Regularized multivariate von Mises distribution

Rodríguez Luján, Luis and Bielza Lozoya, María Concepción and Larrañaga Múgica, Pedro María (2015). Regularized multivariate von Mises distribution. In: "XVI Conferencia de la Asociación Española para la Inteligencia Artificial", 09-12 Nov 2015, Albacete, España. ISBN 978-3-319-24597-3. pp. 25-35. https://doi.org/10.1007/978-3-319-24598-0_3.

Description

Title: Regularized multivariate von Mises distribution
Author/s:
  • Rodríguez Luján, Luis
  • Bielza Lozoya, María Concepción
  • Larrañaga Múgica, Pedro María
Item Type: Presentation at Congress or Conference (Article)
Event Title: XVI Conferencia de la Asociación Española para la Inteligencia Artificial
Event Dates: 09-12 Nov 2015
Event Location: Albacete, España
Title of Book: Advances in Artificial Intelligence
Date: 2015
ISBN: 978-3-319-24597-3
Volume: 9422
Subjects:
Freetext Keywords: von Mises distribution; Directional distributions; Circular distance; Machine learning
Faculty: E.T.S. de Ingenieros Informáticos (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (523kB) | Preview

Abstract

Regularization is necessary to avoid overfitting when the number of data samples is low compared to the number of parameters of the model. In this paper, we introduce a flexible L1 regularization for the multivariate von Mises distribution. We also propose a circular distance that can be used to estimate the Kullback-Leibler divergence between two circular distributions by means of sampling, and also serves as goodness-of-fit measure. We compare the models on synthetic data and real morphological data from human neurons and show that the regularized model achieves better results than non regularized von Mises model.

Funding Projects

TypeCodeAcronymLeaderTitle
Government of SpainTIN2013-41592-PUnspecifiedUniversidad Politécnica de MadridAPRENDIZAJE DE REDES BAYESIANAS CON VARIABLES SIN Y CON DIRECCIONALIDAD PARA DESCUBRIMIENTO DE ASOCIACIONES, PREDICCION MULTIRESPUESTA Y CLUSTERING

More information

Item ID: 42149
DC Identifier: http://oa.upm.es/42149/
OAI Identifier: oai:oa.upm.es:42149
DOI: 10.1007/978-3-319-24598-0_3
Official URL: http://dl.acm.org/citation.cfm?id=2954565
Deposited by: Memoria Investigacion
Deposited on: 23 Jan 2017 15:07
Last Modified: 23 Jan 2017 15:07
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM