Real-time wet/dry road surface discrimination using rolling noise acoustic footprint analysis

Alonso Fernández, Jesús; López Navarro, Juan Manuel; Pavón García, Ignacio; Asensio Rivera, César y Arcas Castro, Guillermo de (2015). Real-time wet/dry road surface discrimination using rolling noise acoustic footprint analysis. En: "22nd International Congress on Sound and Vibration - ICSV22", 12-16 July 2015, Florence (Italy). pp. 1-7.

Descripción

Título: Real-time wet/dry road surface discrimination using rolling noise acoustic footprint analysis
Autor/es:
  • Alonso Fernández, Jesús
  • López Navarro, Juan Manuel
  • Pavón García, Ignacio
  • Asensio Rivera, César
  • Arcas Castro, Guillermo de
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 22nd International Congress on Sound and Vibration - ICSV22
Fechas del Evento: 12-16 July 2015
Lugar del Evento: Florence (Italy)
Título del Libro: Proceedings of the 22nd International Congress on Sound and Vibration
Fecha: 2015
Materias:
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Ingeniería Mecánica
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
Pdf - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

Road surface changes due to the weather conditions have a major influence in driving safety. To avoid accidents, drivers must adapt their driving style according to the road status. This adaptation mechanism depends on the driver ability to detect the pavement conditions. Unfortunately, this is often a difficult task. A system capable of notifying the driver about changes on the road surface due to weather aspects, could improve this adaptation mechanism, thus reducing accident risk. An electronic system capable of estimating the road surface status between dry and wet status is presented. The system is mainly based on the analysis of the tyre/road noise generated during driving. The sound emission pattern of the tyre/road interaction changes depending on whether the pavement is dry or wet. Thus discriminating the tyre/road noise acoustic footprint, it is possible to estimate the road status. Proposed system captures and digitizes tyre/road noise. Rolling noise is pre-processed extracting its spectral components to construct the feature vectors. Feature vectors are processed by a Support Vector Machine (SVM) based classifier. Then the classifier outputs the road surface status estimation. The first implementation of the system, using Matlab along with pre-recorded tyre/road noise, shows high success rates (around 91 %). These promising results are leading to the development of a hardware prototype, tightly integrated with the vehicle, and capable of computing the classification algorithms in real time.

Más información

ID de Registro: 42408
Identificador DC: http://oa.upm.es/42408/
Identificador OAI: oai:oa.upm.es:42408
URL Oficial: http://iiav.org/archives_icsv_last/2015_icsv22/content/papers/papers/full_paper_182_20150309231600645.pdf
Depositado por: Memoria Investigacion
Depositado el: 02 Ago 2016 07:54
Ultima Modificación: 02 Feb 2017 15:48
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM