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ABSTRACT  

An overview of the work recently conducted by our group on the development and applications of photovoltaic tweezers 

is presented. It includes the analysis of the physical basis of the method and the main achievements in its experimental 

implementation. Particular attention will be paid to the main potential applications and first demonstrations of its use in 

nano- and bio-technology. Specifically: i) fabrication of metallic nanoestructures for plasmonic applications, ii) 

development of diffractive components, iii) manipulation and patterning (1D and 2D) of various types of bio-objects 

(spores or pollen…) and iv) effects of PV fields of LiNbO3 in tumour cells.   
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INTRODUCTION 
 

The manipulation of micro- and nano-objects, such as molecules, living cells or bacteria and micro- and nanoparticles, is 

a subject of increasing importance for a variety of applications in nano-technology, photonics, biotechnology and 

biomedicine. A number of different approaches have been proposed and explored including conventional optical 

tweezers or electrokinetical methods. In the last years a new optoelectric technique for particle manipulation, the so 

called photovoltaic (PV) tweezers (or photorefractive tweezers), has been proposed and demonstrated [1-3]. It relies in 

the bulk photovoltaic effect (PVE) [4], a singular phenomenon which appears in some crystalline ferroelectric materials 

(doped LiNbO3 clearly highlighting) when properly doped (mainly with Fe). It allows the photo-generation of very high 

internal electric fields (1-3×10
5
 V/cm) for moderate or low light levels (~mW/cm

2
) [4-5]. The field extends to the 

proximity of the crystal surface (evanescent field) and can trap either charged particles via electrophoretic (coulombian) 

forces or neutral particles via dielectrophoretic forces. In fact, either dielectric or metallic particles have been 

manipulated [3,6,7].  

 

The novel technique has a number of key advantages over conventional optical tweezers and/or electro-kinetical methods 

such as parallel manipulation on many particles, flexibility and versatility of the light-induced patterning without the 

need of electrodes or voltage suppliers, operation at low light intensities (several orders of magnitude smaller than 

conventional optical tweezers) and reconfiguration capabilities [8]. However, in spite of its potential, the technique is 

still in an emergent stage and its possibilities and, particularly, its potential applications are in continuous expansion.  

 

In this contribution we present an overview of the work recently conducted by our group on the development and 

applications of PV tweezers. It includes a brief analysis of the physical basis of the method and the main achievements in 

its experimental implementation in section 2 and 3 respectively. Particular attention will be paid in section 4 to our 



 

 
 

 

recent new results on various possible applications in nano- and bio-technology. Specifically: i) fabrication of metallic 

nanoestructures for plasmonic applications, ii) development of diffractive components, iii) manipulation and patterning 

(1D and 2D) of various types of bio-objects (spores or pollen…) and iv) effects of PV fields of LiNbO3 in tumour cells.   

  
 

2. PHYSICAL BASIS OF PV TWEEZERS 
 

The physical effect accounting for the evanescent fields responsible for the trapping and patterning of nano-particles is 

the PV effect in Fe-LiNbO3. Suitable light illumination induces an asymmetric excitation of electrons from the Fe
2+

 

donor centers along the ferroelectric trigonal (poling) axis that abruptly generates an electrical dipole moment, pPV=elPV, 

lPV  being the PV drift length (~1-5 Å). A PV electric current is induced,  

Ilej PVPV   (1) 

(I being the light intensity and α the absorption coefficient), followed by charge migration and redistribution due to 

electron re-trapping at acceptors Fe
3+

 centers. Then, a correlated space-charge field is developed, both, inside and outside 

(evanescent field) the sample. There are two possible orientations of the substrate: i)  the more conventional one in this 

field which has the polar PV axis parallel to surface (parallel configuration) and ii)  the perpendicular configuration with 

the polar axis normal to the surface recently used to improve 2D patterning [9,10].   

