Development of a Dashboard for Sentiment Analysis of Football in Twitter based on Web Components and D3.js

Pascual Saavedra, Alberto (2016). Development of a Dashboard for Sentiment Analysis of Football in Twitter based on Web Components and D3.js. Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S.I. Telecomunicación (UPM), Madrid.

Descripción

Título: Development of a Dashboard for Sentiment Analysis of Football in Twitter based on Web Components and D3.js
Autor/es:
  • Pascual Saavedra, Alberto
Director/es:
  • Iglesias Fernández, Carlos Ángel
Tipo de Documento: Proyecto Fin de Carrera/Grado
Fecha: 2016
Materias:
Palabras Clave Informales: Web Components, Football, Sentiments, Emotions, D3.js, Twitter, Analysis
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Ingeniería de Sistemas Telemáticos [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

This thesis is the result of a project whose objective has been to develop and deploy a dashboard for sentiment analysis of football in Twitter based on web components and D3.js. To do so, a visualisation server has been developed in order to present the data obtained from Twitter and analysed with Senpy. This visualisation server has been developed with Polymer web components and D3.js. Data mining has been done with a pipeline between Twitter, Senpy and ElasticSearch. Luigi have been used in this process because helps building complex pipelines of batch jobs, so it has analysed all tweets and stored them in ElasticSearch. To continue, D3.js has been used to create interactive widgets that make data easily accessible, this widgets will allow the user to interact with them and �filter the most interesting data for him. Polymer web components have been used to make this dashboard according to Google's material design and be able to show dynamic data in widgets. As a result, this project will allow an extensive analysis of the social network, pointing out the influence of players and teams and the emotions and sentiments that emerge in a lapse of time.

Más información

ID de Registro: 42243
Identificador DC: http://oa.upm.es/42243/
Identificador OAI: oai:oa.upm.es:42243
Depositado por: Biblioteca ETSI Telecomunicación
Depositado el: 27 Jun 2016 11:51
Ultima Modificación: 29 Ago 2016 09:21
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM