Stefaan De Henauw, Marcela González-Gross, Chantal Gilbert.

Steering Committee: Anthony Kafatos (President), Luis A. Moreno, Christian Libersa, Stefaan De Henauw, Jackie Sánchez, Frédéric Gottrand, Mathilde Kersting, Michael Sjöström, Dénes Molnár, Marcela González-Gross, Jean Dullongeville, Chantal Gilbert, Gunnar Hall, Lea Maes, Luca Scalli.

Project Manager: Pilar Meléndez.

1. Universidad de Zaragoza (Spain). Luis A. Moreno, Jesús Fleta, José As Casajús, Gerardo Rodriguez, Concepción Tomás, María I. Mesana, Germán Vicente-Rodríguez, Adoración Villarroya, Carlos M. Gil, Ignacio Ara, Juan Revenega, Carmen Lachen, Juan Fernández Alvia, Gloria Bueno, Aurora Lázaro, Olga Bueno, Juan F. León, Jesús Mª Garagarri, Manuel Bueno, Juan Pablo Rey López, Iris Iglesia, Paula Velasco, Silvia Bel.

3. Université de Lille 2 (France). Laurent Beghin, Christian Libersa, Frédéric Gottrand, Catalina Illescu, Juliana Von Berlepsch.

Koeppen.

6. University of Crete School of Medicine (Greece). Anthony Kafatos, Caroline Cordrington, María Plada, Angeliki Papadaki, Katerina Sarri, Anna Viskadourou, Christos Hatzis, Michael Kiriakakis, George Tsiibinos, Constantine Vardavas Manolis Sbokos, Eva Protoyeraki, Maria Fasoulaki.

9. Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (Italy). Davide Arcella, Elena Azzini, Emma Barrison, Noemi Bevilacqua, Pasqua Buonocore, Giovina Catasta, Laura Censi, Donatella Ciarapica, Paola D’Acapito, Marika Ferrari, Myriam Gallo, Cinzia Le Donne, Catherine Leclercq, Giuseppe Maiani, Beatrice Mauro, Lorenza Mistura, Antonella Pasquali, Raffaella Piccinelli, Angela Polito, Raffaella Spada, Stefania Sette, Maria Zaccaria.

10. University of Napoli “Federico II” Dept of Food Science (Italy). Luca Scalfi, Paola Vitaglione, Concetta Peter Stehle, Klaus Michael Sjöström, Patrick Bergman, Maria Hagströmer, Lena Hallström, Mårten Hallberg, Eric Poortvliet, Julia Wärnström, Patrick Bergman, Maria Hagströmer, Lena Hallström, Mårten Hallberg, Erica Löf.

12. Medical University of Vienna (Austria). Kurt Widholm, Sabine Dietrich.

17. Campden BRI (United Kingdom). Chantal Gilbert, Sarah Thomas, Elaine Allchurch, Peter Burguess.

18. SK–Institutet foer Livsmedel och Bioteknik (Sweden). Gunnar Hall, Anna Kogelman, Anna Sverken, Agnete Broberg.

25. European Food Information Council (Belgium). Laura Fernández, Laura Smillie, Josephine Wills.

26. Universidad Politécnica de Madrid (Spain). Marcela González-Gross, Jara Valtueña, Raquel Pedrero-Chamizo, Gonzalo Palacios, Agustín Meléndez, Pedro J. Benito, Juan José Gómez Lorente, David Cañada, Alejandro Urzañqui, Juan Carlos Ortiz, Francisco Fuentes, David Jiménez-Pavón, Ulrike Albers, Juan Miguel Ayuso, Rosa María Torres, Paloma Navarro.

REFERENCES