 

Experiments have been very often performed in the parallel configuration, under a periodic light intensity profile and in 

this case a detailed analytical analysis has been reported [7,11]. The light intensity pattern can be written  

)cos1(0 KxmII    (2) 

Z being the normal to the slab, X the PV (poling) axis that coincides with the trigonal crystallographic axis of LiNbO3 

and m (0<m< 1) is the modulation index of the light pattern. In accordance with the standard photorefractive model 

significant electric fields develop inside the sample and extend as evanescent fields into the surrounding medium. Most 

analyses of the effect deal with the bulk fields generated in an infinite medium, since they are mainly relevant for optical 

applications. On the other hand, the evanescent fields appearing at the interface between the PR crystal and the outside 

medium have been generally ignored. For low m values a linear approximation to carrier transport equations applies. 

Then, under steady-state conditions, the field profiles outside the crystal (z < 0)  differ from those in an infinite medium 

and consist of parallel and perpendicular components whose periodicities present a /2 phase mismatch
 
[11]

 
. After 

taking into account the electromagnetic boundary conditions at the sample-medium interface the evanescent fields (z>0) 

write:  
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where EPV is the photovoltaic field and ε and εm are the static dielectric constants of the PV material and surrounding 

medium, respectively. When the light intensity profile has a high contrast (m close to 1) the space charge fields present 

harmonic contributions with K vectors that are multiple of the fundamental K of the light. The impact of this aspect on 

PV tweezers has been also addressed in [11] considering an approximation that keeps the fundamental and the second 

harmonic components. The result indicates the importance of the presence of harmonics on the trapping and patterning 

processes. The dielectrophoretic force acting on a neutral dielectric particle placed at the sample surface is: 
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p being the static polarizability tensor of the particle. For spherical and crystallographically isotropic particles, in the 

Rayleigh approximation (R <<  = 1/ K), the polarizability is a scalar and writes: 
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V being the volume of the particle and m and p the dielectric permittivities of the host medium (air or liquid) and 

particle, respectively. More specific expressions and analysis for the dielectrophoretic force on the particles can be found 

in references [7,11]. In addition theoretical calculations of the operation of PV tweezers with arbitrary light patterns have 

been reported in [12] including successful comparison with experimental results. 

 

 
3. EXPERIMENTAL METHODS: 1D AND 2D PATTERNING 

 

PV tweezers allow generating very flexible 1D and 2D patterning of micro- and nanoparticles that are essentially a 

replica of the light distribution. As PV substrate we have used LiNbO3 highly doped with iron with two different 

geometries, x- and z-cut substrates, with the polar axis parallel and perpendicular to the crystal surface, respectively. The 

use of the perpendicular configuration is a key point to obtain high quality 2D patterns [9,10]  

 

The technique for particle trapping and patterning includes two steps that can be either simultaneous or successive: i) 

Illumination of the PV substrate (Fe:LiNbO3) and, ii) particle deposition. The sequential procedure is easier to implement 

and it is the one we use ordinarily. Illumination has been carried out with different procedures depending on the 

application. For 1D periodic patterning we use a two-beam interferometric set-up [7,13] whereas for 2D patterning the 

key element is spatial light modulator that allows to generate 2D light patterns that are projected on the substrate [6,9]. 

The particles or bio-objects are deposited from air or from a hexane suspension in which the substrate is immersed.   

 

Two illustrative examples are presented in Figure 1. Figure 1a shows an image of a pattern of graphite particles 

(diameter d~1 m) deposited after sinusoidal interferometric illumination with a period of 60 m on an x-cut sample 

(parallel configuration). Figure 1b shows a 2D pattern of Al nanoparticles (d~70 nm) obtained using a spatial light 

modulator and the perpendicular configuration for the substrate. In both cases particle deposition has been developed 

from a hexane suspension of particles. 

 

  
Figure 1. (a) Photograph of a graphite 1D particle pattern obtained by sinusoidal illumination of an x-cut Fe:LiNbO3 

substrate. The pattern period is 60 m, i.e. the same periodicity of light. (b) Photograph of a 2D pattern of Al nanoparticles 

deposited on a z-cut Fe:LiNbO3 substrate after illumination with a light pattern of squares of 245 m side separated 1 mm.  

 

When light is removed, the PV fields remain during a long time. Typical times are in the range of minutes-months. 

However, they can be erased either by uniform illumination or by heating the substrate above RT. Therefore, one has a 

means to record sequentially different patterns on the same crystal surface and so, the patterning method offers 

reconfigurability capabilities [8]. In Figure 2 we present a transmission microscope image of a particle pattern obtained 

with Ag particles deposited in air by spraying from beneath the surface. The image shows a central circular region in 

which the PV field has been erased by homogeneous illumination provided by the microscope, whereas it is kept in the 

surroundings. 

 



 

 
 

 

 

Figure 2: Transmission microphotograph of an Ag pattern deposited in air after sinusoidal illumination of the substrate with 

=50 m. After particle patterning the PV field of the central circular region has been “erased” by illumination through the 

microscope objective. 

 

 

4. APPLICATIONS 
 

So far only very few real applications have been reported [9] although a large span of possibilities can be envisaged. 

Recently we have addressed the investigation of a number of possible applications in nano- and bio-technology that we 

describe below. 

 

 

4.1 Metallic nanostructures 
 

There is an increasing interest in producing structures of metallic nanoparticles because they have multiple applications 

in the fields such as photonics or bio-devices. As it has been already seen in section 3, PV tweezers are a very useful tool 

to fabricate metallic particle patterns. We have successfully used Ag, Au and Al nanoparticles with diameters ranging 

between 10 and 150 nm.  1D and 2D patterns have been obtained. In fact, the minimum reported periods of 1D patterns 

obtained with PV tweezers have been fabricated by our group using Al nanoparticle with 70 nm-diameter [13]. Figure 3a 

shows a microscope image of a pattern of Ag (d~ 35 nm) nanoparticles. To have a first characterization of the plasmonic 

behavior of the structure its relative reflectance with regard to nude Fe:LiNbO3 has been measured. The results for probe 

light linearly polarized parallel and perpendicular to the particle fringes are shown in Figure 3b. A broad, but weak band 

can be seen both polarizations. The peak (minimum reflectance) for the parallel polarization (~640 nm) is clearly shifted 

to longer wavelengths than the one for the perpendicular polarization (~600 nm). This result that appears in all the 1D 

metallic structures measured, may be justified taking into account that the geometry of structure should lead to a more 

effective coupling between nanoparticles in the direction parallel to the fringes. 

 

             

Figure 3: (a) Microscopic image of a periodic pattern (=20 m) of Ag nanoparticles in black) (b) Relative reflectance with 

regard to Fe:LiNbO3 for two polarizations of the incident light, parallel (red) and perpendicular (black) to the fringes. 

 



 

 
 

 

 

4.2 Particle patterns for diffractive components 

 

Diffractive optical components play a key role in a variety of photonics devices. They include diffraction gratings, beam 

deflectors, tuneable filters, Bragg reflectors, grating couplers, Fresnel lenses and so on. A possible photonic application 

of particle patterns is just to provide a simple and flexible method to fabricate diffractive structures with arbitrary 

periodic 1D and 2D designs with dielectric or metallic particles. A very simple example is a fringe pattern as the one 

illustrated that is shown in Figure 4a. It has been obtained with dielectric CaCO3 micro-particles and has 67 lines/mm. 

The corresponding diffraction diagram is shown in Figure 4b. 
 

 
Figure 4: (a) Microscope image of a region of the diffractive structure fabricated by trapping of CO3Ca particles after 

sinusoidal illumination with a period =15 m. (b) Diffractive transmission pattern of the structure. 

 
 

4.3 Trapping and patterning of bio-objects 

 

Once the possibility of flexible trapping and patterning of micro- and nanoparticles was demonstrated, a further step, not 

reported so far is to check the possibility of patterning different kind of bio-objects with PV tweezers. Very recently we 

have addressed a set of experiments directed to trap and pattern spores and pollen. In Figure 5 we show an illustrative 

result for spores with 10-m diameter (see Fig. 5a). The trapping experiment have been carried out in x-cut substrate and 

under sinusoidal illumination (=35 m). The spores have been deposited immersing the substrate in a hexane 

suspension. Figure 5b shows an image of the observed spore pattern and Figure 5c shows the result of a control 

experiment in which the substrate have been immersed in the hexane suspension without any previous illumination. In 

Figure 5b a 1D pattern formed by lines of spores perpendicular to the polar axis is clearly seen whereas in Fig. 5c, 

without PV fields, only some spores remain in the surface but located at random. The trapping experiments have been 

also conducted with deposition in air obtaining similar results. Therefore, a first demonstration of the capabilities of PV 

tweezers to pattern biological objects has been obtained.  

           

 
Figure 5: (a) SEM image of one spore. (b) 35 m period spores pattern obtained after sinusoidal illumination. (c) Control 

experiment with a non-illuminated substrate, i.e. without PV fields. 
 
A second set of experiments were carried out using pollen grains with a diameter of ~70 m (see Figure 6a). Due to the 

large size of these pollen grains only macroscopic patterns (in the scale of mm) have been obtained. However, using 

pollen fragments obtained by sonication high quality 1D and 2D patterns of the biological powder are obtained. This is 



 

 
 

 

shown in the microscopic images of Figures 5c and 5d, respectively. It is worthwhile mentioning that in the case of 1D 

structuring of pollen fragments periodic patterns, with spatial period in the range between 1 and 100 m, have been 

obtained with a very good quality. In fact, the smallest period value of 1.7 m is a record for this kind of tweezers, lower 

than minimum periods reported so far (4.5 m [13]) when using metallic and dielectric nanoparticles. Then, these results 

can be considered very promising regarding the capabilities of this kind of tweezers to trap and manipulate bio-objects 

and open the door to a wide number of applications in biotechnology.  

 

 
Figure 6: (a) Microscope image of pollen grains and (b) SEM image of pollen fragments. (c) Microscope image of a 65 m 

period pattern of pollen fragments obtained after sinusoidal illumination. (d) Microscope image of a 2D pattern of pollen 

fragments obtained after illumination with mosaic of squares (100 m side) provided by a spatial light modulator. 
 
 

4.4 Effects of PV fields in tumor cells 

 

Finally, it is worthwhile mentioning another application of the interaction between PV fields and cells. We have already 

demonstrated [14] that the evanescent PV field has a dramatic effect in human tumor cells (HeLa cell line).Two different 

kind of experiments have been performed: i) culturing the cells on a Fe:LiNbO3 substrate and afterwards exposing the 

culture to low-intensity visible light (10-100 mW/cm
2
), ii) incubating the cells  with Fe:LiNbO3 microparticles (1-3 m 

diameter) and illuminating with 40 mW/cm
2
 green light. In both cases necrotic death of nearly all cells occurs when the 

substrate is illuminated to generate the PV fields. The results are plotted in Figure 7a.  

 

These very remarkable effects of PV fields in cells could become very relevant for therapy purposes if the size of PV 

particles is reduced to a nanometer scale. Preliminary experiments along this direction have been addressed [15] using 

Fe:LiNbO3 nanoparticles (d~100 nm) by grinding from crystal or by bottom-up sol-gel chemical synthesis from meta-

ethoxide precursors. The nanoparticles were incorporated into a tumor cell culture and it was subjected to 30-min 

illumination with a blue LED. Control experiments of the culture with nanoparticles in dark were also carried out for 

reference. The percent of cell death in dark and under illumination conditions as a function of the nanoparticle 

concentration is plotted in Figure 7b.  Although the cell death fraction is larger for the illuminated cultures dark toxicity 

itself is high and much further work is necessary to progress in this direction. 
 

                 

Figure 7: (a) Time evolution of the fraction of dead cells evaluated through morphological criteria for tumor cells cultured on 

Fe:LiNbO3 substrates (solid circles) or in contact with Fe:LiNbO3 microparticles (open circles). (b) Fraction of dead cells vs 

Fe:LiNbO3 nanoparticle density under illumination (open circles) and in dark (solid circles). The difference between both 

curves is also represented (red solid squares). 

 



 

 
 

 

 

5. SUMMARY AND CONCLUSIONS 

 
A description of the operation of PV tweezers, an emergent technique for micro and nano-object manipulation, has been 

presented. The physical basis and the main experimental procedures we used for 1D and 2D patterning are described. In 

addition, our new recent work on the application of PV tweezers in various fields has been reported. Specifically, it is 

demonstrated that PV tweezers are a simple and flexible tool to fabricate diffractive optical components with arbitrary 

patterns or metallic nanostructures exhibiting plasmonic effects. Finally, it has been reported for the first time efficient 

trapping and patterning of various types of bio-objects (spores, pollen and its fragments). A rapid development of these 

and other applications of the technique is expected in the near future. 
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