DISEÑO DE UN HORMIGÓN AUTOCOMPACTANTE REFORZADO CON UNA COMBINACIÓN DE FIBRAS DE ACERO Y POLIOLEFINA

M. G. ALBERTI
A. ENFEDAUQUE
J. C. GÁLVEZ

RESUMEN

La combinación de hormigón autocompactante y fibras ha mostrado tener efectos positivos ya que éstas tienden a orientarse con el flujo del hormigón. Las fibras de poliolefina tienen capacidad estructural y son adecuadas para grandes deformaciones. Sin embargo, para pequeñas aperturas de fisura, se necesita una dosificación elevada para evitar la primera caída de carga. Las fibras de acero conformadas dotan de buenas resistencias residuales para las deformaciones post-fisuración iniciales. Se han intentado aprovechar las ventajas de una combinación de fibras de acero y de fibras de poliolefina en un hormigón autocompactante, obteniendo un comportamiento post-fisuración estable hasta aperturas de fisura elevadas y evitando la caída de carga inicial. Se realizaron ensayos en estado fresco y endurecido que mostraron los efectos sinérgicos de la combinación de fibras en fractura mejorando su distribución y orientación.

1. INTRODUCCIÓN

Las ventajas tecnológicas y económicas del hormigón autocompactante (HAC), como son la eliminación de la necesidad de medios de compactación, su gran facilidad y rapidez de puesta en obra, las altas prestaciones que se obtienen y la posibilidad de alcanzar lugares de difícil acceso en secciones fuertemente armadas han hecho de él uno de los desarrollos más importantes en el campo de la tecnología del hormigón en las últimas décadas. Esto permite acortar los plazos de ejecución y aumentar la productividad. Además, se mejora la calidad del acabado superficial y mediante el uso combinado de adiciones minerales y menores relaciones agua/cemento se consiguen hormigones con mayores resistencias, menor permeabilidad y, consecuentemente, mayor durabilidad [1, 2]. Parte de su éxito se debe a que todo ello repercute en una reducción del coste global de la obra, incluso añadiendo, como es necesario en algunos casos para lograr las propiedades autocompactantes, elevados contenidos de finos e incrementando las cantidades de cemento. Al aumentar estos dos componentes aumenta la resistencia a compresión superándose, frecuentemente, los requerimientos de proyecto. Esto justifica que los estudios se centren en su mayoría en hormigones autocompactantes con resistencias a compresión elevadas [3, 4].

Al igual que los hormigones convencionales los hormigones autocompactantes en estado endurecido tienen un comportamiento casi-frágil en fractura y baja resistencia a tracción. Las fibras, además de controlar posibles problemas de fisuración, mejoran el comportamiento mecánico y en fractura del hormigón [5]. Dichas fibras son elementos de corta longitud y reducida sección que se distribuyen de forma aleatoria durante el amasado del hormigón. La mejora que se produce en la ductilidad y la tenacidad al dotar al hormigón de resistencia residual post-fisuración depende del material del que están fabricadas las fibras, de sus características geométricas, así como de las propiedades de la interfase. En algunos casos, éstas pueden tenerse en cuenta en el diseño estructural [6].
El uso de fibras de acero, debido a sus características mecánicas en tracción, supone una mejora de las propiedades del hormigón frente a todo tipo de solicitaciones así como frente a impacto o fatiga [7-9]. El uso de éstas es común en obras de pavimentación industrial, pistas de aeropuertos, elementos prefabricados de espesor reducido, cubiertas laminares, etc. [10, 11]. Estas aplicaciones han sido posibles debido a la incorporación en las normas de referencia de los requisitos ligados al comportamiento post-fisuración del hormigón en Estado Límite Último (ELU) o en Estado Límite de Servicio (ELS) y su relación con el comportamiento del hormigón con fibras [12-14].

La aparición de macro-fibras plásticas con propiedades mecánicas mejoradas ha permitido aproximar el comportamiento post-fisuración de los hormigones reforzados con estas fibras al de los hormigones reforzados con fibras de acero, pero con contenidos en peso mucho menores [15-22]. Esto abre una alternativa técnica y económica a las fibras de acero incluso mejorando posibles problemas de corrosión de las fibras próximas a la superficie ya sea por entrada de cloruros o por carbonatación [23].

La mejora de propiedades del hormigón, para un tipo determinado de fibra, depende de la distribución, cantidad y orientación de las mismas [24]. El flujo del hormigón autocompactante durante la puesta en obra puede ser usado para lograr una mayor uniformidad en la dispersión de las fibras y mejorar la orientación de las mismas, siendo esto fundamental para un uso estructural de este tipo de material tanto en formulaciones de altas prestaciones como para usos más convencionales [25]. Estos últimos darán lugar a hormigones con notables características mecánicas incluso bajo solicitaciones de flexión y tracción siendo simultáneamente muy competitivos económicamente.

Para ver la viabilidad de estos planteamientos se realizó una campaña de ensayos en la que se elaboraron dos hormigones con contenidos bajos de dos tipos de fibras, además de una mezcla de HAC sin fibras que sirvió de referencia. Se utilizaron, por un lado, fibras de acero convencionales de superficie lisa y con anclaje por medio de patillas y, por otro lado, fibras de poliololefina rugosas con un tratamiento superficial que mejora la adherencia. Además, se combinaron ambos tipos de fibras en una misma mezcla, manteniéndose también las cuantías de fibras. Con estos cuatro tipos de hormigón, se realizó un estudio comparativo de la influencia del tipo de fibra y de la fracción volumétrica manteniendo constante el esqueleto granular. Se evaluaron las propiedades autocompactantes mediante ensayos en estado fresco del hormigón y posteriormente se caracterizaron las propiedades mecánicas y en fractura de todos los hormigones fabricados. Todos estos estudios se realizaron con hormigones con un contenido moderado de cemento y adiciones que mantiene su coste en rangos competitivos frente a la solución de armado tradicional.

2. MATERIALES Y DOSIFICACIONES DE LOS HORMIGONES

Se utilizó cemento Portland tipo CEM 52,5 R/SR 5 conforme a la especificación europea UNE-EN 197-1 [26] en todas las formulaciones realizadas. Se añadió filler calizo comercial como adición mineral inerte con una finura Blaine comprendida entre 4000-4500 cm²/g, un porcentaje de carbonato cálcico> 98% en peso y una densidad igual 2,70 g/cm³. En la composición del esqueleto granular se emplearon áridos siliceos machacados compuestos por grava (4-12 mm), gravilla (4-8 mm) y arena (0-2 mm). Como aditivo se utilizó superplastificante Sika Visocrete-5720 compuesto por policarboxilatos modificados en base acuosa con densidad 1,09 kg/l y contenido de sólidos de 36%.

En esta investigación se utilizaron fibras de acero convencionales de superficie lisa con anclaje por medio de patillas y fibras de poliololefina con tratamiento superficial y rugosidad para mejorar la adherencia. Las fibras de acero y poliololefina fueron añadidas en proporciones de 26kg/m³ y 4,5kg/m³ respectivamente.

Las características principales de las fibras de acero y poliololefina utilizadas se exponen en la Tabla 1 y el aspecto visual de las fibras se muestra en la Figura 1 y la Figura 2.

<table>
<thead>
<tr>
<th>Tabla 1. Principales propiedades de las fibras utilizadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibras</td>
</tr>
<tr>
<td>Densidad (g/cm³)</td>
</tr>
<tr>
<td>Longitud (mm)</td>
</tr>
<tr>
<td>Diámetro (mm)</td>
</tr>
<tr>
<td>Esbeltez</td>
</tr>
<tr>
<td>R. a tracción (MPa)</td>
</tr>
<tr>
<td>Fibras/kg</td>
</tr>
<tr>
<td>Anclaje</td>
</tr>
</tbody>
</table>
Con los materiales anteriormente citados se realizaron los cuatro tipos de hormigón que se pueden ver en la Tabla 2. Un hormigón autocompactante sin fibras (REF) que sirvió de muestra de control, un hormigón autocompactante con 26kg/m³ de fibras de acero (S26), un hormigón autocompactante con 4,5kg/m³ de fibras de poliolefina (P4,5) y un hormigón autocompactante con ambas cantidades de fibras simultáneamente, es decir, 26kg/m³ de fibras de acero y 4,5kg/m³ de fibras de poliolefina y que se denominó mezcla H1.

<table>
<thead>
<tr>
<th>Tabla 2. Dosificaciones de los hormigones.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>REF</td>
</tr>
<tr>
<td>Cemento (kg/m³)</td>
</tr>
<tr>
<td>Filler calizo (kg/m³)</td>
</tr>
<tr>
<td>Agua (kg/m³)</td>
</tr>
<tr>
<td>Arena (kg/m³)</td>
</tr>
<tr>
<td>Grava (kg/m³)</td>
</tr>
<tr>
<td>Gravilla (kg/m³)</td>
</tr>
<tr>
<td>Fibras de acero (kg/m³)</td>
</tr>
<tr>
<td>Fibras de poliolefina (kg/m³)</td>
</tr>
<tr>
<td>Superplastificante (%)</td>
</tr>
</tbody>
</table>

Todos los hormigones se amasaron en una hormigonera de eje vertical de 100 litros de capacidad. De cada hormigón se fabricaron 9 probetas cilíndricas de diámetro 150 mm y altura 300 mm y 3 probetas prismáticas de 430x100x100 mm³. Se curaron en una cámara climática a 20°C y 95% de humedad hasta la edad de ensayo.

3. CAMPAÑA EXPERIMENTAL Y RESULTADOS

El ensayo de escorrimiento según la norma UNE-EN: 12350-8 [27] y el ensayo del embudo en V descrito en la norma UNE-EN: 12350-9 [28] permitieron clasificar las clases de escorrimiento y viscosidad de los hormigones según la EHE-08 [14]. En la Tabla 3 se puede observar que todos los hormigones fabricados cumplen los requisitos de autocompactabilidad. Con la aportación de fibras, se produjo una reducción del diámetro de escorrimiento y un aumento en los tiempos de vaciado del embudo en V, que hicieron cambiar de clase de escorrimiento y viscosidad según la clasificación de la EHE-08 [14].

<table>
<thead>
<tr>
<th>Tabla 3. Propiedades del hormigón en estado fresco.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Tₜ₀ (s)</td>
</tr>
<tr>
<td>3,5</td>
</tr>
<tr>
<td>df (mm)</td>
</tr>
<tr>
<td>Tₜᵥ (s)</td>
</tr>
<tr>
<td>Clase de Escorrimiento</td>
</tr>
<tr>
<td>Clase de viscosidad</td>
</tr>
<tr>
<td>Fracción volumétrica de fibras (%)</td>
</tr>
</tbody>
</table>

El comportamiento mecánico de los cuatro tipos de hormigón estudiados se caracterizó, a 28 días, mediante ensayos de compresión simple, de tracción indirecta y de módulo de elasticidad en compresión siguiendo las recomendaciones europeas [29-31]. Los resultados medios obtenidos para cada hormigón se muestran en la Tabla 4.
Tabla 4. Propiedades del hormigón en estado endurecido.

<table>
<thead>
<tr>
<th></th>
<th>REF</th>
<th>S26</th>
<th>P4,5</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de elasticidad (GPa)</td>
<td>35.8</td>
<td>33.7</td>
<td>31.2</td>
<td>33.0</td>
</tr>
<tr>
<td>f_{ck} 28 días (MPa)</td>
<td>39.0</td>
<td>41.7</td>
<td>38.5</td>
<td>36.5</td>
</tr>
<tr>
<td>f_{ci} indirecta (MPa)</td>
<td>3.80</td>
<td>5.30</td>
<td>4.20</td>
<td>5.41</td>
</tr>
</tbody>
</table>

Siguiendo la recomendación RILEM TC-187-SOC se estudió el comportamiento en fractura ensayando 3 probetas prismáticas de 430x100x100 mm3 de cada tipo de hormigón [32]. Las dimensiones del ensayo se establecieron en función del canto de la viga (D). La distancia entre apoyos fue $3D$ situándose el cilindro de carga en el centro de la probeta. La sección central se talló una profundidad $D/3$.

La instrumentación del ensayo estaba compuesta por un extensómetro CMOD (crack mouth opening displacement) que midió la apertura de los labios de la entalla, dos dispositivos LVDT (linear variable differential transducer) a cada lado de la probeta para la medición de la flecha y una célula de carga de 10 kN que registró la carga introducida. Los valores de tiempo y posición del actuador de la máquina de ensayos también se grabaron. En la Figura 3, puede verse un esquema de la configuración del ensayo.

![Esquema de la configuración del ensayo](image)

Figura 3. Ensayos de fractura: (a) configuración de los ensayos de fractura; (b) ensayo de fractura de una probeta de P4,5

El ensayo se realizó en control de CMOD durante sus instantes iniciales para todos los tipos de hormigón. En el caso de las probetas fabricadas con hormigón con fibras, el control de CMOD se mantuvo hasta al menos 4mm de apertura de fisura. Esto se debe a que en los procesos post-fisuración de los hormigones reforzados con fibras se producen mecanismos de absorción de energía que hacen que las deformaciones sean muy superiores a los hormigones convencionales y, por ello, se superen los rangos de medición que el dispositivo CMOD permite. Para continuar el ensayo, se cambió el control del ensayo a posición del actuador de la máquina llegando a alcanzar aperturas de fisura muy elevadas. A pesar de esto todos los ensayos se detuvieron sin alcanzarse el colapso de las probetas.

Los resultados de los ensayos de fractura para todos los hormigones se pueden ver en las Figuras 4 y 5. Además en estas dos figuras también aparece la suma algebraica del comportamiento del hormigón S26 y P4,5 (S26+P4,5). Para un mejor desarrollo de los análisis se han representado las curvas medias obtenidas para cada tipo de hormigón.

![Curvas Carga-CMOD](image)

Figura 4.- Curvas Carga-CMOD

![Curvas Carga-flecha](image)

Figura 5.- Curvas Carga-flecha
4. DISCUSIÓN DE RESULTADOS

La presencia de fibras modificó de manera notable el modo de fallo de las probetas cilíndricas sometidas a esfuerzos de compresión como se puede ver en la Figura 6. La presencia de fibras genera un modo de fallo dúctil del material con ausencia de estallidos. Sin embargo, los resultados de resistencia a compresión se mantuvieron todos en el entorno de los 39 MPa.

Figura 6. Aspecto visual de las probetas tras el ensayo de compresión: (a) probeta de hormigón autocompactante sin fibras; (b) Probeta de hormigón autocompactante reforzado con fibras de poliolefina.

Las variaciones del módulo de elasticidad pueden deberse a una peor compactación del hormigón en las probetas en el caso de los hormigones con fibras pero están dentro de los márgenes de dispersión experimental habitual.

La resistencia a tracción del hormigón híbrido es superior al resto de formulaciones. Asimismo la resistencia a tracción indirecta del hormigón con fibras de acero es superior a la que mostró el hormigón con fibra de poliolefina. Todas las formulaciones con fibras tienen un comportamiento mejor al que mostró el hormigón de referencia sin fibras. En la Figura 7 se han representado los valores relativos obtenidos para las propiedades mecánicas en comparación con el hormigón de referencia.

![Figura 7. Comparación relativa de propiedades mecánicas](image)

Para la discusión de los ensayos de fractura se ha extraído el valor de la carga media en el pico de carga (L_{PEAK}), en la rama de descarga (L_{MIN}) y para aperturas de fisura de 0.5 ($L_{B0.5}$), 1.5 ($L_{B1.5}$), 2.5 ($L_{B2.5}$) y 3.5mm ($L_{B3.5}$). Además se obtuvo el valor de la energía de fractura para unas flechas de 1, 5 y 8mm. Todos estos valores se pueden ver en las Tabla 5 y 6.
Tabla 5. Energía de fractura.

<table>
<thead>
<tr>
<th>Energía de fractura Gf (N/m)</th>
<th>1mm</th>
<th>5mm</th>
<th>8mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>130</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S26</td>
<td>570</td>
<td>2135</td>
<td>2621</td>
</tr>
<tr>
<td>P4,5</td>
<td>254</td>
<td>1292</td>
<td>1846</td>
</tr>
<tr>
<td>H1</td>
<td>709</td>
<td>3577</td>
<td>4931</td>
</tr>
</tbody>
</table>

Tabla 6. Propiedades de fractura obtenidas del ensayo a flexotránsion.

<table>
<thead>
<tr>
<th>Lpeak (N)</th>
<th>Lmin (N)</th>
<th>Lr0,5 (N)</th>
<th>Lr1,5 (N)</th>
<th>Lr2,5 (N)</th>
<th>Lr3,5 (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>4970</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S26</td>
<td>5975</td>
<td>3733</td>
<td>3764</td>
<td>3943</td>
<td>3406</td>
</tr>
<tr>
<td>P4,5</td>
<td>5655</td>
<td>1064</td>
<td>1131</td>
<td>1301</td>
<td>1640</td>
</tr>
<tr>
<td>H1</td>
<td>5412</td>
<td>4454</td>
<td>4893</td>
<td>5827</td>
<td>5294</td>
</tr>
</tbody>
</table>

La adición de fibras causa una notable mejora de las propiedades de los hormigones como se puede apreciar en la Tabla 5. Hay que resaltar también que si bien esta afirmación es cierta para todos los tipos de fibra, para pequeñas aperturas de fisura la mejora que suponen las fibras de acero es notablemente superior a la creada por las fibras de polietileno. Esto se puede corroborar al comparar los valores de Lpeak, Lmin, Lr0,5, Lr1,5, Lr2,5 y Lr3,5 en los hormigones S26 y P4,5. Sin embargo, cuando se analiza la energía para flechas elevadas se produce una mejoría del comportamiento del hormigón P4,5 como se puede ver en los valores de energía de fractura para una flecha de 8mm. Por otra parte el fenómeno más notable se produce con el hormigón híbrido (H1) ya que en todos los escalones de apertura de fisura analizados se ha producido un comportamiento igual o mejor en este tipo de hormigón que el correspondiente a la suma del comportamiento de los hormigones con fibras de forma individual (S26+P4,5) como se puede ver en la Figura 4.

Analizando los resultados de las formulaciones con sólo un tipo de fibras se puede apreciar que en S26 Lr0,5 es superior al 40% de Lpeak y Lr2,5 es superior al 20% de Lpeak y por lo tanto cumple los requisitos de la EHE-08 [14] para tener en cuenta su contribución estructural. En cuanto a la dosificación P4,5 sería necesario incrementar la dosificación de fibras [17, 21] para obtener un hormigón que cumpliera los requisitos actuales para pequeñas deformaciones (Lr0,5 está en torno al 20% de Lpeak), mostrando sin embargo su mejor comportamiento para mayores deformaciones. Al sumar los efectos de ambas fibras (en la dosificación H1), se obtuvo un hormigón que, además de cumplir los requisitos para tener en cuenta la contribución estructural de las fibras, mantuvo valores muy elevados tanto para pequeñas deformaciones (Lr0,5 superó el 90% de Lpeak) como para deformaciones muy importantes (Lr3,5 permaneció en el 85% de Lpeak).

Con estos valores de carga se calcularon las resistencias residuales correspondientes a la carga máxima (fct,i) y los correspondientes con CMOD, 0,5 y 2,5mm (fR,i y fR,k), según la norma EN 14651 [33] y la recomendación RILEM TC 162-TDF [34] y que se obtuvieron mediante la expresión (1). Los resultados obtenidos se presentan en la Tabla 7.

\[\text{f}_{\text{ct},i} = \frac{3 \cdot F_i \cdot L}{2 \cdot b \cdot h_{sp}^2} \]

(1)

Tabla 7. Resistencias residuales a la tracción por flexión.

<table>
<thead>
<tr>
<th>fct,i (MPa)</th>
<th>fR,i (MPa)</th>
<th>%</th>
<th>fR,k (MPa)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>5,03</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S26</td>
<td>6,05</td>
<td>3,81</td>
<td>63%</td>
<td>3,45</td>
</tr>
<tr>
<td>P4,5</td>
<td>5,73</td>
<td>1,15</td>
<td>20%</td>
<td>1,66</td>
</tr>
<tr>
<td>H1</td>
<td>5,48</td>
<td>4,95</td>
<td>90%</td>
<td>5,36</td>
</tr>
</tbody>
</table>
4. CONCLUSIONES

Se ha obtenido un hormigón híbrido de altas prestaciones (26 kg/m³ de fibras de acero y 4,5 kg/m³ de fibras de poliolefina) con un contenido bajo de cemento que mejora el coste de otros hormigones híbridos estudiados con anterioridad [35]. Este hormigón mantiene las características autoexpandentes permitiendo aprovechar las propiedades introducidas por las fibras en zonas fuertemente armadas o moldes complejos sin penalizar el coste de la fabricación. Se ha detectado un efecto sinérgico entre las fibras de acero y las fibras de poliolefina obteniéndose un hormigón con mejores propiedades que las que tendría un hormigón suma de los hormigones con fibras individualmente. La mejora de propiedades podría estar provocada por la mejor orientación de las fibras cuando se combinan fibras de poliolefina con fibras de acero.

Los resultados de los ensayos de fracción de los hormigones con fibras muestran en todos los casos una notable mejora de la ductilidad respecto al hormigón de control, incluso en aquellos hormigones con el solo un tipo de fibras. Con la aportación de fibras se han conseguido fabricar hormigones con prestaciones mejoradas especialmente en comportamiento a fractura y que cumplen los requisitos de la instrucción de hormigón estructural EHE-08 [14] para tener en cuenta su contribución en el cálculo estructural.

Las características anteriormente citadas pueden ser interesantes en posibles usos estructurales en situaciones de proyecto que requieran hormigones con gran ductilidad como pudieran ser acciones sísmicas o de impacto. Además podrían ser de interés en zonas propensas a la fisuración de piezas prefabricadas o para la posible eliminación de mallos armados en piezas con bajas solicitudes, pero también en elementos realizados “in situ”.

5. AGRADECIMIENTOS

Los autores desean agradecer al Ministerio de Economía y Competitividad la concesión del Proyecto DPI2011-24876. Asimismo, Marcos G. Alberti desea agradecer la concesión de la beca Sika-UPM para la realización de tesis doctoral. Por último los autores desean agradecer los consejos y comentarios aportados por Alberto Rey Corporate KAM de Sika S.A.U en la realización de este trabajo.

6. REFERENCIAS